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Introduction
▼
In the search for optimal resistance training 
(RT) protocols to maximize muscle hypertrophy 
and strength gains, RT parameters such as 
training load and rest intervals between sets 
have been widely investigated [4, 24, 29]. A 
recent meta-analysis showed that high-load 
resistance training (RT) ( > 65 % 1RM) and low-
load RT ( < 60 % 1RM) performed to failure both 
lead to muscle hypertrophy and strength gains 
without significant differences among groups 
[31]. Indeed, previous studies demonstrated 
that low-load RT (~30 % 1RM) can produce simi-
lar muscle gains compared to high-load (~80 % 
1RM) RT in the long run [14, 23, 29]. Further, 
low-load RT (30 % 1RM) was found to promote a 
greater prolonged duration of post-exercise 
muscle protein synthesis compared to high-
load RT (90 % 1RM) [3]. It has been hypothesized 
that the key to results is training to muscular 
failure based on the premise that muscle fiber 
recruitment is similar irrespective of the load 
provided a comparable level of effort is exerted 
[6]. Alternatively, strength gains seem to be 
load related [24, 29] as larger strength increases 

have been reported with high- as compared to 
low-load RT [9, 24, 29].
Research investigating the optimal length of rest 
intervals between sets for maximizing muscular 
adaptations has been contradictory. While some 
studies conducted with medium to heavy loads 
indicate superior hypertrophic effects for longer 
rest intervals [4, 30], others show either no dif-
ferences [1] or even improved body composition 
and performance [33] with shorter rest intervals. 
These discrepancies may be due to differences in 
the experimental designs. Indeed, studies sup-
porting the benefits of longer rest intervals were 
performed partially or totally to failure [4, 30], 
resulting in different training volumes that 
potentially confounded results. On the other 
hand, studies that have observed similar or even 
superior results for the short rest protocols were 
volume-matched experiments [1, 33]. When RT 
is performed to failure, longer rest intervals will 
lead to increased time under tension and volume, 
translating into greater mechanical stress. On the 
other hand, shorter rest intervals should lead to 
increased metabolic stress, which may promote 
muscle hypertrophy via improved muscle fiber 
recruitment, intrinsic responses and muscle 
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Abstract
▼
We investigated the effects of low-load resistance 
training to failure performed with different rest 
intervals on acute hormonal responses and long-
term muscle and strength gains. In the acute 
study, 14 participants were assigned to either a 
short rest (S, 30 s) or long rest (L, 150 s) protocol 
at 40 % one-repetition maximum. Blood samples 
were taken before and after the workout. Both 
groups showed significant (p < 0.05) increases in 
growth hormone and insulin-like growth factor 1 
immediately post-workout. In the longitudinal 
study, the same protocol as in the acute study 

was performed 2 times per week for 8 weeks by 
21 volunteers. Both groups showed significant 
increases in triceps (S: 9.8 ± 8.8 %, L: 10.6 ± 9.6 %, 
p < 0.05) and thigh (S: 5.7 ± 4.7 %, L: 8.3 ± 6.4 %, 
p < 0.05) cross-sectional area. One-repetition 
maximum also significantly increased for the 
bench press (S: 9.9 ± 6.9 %, L: 6.5 ± 5.8 %, p < 0.05) 
and squat (S: 5.2 ± 6.7 %, L: 5.4 ± 3.5 %, p < 0.05). In 
conclusion, our results suggest that acute hormo-
nal responses, as well as chronic changes in mus-
cle hypertrophy and strength in low-load training 
to failure are independent of the rest interval 
length.
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swelling [28]. Acute growth hormone (GH) responses have been 
shown to be related to metabolic stress in RT [10] and might 
therefore be used as indicator for the level of metabolic stress 
experienced in a given RT protocol.
The effect of rest interval length on strength increases also 
remains equivocal. Buresh et al. [4] found similar strength 
increases in both conditions while Schoenfeld et al. [29] reported 
greater 1RM increases for the long vs. the short rest group 
(squat: 15.2 vs. 7.6 %, bench press: 12.7 vs. 4.1 %). Thus, further 
research is needed to determine the relationship between rest 
interval length and strength gains.
The purpose of the present study was to compare the acute and 
long-term effects of different rest intervals on muscle and 
strength gains during performance of low-load RT to failure. We 
hypothesized that shorter rest interval lengths would enhance 
the hypertrophic response by differentially affecting mechanical 
and metabolic stress and muscle damage. On the other hand, 
since strength seems to be load-related [9, 29], we speculated 
similar strength increases in both conditions.

