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Abstract
Purpose We aimed to analyse the acute effects of set configuration on cardiac parasympathetic modulation and blood pres-
sure (BP) after a whole-body resistance training (RT) session.
Methods Thirty-two participants (23 men and 9 women) performed one control (CON) and two RT sessions differing in the 
set configuration but with the same intensity (15RM load), volume (200 repetitions) and total resting time (360 s between 
sets for each exercise and 3 min between exercises): a long set configuration (LSC: 4 sets of 10 repetitions with 2 resting 
minutes) and a short set configuration session (SSC, 8 sets of 5 repetitions with 51 resting seconds). Heart rate variability, 
baroreflex sensitivity, the low frequency of systolic blood pressure oscillations (LFSBP), BP and lactatemia were evaluated 
before and after the sessions and mechanical performance was evaluated during exercise.
Results LSC induced greater reductions on cardiac parasympathetic modulation versus SSC after the session and the CON 
(p < 0.001 to p = 0.024). However, no LFSBP and BP significant changes were observed. Furthermore, LSC caused a higher 
lactate production (p < 0.001) and velocity loss (p ≤ 0.001) in comparison with SSC.
Conclusion These findings suggest that SSC attenuates the reduction of cardiac parasympathetic modulation after a whole-
body RT, improving the mechanical performance and decreasing the glycolytic involvement, without alterations regarding 
vascular tone and BP.
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Abbreviations
15RM  15-Repetition maximum load
5LFR  Last five to the first five repetition velocity ratio
BEI  Baroreflex effectiveness index
BP  Blood pressure
BPV  Blood pressure variability

BPR  Bench press
BRS  Baroreflex sensitivity
CON  Control session
DBP  Diastolic blood pressure
HF  High frequency in absolute values
HFn.u.  High frequency in normalised units
HR  Heart rate
HRV  Heart rate variability
KE  Knee extension
LFSBP  Low frequency of systolic blood pressure
LSC  Long set configuration session
Lt  Capillary blood lactate concentration
MAP  Mean arterial pressure
MMR  Average mean propulsive velocity to maximum 

velocity ratio
MPV  Mean propulsive velocity
PI  Pulse interval
RMSSD  Root mean square of differences between adja-

cent pulse interval
RT  Resistance training
RTE  Relative treatment effect
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SBP  Systolic blood pressure
SDNN  Standard deviations of normal-to-normal pulse 

intervals
SQ  Parallel squat
SSC  Short set configuration session

Introduction

The autonomic nervous system, through the “paired antag-
onistic innervation”, i.e. sympathetic and parasympathetic 
activity (Hess 2014), is responsible for the cardiovascular 
response to ensure the physiological demands and maintain 
the cardiovascular homeostasis. Several feedback and feed-
forward mechanisms, moderated by central and peripheral 
neural structures, are involved to induce these responses 
(Fisher et al. 2015). Despite the contradictory viewpoints 
regarding the markers of autonomic regulation (Eckberg 
1997; Billman 2011; Parati et al. 2006), currently some non-
invasive methods allow evaluating them. Heart rate vari-
ability (HRV) and baroreflex sensitivity (BRS) are indica-
tors of cardiac parasympathetic activity (Malik 1996; Ogoh 
et al. 2005). HRV provides information about the integrated 
activity of the parasympathetic nervous system over time 
(Rosenwinkel et al. 2001), whereas BRS indicates how effi-
ciently the cardiac baroreflex is able to adapt the following 
heartbeats in response to changes in systolic blood pressure 
(SBP) (Stuckey et al. 2012), evaluating the ability of the 
parasympathetic system to respond reflexively to a discrete 
stimulus. Additional information regarding sympathetic vas-
omotor tone can be estimated assessing the low frequency 
of systolic blood pressure oscillations (LFSBP), which is 
closely associated with arterial stiffness (Bruno et al. 2012) 
and may reveal the activity of sympathetic outflow (Pagani 
et al. 1986; Malliani et al. 1991).

Resistance training (RT) is currently recommended as a 
significant component of a healthy fitness lifestyle and as 
a means of prevention for several diseases (Pollock et al. 
2000). However, paradoxically after an RT session, the risk 
of suffering a cardiac event increases in apparently healthy 
individuals (Goodman et al. 2016) and especially in peo-
ple with elevated cardiac risk (Albert et al. 2000), due to 
the reductions in cardiac autonomic modulation (Rosen-
winkel et al. 2001). Several investigations have studied the 
acute effect of RT on cardiac autonomic modulation (Rezk 
et al. 2006; Heffernan et al. 2008; Kingsley et al. 2014), 
cardiac baroreflex (Heffernan et al. 2007, 2008; Niemelä 
et al. 2008) and vascular tone (Queiroz et al. 2015; Kingsley 
et al. 2019). Whilst the acute effects of RT on vascular tone 
remain unclear, the review by Kingsley and Figueroa (2014) 
summarised that RT induces a parasympathetic withdrawal 
after exercise, with the consequent increased risk of suf-
fering a cardiac event as previously mentioned. To reduce 

this elevated risk of suffering a cardiac event, the loading 
parameters of the RT session should be properly selected 
to minimise the cardiac parasympathetic withdrawal. In 
this regard, a limited load intensity (Niemelä et al. 2008; 
Lima et al. 2011), a small volume (Figueiredo et al. 2015a) 
or an adequate rest interval length (Figueiredo et al. 2016) 
may reduce this loss. In addition, the set configuration is 
another loading parameter that may attenuate the reduc-
tions of cardiac parasympathetic modulation after a session 
of RT (Mayo et al. 2015, 2016). Set configuration refers 
to the number of repetitions performed in each set in rela-
tion to the maximum number of feasible repetitions of such 
set (Iglesias-Soler et al. 2014b). Short set configurations, 
with a low intensity of effort (Steele 2014), produce smaller 
reductions on the cardiac autonomic modulation (Iglesias-
Soler et al. 2014a) and cardiac baroreflex (Mayo et al. 2015, 
2016) in comparison with long set configurations, close 
to, or leading to muscular failure, which may result in a 
higher reduction in mechanical performance (Latella et al. 
2019). Moreover, short sets produce a non-significant, or 
slight glycolytic involvement, in comparison with long sets 
(Iglesias-Soler et al. 2012; Rial-Vázquez et al. 2020), whilst 
allowing comparable or greater gains in strength (Oliver 
et al. 2013; Iglesias-Soler et al. 2015). Since the relationship 
between the glycolytic involvement and the parasympathetic 
withdrawal was observed previously both during exercise 
(Buchheit et al. 2007) and when it is injected intravenously 
at rest (George et al. 1989; Yeragani et al 1994, 1996), short 
sets may be a unique strategy to promote health benefits 
whilst reducing the possible adverse effects of the transient 
reductions in cardiac parasympathetic modulation (Albert 
et al. 2000). Nevertheless, previous studies analysing the set 
configuration on cardiac autonomic modulation and cardiac 
baroreflex have used a one-exercise model (Iglesias-Soler 
et al. 2014a; Mayo et al. 2015, 2016) This one-exercise 
model does not accurately reflect the conventional and suit-
able RT session, performing several upper- and lower-body 
RT exercises (American College of Sports Medicine 2009). 
Thus, it is important to expand on the current body of litera-
ture using more than one resistance exercise.

On the other hand, concomitant with the transient reduc-
tion in cardiac parasympathetic modulation there may be 
an acute decrease in blood pressure (BP) after an RT ses-
sion. For this reduction to occur, the session needs to meet 
some characteristics, such as an medium intensity of load 
(Rezk et al. 2006; Figueiredo et al. 2015b; Neto et al. 2016), 
enough volume within session (Simão et al. 2005; Figue-
iredo et al. 2015a), the onset of muscular failure (De Souza 
et al. 2013), or exercises that involve enough muscle mass 
(Polito and Farinatti 2009; Mohebbi et al. 2016). Neverthe-
less, it remains unclear if the magnitude of this effect can be 
modulated by the interaction of different loading parameters 
(Casonatto et al. 2016). In this regard, studies analysing the 
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effects of set configuration on the postexercise BP are scarce, 
showing mixed results regarding the hypotensive effect of 
different configurations (Mayo et al. 2015, 2016). In this 
sense, to the best of our knowledge, the postexercise BP after 
different set configuration sessions has only been studied by 
a single-exercise model (Mayo et al. 2015, 2016) but not for 
routines composed by several RT exercises involving major 
muscle groups.

Therefore, we aimed to compare the effect of two differ-
ent whole-body RT set configuration protocols (long ver-
sus short set configuration) on the cardiac parasympathetic 
modulation, vascular tone and postexercise BP response. We 
hypothesised that a short set configuration session would 
attenuate the reduction on cardiac parasympathetic activity 
in comparison with a long set configuration, showing lower 
neuromuscular fatigue and a reduced glycolytic involvement. 
Our second hypothesis was that there would not be differ-
ences between set configurations regarding the vascular tone 
and BP response after whole-body RT sessions.

Methods

Participants

Thirty-two apparently healthy individuals (23 men and nine 
women) with self-reported previous experience of at least 
6 months with RT participated in this cross-sectional study. 
The participants were screened and excluded if they had a 
prior history of cardiovascular disease, any medical con-
traindications for lifting weights, or were using any con-
trolled medication. This study was approved by the local 
Institutional Ethics Committee, and the participants read and 
signed an informed consent form.

Study design

The participants visited the laboratory a total of six times 
separated at least by 72 h. The first and second sessions were 
conducted to familiarise the participants with the resistance 
exercises. In the third session, 15-repetition maximum load 
(15RM) was determined for all exercises. After assigning the 
participants into different experimental sequences, following 
a randomised block design in order to warrant an equivalent 
regarding the sex distribution, the final three sessions con-
sisted of two experimental [long (LSC) and short (SSC) set 
configuration] and one control (CON) protocols. Participants 
were assessed before and after each session for cardiovas-
cular and metabolic variables. In addition, mechanical per-
formance was collected during some exercises. A schematic 
representation of the study is presented in Fig. 1.

The experimental sessions were composed of five resist-
ance exercises performed in the same order: knee extension 

(KE), leg curl, lateral pull-down, bench press (BPR), and 
parallel squat (SQ). Guided machines were used for per-
forming the KE (Technogym, Gambettola, Italy), leg curl, 
and lateral pull-down (Biotech Fitness Solutions, Brazil) 
exercises, whereas BPR and SQ were performed on a Smith 
Machine (Telju Fitness, Toledo, Spain). Participants were 
encouraged to produce the maximal intended velocity dur-
ing the concentric phase of the exercises and to complete the 
full range of movement for each repetition of each exercise.

Familiarisation sessions

In the familiarisation sessions, the participants were 
instructed on how to perform each resistance exercise. 
In this regard, the individual position references for each 
exercise were registered to standardise the execution condi-
tions across the study. The full range of each exercise was 
objectively determined by the investigator for all exercises, 
excepted for SQ, which was controlled by placing an adjust-
able bench at the height required to achieve a parallel squat.

The first session started with a 5-min warm-up in a cycle 
ergometer at 60–80 revolutions per min (Monark 828E; 
Monark Exercise AB, Vansbro, Sweden) as well as joint 
mobilisation, followed by 2 sets of 15 repetitions with 
approximately 50% of perceived maximum load and 2 min 
of recovery between sets and exercises. In addition, height 
was measured by a stadiometer (Seca 202; Seca Ltd., Ham-
burg, Germany), body mass measured with an electronic 
scale (Omron BF-508, Omron Healthcare Co., Kyoto, Japan) 
and body mass index was calculated. In the second session, 
participants were instructed to perform the same warm-up, 
joint mobilisation and 2 sets at 75% of perceived maxi-
mum load. In the last set of each exercise, participants were 
encouraged to perform the maximal number of repetitions, 
to get more experience reaching muscular failure.