Methods
▼
Study design
The study comprised 2 separate experiments. In experiment 1, 
we measured the acute hormonal changes (growth hormone 
(GH), testosterone (T) and insulin-like growth factor 1 (IGF-1)) in 
response to 2 low-load RT protocols (4 sets of bench press and  
4 sets of back squat) performed to failure with different rest 
intervals. In Experiment 2, we compared muscle and strength 
gains after 8 weeks of 2 weekly RT sessions (short vs. long rest 
intervals). This study was approved by the Ethics Committee of 
the Nippon Sports Science University in accordance with the 
international standards of the Declaration of Helsinki for Human 
Research [13].

Experiment 1
Subjects
14 young athletes (18–22 years) volunteered to participate in 
this study. The short rest group (S, n = 7, age; 20.0 ± 0.6 years, 
height; 169.4 ± 1.9 cm, weight; 64.5 ± 2.0 kg) trained with 30-s 
rest intervals while the long rest group (L, n = 7, age; 20.0 ± 0.4 
years, height; 170.5 ± 2.0 cm, weight; 64.0 ± 2.1 kg) trained with 
150-s rest intervals. Participants were not involved in RT for at 
least 2 years before the experiment but were regularly exercis-
ing for different sports and agreed to refrain from participating 
in any other formal strength training for the duration of the 
experiment. All participants also refrained from participating in 
any other strength training for the duration of the experiment. 
Participants were informed about the potential risks of the 
experiment and gave their written consent to participate in the 
study. The sample size was calculated (GPower 3.1, Dusseldorf, 
Germany) [8] a priori as follows: Effect size f = 0.25, α err 
prob = 0.05, power = 0.8. The required total sample size was esti-
mated to be n = 10 (n = 5 for each group).

Resistance training
Training in both groups consisted of 4 sets of bench press fol-
lowed by 4 sets of squats. The participants were told to per-
form each repetition with a fast movement (1 s) on the 
concentric and a slow movement (2 s) on the eccentric compo-
nent at 40 % 1RM. Each set was carried out to muscular failure, 

operationally defined as the inability to perform another con-
centric repetition while maintaining proper form. One-repeti-
tion maximum (1RM) measurements for the bench press and 
back squat were assessed one week prior to the experiment 
and the training load was then established at 40 % 1 RM for 
each exercise in both groups. The only variable differing among 
groups was the rest interval duration between sets (30 s for the 
S group and 150 s for the L group). RT sessions were supervised 
by qualified personal trainers in order to ensure correct execu-
tion of the exercises.

Measurements
Blood collection and analyses: Blood samples were drawn 
from the antecubital vein with a winged static injection needle 
before (B), immediately after (P0), 15 min after (P15), 30 min 
after (P30) and 60 min after (P60) the RT sessions. The subjects 
were instructed to have their last meal no later than 4 h before 
the start of training. After blood collection, the vials were kept at 
room temperature for 30–60 min. The blood was then centri-
fuged at 3 000 RPM for 5 min and plasma was immediately deep 
frozen at  − 80 °C. The blood samples were subsequently sent to a 
laboratory (SRL Inc. Tokyo, Japan) for analysis (GH, T, IGF-1). GH 
and T were assessed via the electrochemiluminescence method 
and IGF-1 via immunoradiometric assay.

Total training volume: The total training volume (expressed 
as the total number of repetitions performed across the 4 sets) 
for each exercise was recorded during a single RT session.

Statistical analyses
Data are displayed as mean ± SD. We used 2-way analysis of vari-
ance (ANOVA) (time x groups) to test for significance and post-
hoc Bonferroni tests when appropriate (SPSS for Macintosh 
version 22). We also calculated the effect size (ES) [7] for each 
group. The significance level was set at p < 0.05.

Experiment 2
Subjects
21 young athletes (18–22 yrs) volunteered to participate in this 
study (S group: n = 11, age; 20.2 ± 0.3 years, height; 169.3 ± 1.0 cm, 
weight; 64.7 ± 2.0 kg, L group: n = 10, age; 20.2 ± 0.5 years, height; 
166.5 ± 1.1 cm, weight; 59.5 ± 1.7 kg). Participants were not 
involved in RT for at least 2 years before the experiment but 
were regularly exercising for different sports and agreed to 
refrain from participating in any other formal strength training 
for the duration of the experiment. All the participants were 
informed about the potential risks of the experiment and gave 
their written consent to participate in the study. The sample size 
was calculated (GPower 3.1, Dusseldorf, Germany) [8] a priori as 
follows: Effect size f = 0.25, α err prob = 0.05, power = 0.8. The 
required total sample size was estimated to be n = 16 (n = 8 for 
each group).