15RM test

In the third session, the 15RM test was conducted to assess 
the maximum load that each participant could lift no more 
than 15 times for each exercise using correct form and tech-
nique. The session started with the general warm-up previ-
ously described, followed by 10 repetitions of each exer-
cise performed at 50% of the load from the last set of the 
familiarisation session. Then, after 5 min of rest, participants 
performed a set with approximately 110% of the load from 
the last set of the familiarisation session. If participants per-
formed 16 repetitions, the load was increased, whereas if 
they could not complete 15 repetitions, the load was reduced. 
The first load which they performed no more than 15 repeti-
tions was considered the 15RM. The test comprised a maxi-
mal of 2 attempts interspersed with at least 5 min rest. Par-
ticipants were instructed to perform the concentric portion 
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of each repetition as fast and explosive as possible. Muscle 
failure was defined when the participants could not complete 
the full range of movement of the exercise or the load could 
not be moved. The order of the resistance exercises was the 
same as we previously described.

Experimental sessions

Each participant completed the two experimental sessions 
(LSC and SSC) and the CON in random order. In all ses-
sions, the participants were instructed to refrain from alco-
hol, and caffeine for 3 h and exercise for 24 h prior to the 
testing sessions, and keep hydration and feeding habits sta-
ble. Participants were tested in the postprandial state (3 h) 
upon arrival to the laboratory. Sessions were separated by 
at least 72 h and were performed at the same time of the 
day (± 1.5 h) in a temperature and humidity-controlled room 
(23 °C and 50% respectively). Both experimental sessions 
entailed performing a total of 200 repetitions (40 per exer-
cise) with the 15RM load and with a total rest of 42 min 
(360 s between sets for each exercise and 3 min between 
exercises) but differing in the set configuration. LSC con-
sisted on 4 sets of 10 repetitions (i.e. an intensity of effort 

of 66%, 10 out of 15RM) with 2 min of rest between sets 
and 3 min between exercises. SSC consisted of 8 sets of 5 
repetitions (i.e. an intensity of effort of 33%, 5 out of 15RM) 
with a rest of 51 s between sets and 3 min between resist-
ance exercises. After a baseline assessment, and before both 
LSC and SSC, the general warm-up previously described 
was performed. In addition, before each exercise, a specific 
warm-up consisting of 10 repetitions with 50% of 15RM was 
carried out. In CON, before and after the measurements, the 
participants remained seated in the laboratory for 80 min 
without performing any resistance exercise.

Procedures

Physiological recording

Cardiovascular parameters were registered using the Task 
 Force® Monitor (CNSystems, Graz, Austria). A three-lead 
electrocardiogram obtained a continuous heart rate (HR) 
with a sampling frequency of 1000 Hz. Beat-by-beat moni-
toring of SBP, diastolic blood pressure (DBP), and mean 
arterial pressure (MAP) were obtained by photoplethysmog-
raphy. The finger cuffs were placed on the proximal phalange 

Fig. 1  a Schematic representation of the study. FAM familiarisation 
session, S experimental session. b Graphical simplification assess-
ment. LSC long set configuration session, SSC short set configuration 
session, CON control session, HRV heart rate variability, BRS barore-
flex sensitivity, BPV blood pressure variability, BP blood pressure, Lt 
Capillary blood lactate concentration, MPV mean propulsive veloc-
ity, JM joint mobilisation, KE knee extension, LC leg curl, LP lateral 

pull-down, BPR bench press, SQ parallel squat. c Representation of 
the experimental sessions. All sessions consisted of 40 repetitions 
and 360 s of total rest with the 15RM load for each exercise and with 
3  min of rest between exercises. LSC: 4 sets of 10 repetitions with 
2 min of rest between sets. SSC: 8 sets of 5 repetitions with 51 s of 
rest between sets
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of the index and the middle fingers of the right hand, sited on 
the fourth intercostal space. The absolute values of the finger 
pressure were automatically and continuously transformed 
into values of braquial artery by an oscillometric device. 
It consisted of an arm cuff tightly attached to the left arm 
with the compressed air outlet on the brachial artery and the 
lower edge of the cuff approximately 2.5 cm from the elbow 
crease. Considering the delay caused by the cardiovascular 
device colocation and calibration procedures, and to allow 
the comparability with previous resistance exercise studies 
using similar epochs, cardiovascular data were obtained 
10 min before the sessions and 20 min after the end of the 
protocols (i.e. in the period 20–40 min). During this time, 
participants were lying in the supine position on a stretcher 
in a quiet room, breathing with a respiratory rate of 0.2 Hz 
(12 breaths per min) to avoid the effect of respiratory rate on 
HRV measures (Penttila et al. 2001). Participants were asked 
not to move or speak during the measurements. (Laborde 
et al. 2017).

Capillary blood lactate concentration (Lt) was obtained 
using a portable blood lactate analyser with a sample anal-
ysis time of 15 s and a required blood sample of 0.5 μL 
(Lactate Scout, SensLab GmbH, Germany). Lactate Scout 
uses an enzymatic-amperometric method for the detection 
of lactate in capillary blood and his reliability has been pre-
viously evaluated (Tanner et al. 2010). Data were obtained 
immediately before, and 1 and 3 min after each experimental 
session.

Mechanical recording

The mean propulsive velocity (MPV) of every repetition was 
recorded with a linear velocity transducer (T-Force System, 
Ergotech, Murcia, Spain). Validity and reliability of this 
device have been previously reported (Sánchez-Medina 
and González-Badillo 2011). MPV consisted of the mean 
velocity during the propulsive phase of the exercise, that 
is, the portion of the concentric period in which the barbell 
acceleration is greater than the acceleration due to gravity 
(Sánchez-Medina et al. 2010). MPV was registered for three 
exercises: KE, BPR, and SQ.

Data analysis

HRV was used to assess the autonomic modulation of 
the heart. Analysis of the data consisted of time- and 
frequency-domain analysis. The time-domain analysis 
included the standard deviations of normal-to-normal 
pulse intervals (PI) of the HR (SDNN), a measure of 
global autonomic control, and the root mean square of 
differences between adjacent PI (RMSSD), a measure 
of parasympathetic activity. For the spectral analysis of 
HRV, Fast Fourier Transformation method was employed. 

High-frequency power (0.15–0.4 Hz) in absolute values 
(HF) and normalised units (HFn.u.) was calculated for 
estimating cardiac parasympathetic activity. The data 
analysis was performed for the last 5 min of the period 
of 10 min before the beginning of the session (baseline) 
and 5 min epochs during the 20–40 min period after the 
session, since epochs of 5 min are recommended when 
taking short-term recordings (Malik 1996). Automatic 
artefact correction (i.e. medium correction threshold 
level, ± 0.25  s) and calculation of HRV values were 
obtained using the Kubios HRV software v2.1 (The Bio-
medical Signal and Medical Imaging Analysis Group, 
Department of Applied Physics, University of Kuopio, 
Finland). The data were detrended with the smooth priors 
method. The Lambda value was fixed at 500. The mean 
artefact correction of the signal was 1.04 ± 2.53%. In addi-
tion, HR values were recorded as a reflection of cardiac 
autonomic activity and as an independent predictor of sud-
den cardiac death risk (Hjalmarson 2007).

BRS, quantified by the sequence method, was employed 
to estimate the effect of the sessions on the cardiac barore-
flex. This method is based on the identification of sequences 
of three or more consecutive beats in which SBP and the 
PI increase progressively (+PI/+SBP) or fall (−PI/−SBP) 
in a linear fashion (Bertinieri et al. 1988). In specific, the 
sequences of three or more beats for which SBP and PI of 
the next beat (Lag 1) changed in the same direction (Blaber 
et al. 1995) were analysed. The threshold change was defined 
asr 1 mmHg for BP and 6 ms for PI. BRS analysis included 
the total number of detected sequences  (BRScount), the mean 
slope of such sequences  (BRSslope), and the ratio between 
the number of SBP ramps followed by the respective reflex 
PI ramps and the total number of SBP ramps observed in a 
given time window, known as the baroreflex effectiveness 
index (BEI) (Rienzo et al. 2001). BEI reflects the number 
of times the baroreflex is active in controlling the HR in 
response to BP oscillations, which is indicative of the sever-
ity and duration of several diseases, such as renal failure 
(Johansson et al. 2007). For BEI, only 24 participants were 
analysed.

Blood pressure variability (BPV) was used to estimate the 
sympathetic vasomotor tone. Our BPV analysis consisted 
of spectral analysis of SBP variability. The autoregressive 
spectral method was used, and the low-frequency activity 
(0.04–0.15 Hz) in absolute values was calculated (LFSBP) 
(Pagani et al. 1997).

Data recordings of BRS and BPV were performed for 
the last 10 min before the protocols (baseline) and for the 
intervals 20–30 and 30–40 min after each session. Epochs 
of 10 min are usually used to analyse BRS after resistance 
exercise (Niemelä et al. 2008; Queiroz et al. 2015). BRS and 
BPV data were obtained using TFM software v2.3 (CNSys-
tems, Graz, Austria) (Fortin et al. 2001).
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For BP analysis, the beat-to-beat responses registered 
before (baseline) and after the sessions were analysed in 
epochs of 10 min. The percentage change of SBP, DBP, and 
MAP was calculated for all the participants. Percentages 
changes were calculated as follows: Δ%30-Baseline = (value 
of the 20–30 epoch − value of baseline)/value of baseline; 
Δ%40-Baseline = (value of the 30–40 epoch − value of 
baseline)/value of baseline. Percentage changes were used 
to represent the differences in BP values. For measurements 
obtained with a photoplethysmography device, the responses 
to exercise in percentage changes have been previously 
validated and well correlated with simultaneous invasive 
procedures, being these non-invasive measurements a very 
sensitive method to follow rapid changes in arterial pressure 
(Gomides et al. 2010).

Regarding Lt, the maximum value of the two post-test 
measurements was selected, and the percentage change of 
lactatemia (Δ%Lt) was calculated in both training sessions.

MPV was used to estimate the neuromuscular fatigue of 
each session. The MPV of every repetition was calculated 
and averaged in both experimental sessions for KE, BPR, 
and SQ. Thereafter, other parameters were calculated for 
comparing the loss of mechanical performance between 
sessions. For the overall maintenance of velocity analysis, 
the mean to maximum MPV ratio of each session (MMR) 
was calculated as follows: ([average MPV/maximum 
MPV] × 100) (refs). Values near 100% imply less velocity 
loss. For quantifying the velocity loss throughout the ses-
sions, the last five to the first five repetition ratio (5LFR) 
was obtained. For this calculation, the mean MPV of the 
last five repetitions and the first five ones were considered as 
follows: 5LFR = ([(average last five repetitions MPV/average 
first five repetitions MPV) − 1] × 100). Lower values imply 
higher magnitudes of velocity loss and positive values was 
interpreted as velocity gains.

Statistical analysis

Descriptive parameters are shown as means ± standard devi-
ation. Normality was tested using the Shapiro–Wilk test. 
The characteristics of participants were compared between 
sexes using independent sample t test or Mann Whitney U 
test, respectively. As all physiological variables violated the 
assumption of normality and a logarithmic transformation 
was not possible, a nonparametric ANOVA type test was 
employed using the nparLD R software package (Noguchi 
et al. 2012) for evaluating the main effects and interactions 
between sex (men, women), sessions (LSC, SSC, and CON) 
and times (Baseline, 20–25, 25–30, 30–35, and 35–40 for 
HRV and HR parameters; Baseline, 20–30 and 30–40 min 
for BRS and LFSBP; and %30-Baseline and Δ%40-Baseline 
of SBP, DBP, and MAP). Since gender did not interact 
with the rest of factors (i.e. time and session), a two-way 

nonparametric ANOVA type test was performed with pooled 
data from men and women. If a significant interaction was 
detected, paired comparisons were performed using the Wil-
coxon signed-rank test with Bonferroni correction. For main 
effects’ interpretation, relative treatment effect (RTE) was 
considered. RTE has a value between 0 and 1 and indicates 
the probability that a measurement in one group at a given 
time-period is larger than a value of this variable in any other 
combination of group and time (Schild et al. 2016).

For capillary lactate production, Wilcoxon signed-rank 
test was performed to analyse the delta differences between 
experimental sessions (Δ%Lt). For mechanical responses, 
paired t tests and Wilcoxon signed-rank test were used for 
analysing differences between sessions. Furthermore, train-
ing effect size was reported using Hedge’s g (g) and Matched 
Pair Rank Biserial Correlation (r) for parametric and non-
parametric contrasts, respectively. Matched Pair Rank Bise-
rial corresponds to the difference between the proportions of 
positive and negative ranks (Kerby 2014).

R software v3.6.1. (R Foundation, Vienna, Austria), 
GraphPad Prism 5.01 (GraphPad Software, San Diego, CA, 
USA), Comprehensive Meta-Analysis v.2 (Biostat Inc., 
Englewood, NJ, USA), and IBM SPSS v.20.0. (IBM Corp, 
Armonk, NY, USA) were used for statistical analysis. Sta-
tistical significance level was set at 0.05.

Finally, a post-hoc power analysis was calculated using 
the G Power software (version 3.1.9.2). The statistical power 
(1 − β) of a repeated measures ANOVA with 3 and 5 meas-
urements for a sample size of 32, and a correlation among 
repeated measures of 0.5 and a medium effect size (f = 0.25) 
are  0.87 and 0.96, respectively.

Results

The characteristics of participants are summarised in 
Table 1. Men and women were matched for age and body 
mass index; however, men showed higher weight, height, 
and 15RM values for all exercises than women.

For HR, main effect of session (p < 0.001; RTE: 0.629, 
0.598, and 0.273 for LSC, SSC, and CON, respectively), 
time (p < 0.001; RTE: 0.378, 0.542, 0.540, 0.530 and 0.510 
for Pre, 20–25, 25–30, 30–35, and 35–40, respectively), and 
a session by time interaction were detected (p < 0.001). Post-
hoc analyses (Fig. 2a) showed higher values for all post-test 
epochs in LSC and SSC versus baseline (p < 0.001) and ver-
sus CON (p < 0.001). Furthermore, LSC data were higher 
in comparison with SSC during all the postexercise epochs 
(p < 0.001 to 0.006).

For SDNN, main effects for session (p = 0.004; RTE: 
0.416, 0.498, and 0.585 for LSC, SSC, and CON, respec-
tively), time (p < 0.001; RTE: 0.585, 0.451, 0.490, 0.476; 
and 0.498 for Baseline, 20–25, 25–30, 30–35, and 35–40, 
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respectively), and an interaction of session by time were 
detected (p = 0.025). Post-hoc pairwise comparisons 
are shown in Fig. 2b. Lower values were revealed after 
both experimental sessions in comparison with the CON 
(p < 0.001). Nevertheless, lower values of SDNN at the 
35–40 epoch were observed only after LSC with respect to 
the baseline (p < 0.001). During all the postexercise meas-
ures, LSC showed lower SDNN values in comparison with 
SSC (p = 0.001–0.024).

For RMSSD, neither a main effect of session (p = 0.238; 
RTE: 0.457, 0.533, and 0.520 for LSC, SSC, and CON, 
respectively) nor time (p = 0.070; RTE: 0.578, 0.481, 0.474, 
0.484, and 0.483 for baseline, 20–25, 25–30, 30–35, and 
35–40, respectively) was detected, whereas a significant ses-
sion by time interaction was observed (p = 0.013). For LSC 
and SSC, RMMSD values after exercise were always lower 
in comparison with the baseline (p < 0.001–0.002) and CON 
values (p < 0.001). Furthermore, all post-training records 
were significantly lower in LSC when compared with SSC 
(p < 0.001–0.004) (Fig. 2c).

Regarding absolute HF values, neither a main effect of 
session (p = 0.498; RTE: 0.484, 0.496, and 0.520 for LSC, 
SSC, and CON, respectively) or time (p = 0.883; RTE: 
0.480, 0.486, 0.503, 0.510, and 0.520 for baseline, 20–25, 
25–30, 30–35, and 35–40, respectively), nor session by time 
interaction was found (p = 0.687) (Fig. 2d).

Regarding HFn.u., main effect of session (p < 0.001; 
RTE: 0.364, 0.493, and 0.643 for LSC, SSC, and CON, 
respectively), time (p < 0.001; RTE: 0.673, 0.495, 0.431, 
0.441, and 0.460 for Pre, 20–25, 25–30, 30–35, and 35–40, 
respectively), and a session by time interaction was detected 
(p < 0.001). Post-hoc analyses (Fig. 2e) showed lower val-
ues for all post-test epochs in LSC and SSC versus both the 
baseline and CON in all the epochs (p < 0.001–0.031) except 
the 30–35 min period after SSC. Furthermore, LSC data 
were consistently lower in comparison with SSC during all 

the postexercise epochs (p < 0.001–0.021). The effect size 
with respect to baseline values for the cardiac autonomic 
modulation is reported in Table 2.

For  BRScount, a main effect for session (p < 0.001; RTE: 
0.567, 0.552, and 0.381 for LSC, SSC, and CON, respec-
tively) and a session by time interaction was detected 
(p = 0.011). Nevertheless, a time effect was not observed 
(p = 0.212; RTE: 0.468, 0.529, and 0.503 for baseline, 
20–30, and 30–40, respectively). For all periods after train-
ing, LSC (p = 0.042 and p = 0.006 for 20–30 and 30–40 
epochs, respectively) and SSC (p = 0.002 for both post-test 
epochs) showed higher values of  BRScount in comparison 
with CON. There were no differences between LSC and SSC 
at any postexercise time-period (Fig. 3a).

Regarding  BRSslope, neither a main effect for session 
(p = 0.230; RTE: 0.461, 0.498, and 0.541 for SSC, LSC, 
and CON, respectively) or time (p = 0.387; RTE: 0.472, 
0.533, and 0.495 for Pre, 20–30, and 30–40, respectively) 
was observed. On the other hand, a significant session by 
time interaction was detected (p < 0.001). In this sense, for 
all after training periods, lower values for  BRSslope were 
obtained after both LSC (p < 0.001in both periods) and SSC 
(p < 0.001 and p = 0.001 for 20–30 and 30–40, respectively), 
in comparison with CON. In this regard, LSC presented 
lower values at each after training epoch in comparison 
with SSC (p < 0.001 and p = 0.002 for 20–30 and 30–40 min, 
respectively). In addition, both LSC and SSC presented 
lower values at the period 20–30 in comparison with the 
baseline (p < 0.001 and p = 0.001, respectively). However, 
at the period 30–40 min, the difference with respect to the 
baseline was still significant in LSC (p < 0.001), but not in 
SSC (p = 0.053) (Fig. 3b).

Regarding BEI, only 24 participants were analysed 
because of missing data. Neither main effect of session 
(p = 0.261; RTE: 0.454, 0.531, and 0.514 for LSC, SSC, and 
CON, respectively) nor time (p = 0.254; RTE: 0.540, 0.487, 

Table 1  Physical and 
functional characteristics of the 
participants (n = 32)

Values represent means ± SD
BMI body mass index, KE knee extension, LC leg curl, LP lateral pull-down, BPR bench press, SQ parallel 
squat
*p values are derived from independent sample t test and +p values are derived from Mann–Whitney U test

Men (n = 23) Women (n = 9) Total (n = 32) p value

Age (years) 23 ± 2 24 ± 3 23 ± 2 0.456+

Weight (kg) 73.14 ± 8.45 62.11 ± 6.37 70.04 ± 9.30 < 0.001*
Height (cm) 1.76 ± 0.06 1.65 ± 0.06 1.73 ± 0.08 < 0.001*
BMI (kg/m2) 23.64 ± 2.03 22.72 ± 1.93 23.38 ± 2.01 0.402+

15RM in KE (kg) 79 ± 13 55 ± 10 72 ± 16 < 0.001*
15RM in LC (kg) 54 ± 9 38 ± 9 50 ± 11 < 0.001*
15RM in LP (kg) 49 ± 8 34 ± 5 45 ± 10 < 0.001*
15RM in BPR (kg) 51 ± 12 29 ± 5 45 ± 14 < 0.001*
15RM in SQ (kg) 80 ± 19 55 ± 10 73 ± 20 0.001*
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and 0.473 for baseline, 20–30, and 30–40 min, respectively) 
was detected. Nevertheless, a significant session by time 
interaction was observed (p = 0.029) such that BEI decreased 
in LSC after the 20–30 min period time in comparison with 
baseline (p = 0.017), but no significant differences were 
detected after SSC. However, recovery was only observed 
during SSC, where there were higher values during the 
20–30 min period in comparison with the 30–40 min one 
(p = 0.006) (Fig. 3c). Effect sizes versus the baseline for the 
cardiac baroreflex response is reported in Table 2.

Regarding LFSBP, our analysis did not detect nei-
ther main effect of session (p = 0.609; RTE:, 0.512, 0.514 
and 0.473 for LSC, SSC, and CON, respectively), time 
(p = 0.141; RTE: 0.461, 0.529, and 0.509 for baseline, 
20–30, and 30–40, respectively), nor session by time inter-
action (p = 0.104) (Fig. 3d).

For SBP, DBP, and MAP, no interactions or main effects 
were observed amongst protocols (p > 0.05).

Glycolytic metabolism implication analysis (Δ%Lt) 
showed higher values of lactatemia (p < 0.001; g = − 1.079; 
CI −1.598 to − 0.560) after LSC (84.8 ± 6.8%) in compari-
son with SSC (69.5 ± 18.6%).

Regarding mechanical measurements (Fig. 4), LSC pro-
duced a higher loss of velocity in comparison with SSC for 
all exercises (p < 0.001–0.020) as showed by MPV, MMR, 
and 5LFR analyses.

Discussion

The main findings of this study are that whilst (a) both long 
and short set configurations produced a reduction of cardiac 
parasympathetic modulation after a whole-body RT session, 
(b) the long sets produced a greater drop in comparison with 
the short sets; (c) there was a higher glycolytic involvement 
during the long set configuration session concomitant with 
a prominent loss in mechanical performance versus the short 
set design. In parallel, there were no alterations regarding 
the BP or the vascular tone after any session.

Our results indicate that when the intensity of load 
(15RM), total volume (200 repetitions), and total rest-
ing time (360 s between sets for each exercise and 3 min 

between exercises) are equated, a whole-body RT session 
including several exercises but differing in the set config-
uration affects the postexercise cardiac parasympathetic 

Fig. 2  Cardiac autonomic control before (baseline) and after a long 
set configuration session (LSC, in squares); a short set configura-
tion session (SSC, in circles), and a control session (CON, in trian-
gles). HR: heart rate (a), SDNN: standard deviations of pulse inter-
vals (b), RMSSD: root mean square of differences between adjacent 
pulse intervals (c), HF: high-frequency power in absolute values (d), 
HFn.u.: high-frequency power spectral power in normalised units (e). 
*Within-session differences in comparison with baseline, #differences 
between training sessions at a specific time-period and $differences in 
comparison with CON at a specific time-period. For clarity, within 
session comparisons are only shown with respect to the baseline. 
Data are displayed as means ± SD (n = 32)

▸
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modulation. In specific, our data demonstrate that the long 
set configuration produces a significantly greater reduction 
of cardiac parasympathetic modulation in comparison with 
the short set configuration during the 40 min postexercise. 
These results are a novelty since, as far as we know, this is 
the first study investigating the set configuration effect after 
a whole-body RT session composed of a series of exercises 
that match a more traditional style of RT. Previous studies 
have explored the set configuration effect using a single-
exercise model (Iglesias-Soler et al. 2014a; Mayo et al. 2015, 
2016), limiting the applicability to typical training protocols 
routines including several exercises. A previous study by 

Iglesias-Soler et al. (2014a) showed no differences in cardiac 
parasympathetic modulation recovery whilst comparing an 
inter-repetition rest set versus a set to failure during the first 
postexercise minutes. On the contrary, and in line with our 
results, Mayo et al. (2015) showed that a long set configura-
tion with a high intensity of effort (8/10, i.e., 80%) and a 
short set (4/10, 40% intensity of effort) elicited higher reduc-
tions of cardiac parasympathetic modulation than a session 
with a very short set (1/10, i.e.,10%). These findings, along 
with those of the present study, indicate that the type of set 
configuration used determines the reductions of the cardiac 
parasympathetic modulation.

Table 2  Effect sizes (matched pair rank Biserial correlation, r) for heart rate, cardiac autonomic and baroreflex control with respect to the base-
line across sessions

Positive values of effect size indicate higher values in comparison with the baseline, whereas a negative effect size indicates decreases in values 
in comparison with the baseline (n = 32 excepted for BEI, n = 24)
LSC long set configuration session, SSC short set configuration session, CON control session, HR heart rate, SDNN standard deviations of pulse 
intervals, RMSSD root mean square of differences between adjacent PI, HF high-frequency PI spectral power in absolute values, HFn.u. high-
frequency PI spectral power in normalised units, BRScount number of baroreceptor sequences detected, BRSslope magnitude of the baroreflex 
sensitivity, BEI baroreflex effectiveness index

20–25 25–30 30–35 35–40

HR (bpm)
 LSC 1.00 1.00 1.00 0.97
 SSC 1.00 1.00 0.98 0.90
 CON − 0.72 − 0.78 − 0.74 − 0.56

SDNN (ms)
 LSC − 0.99 − 0.95 − 0.94 − 0.96
 SSC − 0.91 − 0.81 − 0.73 − 0.52
 CON 0.51 0.57 0.65 0.57

RMSSD (ms)
 LSC − 1.00 − 0.99 − 0.98 − 0.98
 SSC − 0.93 − 0.89 − 0.80 − 0.76
 CON 0.51 0.51 0.61 0.49

HFn.u
 LSC − 0.98 − 1.00 − 1.00 − 0.98
 SSC − 0.67 − 0.70 − 0.60 − 0.80
 CON 0.08 − 0.41 − 0.48 − 0.33

20–30 30–40

BRScount (n)
 LSC 0.19 0.11
 SSC 0.45 0.36
 CON − 0.44 − 0.49

BRSslope (ms/mmHg)
 LSC − 0.99 − 0.89
 SSC − 0.71 − 0.48
 CON 0.57 0.41

BEI (%)
 LSC − 0.61 − 0.33
 SSC 0.12 − 0.26
 CON − 0.11 − 0.52
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Previous investigations have reported that HR is, by itself, 
a surrogate of autonomic activity (Lahiri et al. 2008) both at 
rest (Hjalmarson 2007) and during recovery (Jouven et al. 
2005). Thus, both are good indexes of increased risk of a 
cardiac event. In our study, HRV and HR results showed 
a similar trend. In fact, HR values were higher even after 
20 min of the long set configuration, suggesting a slower HR 
recovery (i.e. a slower parasympathetic reactivation). This 
reinforces the findings of the effect of set configuration on 
the autonomic response.

The length of the cardiac parasympathetic modulation 
reduction lasted up to 40 min after both experimental ses-
sions. Our results partially agreed with Kingsley et  al. 
(2016), who indicated that parasympathetic activity might 
not be fully recovered up to 30 min after an RT session 
composed of upper- and lower-body exercises. However, 
Mayo et al. (2015) reported a shorter time of reduced car-
diac parasympathetic modulation for short set configura-
tions. These discrepancies may be due to several reasons. 
On the one hand, the whole-body multi-exercise nature of 

our design, that included both single- and multi-joint exer-
cise, in comparison with the one-exercise model employed 
by Mayo et al. (2015), might partially explain the differ-
ences observed. On the other hand, the differences in the 
intensity of effort magnitude and total volume performed 
in each study might also determine the recovery of cardiac 
parasympathetic modulation. Whereas previous studies used 
less repetitions per session (e.g. the 40 repetitions used by 
Mayo et al. 2015 or the 90 repetitions by Kingsley et al. 
2016), our sessions had each participant complete a total of 
200 repetitions. In this sense, a previous study (Figueiredo 
et al. 2015a) showed that an RT session with a greater vol-
ume promotes longer reductions in parasympathetic activ-
ity compared to sessions with a lower volume, which is in 
agreement with our findings..

In addition, even though in our study the time differences 
only were observed until 40 min postexercise, the magnitude 
of the reductions suggests that the recovery length in the 
long set configuration could be longer in comparison with 
the short structure, but this is speculation. The recovery time 

Fig. 3  Cardiac baroreflex control and vascular tone before (base-
line) and after a long set configuration session (LSC, in squares), a 
short set configuration session (SSC, in circles), and a control session 
(CON, in triangles). a  BRScount: number of baroreceptor sequences 
detected [ramps simultaneous in systolic blood pressure (SBP) and 
pulse intervals]; b  BRSslope: magnitude of the baroreflex sensitiv-

ity; c BEI: Baroreflex effectiveness index; d LFSBP: low frequency 
of SBP. *Within session differences in comparison with baseline, 
@differences between epochs, #differences between training sessions 
at a specific time-period and $differences in comparison with CON 
at a specific time-period. Data are displayed as means ± SD (n = 32 
excepted for BEI, n = 24)
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differences between protocols may be due to the incapacity 
of the baroreflex to synchronise the BP responses to changes 
in HR. Despite that both RT protocols promoted a reduction 
in BRS during recovery, the long set configuration caused 
a higher reduction and a slower recovery to the baseline 
values than the short one, suggesting that this incapacity 
might be particularly important in more strenuous protocols 
(Heffernan et al. 2008; Queiroz et al. 2013; Kingsley et al. 
2016, 2019). These results are partially in agreement with 
Mayo et al. (2015). They reported BRS reductions after both 
long and short intra-set rest configurations but not after the 
inter-repetition rest training session. Nevertheless, in that 
particular study, the reductions in comparison with baseline 
were significant up to 40 min for both set configurations. 
This may be due to the differences between studies in the 
intensity of effort used (Mayo et al. 2015). This points out 
the suitability of managing the set configuration to attenuate 
the impact on cardiac parasympathetic modulation after RT 
and to promote a faster recovery whilst maintaining the rest 
of the loading parameters equated. Thus, shorter sets should 
be recommended when the aim is to mitigate the effects of 
RT on cardiac parasympathetic modulation.

The reductions in cardiac baroreflex activity may also 
be produced by an increase in arterial stiffness triggered by 
the higher sympathetic tone of central arteries (Heffernan 
et al. 2007). Our analysis did not detect significant changes 
in sympathetic vascular tone, which is coincident with Quei-
roz et al. (2015). In their study, they did not find differences 
in LFSBP after an RT protocol in healthy men. Conversely, 
other studies showed increments of LFSBP after RT sessions 
(Heffernan et al. 2007; Niemelä et al. 2008; Kingsley et al. 
2019). Niemelä et al. (2008) compared three different exer-
cise protocols (i.e. aerobic exercise, light resistance exercise, 
and heavy resistance exercise), and only heavy resistance 
exercise produced significant increases in LFSBP. These 
findings suggest that intensity may be a factor affecting the 
vascular tone, and thus modulating arterial stiffness. Further 
studies are needed to elucidate the effect of the RT variables 
on vascular sympathetic tone and how the set configuration 
might modulate this response in high-intensity protocols.

A possible explanation for the differences in the magni-
tude of the reduction of the cardiac parasympathetic mod-
ulation between sessions may be the different glycolytic 
involvement of both protocols, since parasympathetic activ-
ity is negatively related to lactatemia (Simões et al. 2010; 
Okuno et al. 2014). Our data demonstrated that the long set 
configuration produced higher lactate values in comparison 
with the shorter one. Similar results were observed in previ-
ous studies, where sets with a continuous pattern promoted 
greater lactate response than a work-equated set with an 
intra-set rest design (Goto et al. 2005; Girman et al. 2014) 
and a slower recovery to the baseline values (Denton and 
Cronin 2006).

Fig. 4  Mechanical responses during a long set configuration session 
(LSC, grey bars) and a short set configuration session (SSC, black 
bars) for the knee extension (KE), bench press (BPR) and parallel 
squat (SQ) exercises. a MPV: average mean propulsive velocity. b 
MMR: mean respect to maximum propulsive velocity ratio. c 5LFR: 
the last five respect to the first five propulsive velocity ratio. #Differ-
ences between sessions; g: Hedge’s g. Data displayed as means ± SD 
(n = 32)
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Regarding the BP analysis, negligible changes were 
observed after both RT sessions. However, a meta-analy-
sis by Casonatto et al. (2016) demonstrated that a single 
bout of RT decreases the BP from 60 min up to 24 h after 
the session. Furthermore, Mayo et al. (2016) only reported 
BP reductions after session when an RT protocol leading 
to failure was performed. Therefore, muscular failure may 
be a key factor in promoting BP reductions and may be a 
plausible reason why it was not found in our study. Pos-
sibly and according to Figueiredo et al. (2015a, b), other 
loading parameters in our study were not suitable to induce 
the postexercise hypotension observed in other studies, such 
as the total volume performed or the intensity selected. On 
the other hand, it has been suggested that the hypotensive 
effect is mostly observed in hypertensive people (Kenney 
and Seals 1993; Queiroz et al. 2015). Thus, the profile of 
our sample might not be suitable for inducing a hypotensive 
effect after an acute RT session.

Finally, mechanical measurements’ analysis showed a 
lower velocity loss during the short set configuration exer-
cises performed versus the long set design. These results 
are coincident with the findings of a recent meta-analysis 
(Latella et al. 2019), that showed how short set configura-
tions maximise the neuromuscular performance, and in par-
ticular, attenuate the loss of velocity during an RT session.

There are some limitations in to the present study that 
should be considered. First, all women were using oral con-
traceptive pills and performed the protocols during the mid-
follicular to the late luteal phase of their menstrual cycle. In 
this regard, previous studies suggested that the use of oral 
contraceptive pills does not affect HRV during the menstrual 
cycle in healthy women (Teixeira et al. 2015). However, the 
effects of the menstrual cycle on cardiac autonomic modu-
lation have not been clarified completely (von Holzen et al. 
2016). Second, despite the evidence on the validity and 
reliability of the cardiovascular device used in this study 
(Fortin et al. 2001), it only provides an indirect assessment 
of cardiac autonomic modulation. There is extensive debate 
regarding the relationship between changes in cardiac vari-
ability and the activity of a particular branch of the auto-
nomic nervous system (Parati et al. 2006). To improve the 
physiological interpretation of autonomic data, the study 
design was developed controlling the possible confounding 
variables such as respiratory rate, steady-state, participant, 
or environmental conditions. In this sense, we controlled 
breathing frequency to avoid the effect of the increased res-
piratory rate after exercise on HRV measures (Penttila et al. 
2001). This is because the respiratory activity is involved in 
the change in power spectral density distribution, particu-
larly the measures of parasympathetic modulation (HF and 
HFn.u.) (Brown et al. 1993; Weippert et al. 2015). Whilst 
breath control might have removed some experimental 
effects (Berntson et al. 1997), the changes are presumed 

to be similar between protocols based on data that paced 
breathing and spontaneous breathing may result in similar 
effects (Wang et al. 2013); however, more research on this 
topic is pertinent. Furthermore, due to the technical limi-
tations regarding the time spent to apply the instrumenta-
tion and calibrate the device, from the end of the session 
to 20 min, HR and BP were not evaluated. Further inves-
tigations with measurements during and immediately after 
the exercise must be carried out to assess the effect of set 
configuration on HR kinetics. Last, our participants were 
healthy and active young adults and performed two protocols 
with specific load characteristics, limiting the extrapolation 
of our results to other protocols or other population profiles. 
Further studies are needed to explore the acute and chronic 
effects of different set configurations on the cardiac auto-
nomic modulation and cardiac baroreflex in populations at 
cardiovascular risk.

Conclusions

In summary, our findings suggest that a moderate-inten-
sity high-volume RT session using a long set configura-
tion during several exercises produces a higher cardiac 
parasympathetic withdrawal in comparison with a short 
set configuration design. Based on these findings, a short 
set configuration should be prescribed to design safer RT 
sessions with lower reductions of cardiac parasympathetic 
modulation whilst the mechanical performance of the ses-
sion is optimised.
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