Resistance training
The RT program was the same as in Experiment 1 with training 
carried out 2 times per week for 8 weeks.

Dietary adherence
Participants were asked to maintain their usual eating habits 
during the period of the experiment. In order to equalize food 
intake after RT, the participants ingested a protein shake com-
posed of 22.9 g of protein, 5.0 g of carbohydrates and 2.2 g of fats 
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(Protein Whey 100, Dome corporation Tokyo, Japan) immedi-
ately after each workout.

Measurements
Muscle CSA: Participants underwent magnetic resonance 
imaging (MRI) (AIRIS II, Hitachi, Ltd., Tokyo, Japan) scans of the 
right upper arm (biceps, brachialis and triceps) and thigh 
(quadriceps and hamstrings) muscles during the week before 
the start of the RT program and the week after the last training 
session (week 9). To ensure accuracy of the measurements, 
markers filled with water were placed exactly at half-distance of 
each participant’s upper arm (measured from the lateral epicon-
dyle of the humerus to the acromion process of the scapula) and 
thigh (measured from the lateral condyle of the femur to the 
greater trochanter of the quadriceps femoris), respectively. The 
following parameters were used to acquire 20 axial scans: repe-
tition time/echo time, 460/26 ms; field of view 20 cm, phase/
frequency, 320; slice thickness, 3 mm; gap, 10 mm. The images 
showing the markers were then analyzed via imageJ (National 
Institutes of Health) and the square area of each cut was calcu-
lated twice by the same investigator and the mean value was 
used for calculations. A reliability test showed an intraclass cor-
relation coefficient (ICC) of  > 0.9 for our CSA calculations.

Muscle strength: 1RM tests were conducted during the week 
before and after the training period for the bench press and back 
squat based on recognized guidelines [12]. A team of qualified 
trainers supervised the tests and assured correct execution of 
the exercises. The squat was considered a success if the trainee 
reached parallel and the bench press was considered a success if 
the barbell was in a full lock-out position with head, upper back 
and buttocks on the bench and both feet flat on the floor [29]. 
After 2 warm-up sets (50 % 1RM × 5reps, 60–80 % 1RM × 2–3 
reps), 1RM was assessed within 5 repetitions with a 3-min rest 
between sets for each participant. ICC was  > 0.9 for 1RM meas-
urements.

Total training volume: The total training volume (expressed 
as the total number of repetitions performed in the 4 sets) for 
each exercise and RT session was recorded for the 8-week study 
period (16 RT sessions in total).

Statistical analyses
Statistical analysis was performed using the same model as 
Experiment 1.

Results
▼
Experiment 1
Blood analysis
Both groups showed significant (P < 0.05) increases in GH and 
IGF-1 immediately post workout ( ●▶  Fig. 1). 2-way ANOVA analy-
sis showed main effects (time) for GH (F = 15.35, p < 0.001) and 
IGF-1 (F = 18.05, p < 0.001). No significant between-group differ-
ences were observed for each hormone.

Total training volume
Significant differences among groups for the average number of 
repetitions during a single RT session could be observed for both 
exercises in sets 2–4, with marked reductions in volume noted 
in the S group compared to the L group (p < 0.01) ( ●▶  Table 1).

Experiment 2
A total of 21 participants completed the study (11 participants 
in S and 10 participants in L). Average participation rate 
was  > 90 % in both groups.

Muscle CSA changes ( ●▶  Fig. 2,  ●▶  Table 2)
The triceps CSA in the S group changed 9.8 ± 8.8 % (p < 0.05) com-
pared to 10.6 ± 9.6 % (p < 0.05) for the L group. The thigh CSA 
changed 5.7 ± 4.7 % (p < 0.05) in the S group compared to 8.3 ± 6.4 % 
(p < 0.05) for the L group. Although no significant between-group 
differences were observed with respect to CSA changes in the 
thigh, the ES favored longer compared to shorter rest periods 
(0.93 vs. 0.58, respectively).

Muscle strength
Both groups significantly increased bench press 1 RM (S: 
9.9 ± 6.9 %, L: 6.5 ± 5.8 %, p < 0.05) and back squat 1RM (S: 
5.2 ± 6.7 %, L: 5.4 ± 3.5 %, p < 0.05) ( ●▶  Fig. 2,  ●▶  Table 3). No signifi-
cant between-group differences were observed with respect to 
muscle strength changes.

Total training volume
Total training volume for each RT session and exercise was sig-
nificantly greater (p < 0.05) in the L group as compared to the S 
group ( ●▶  Fig. 3).

Discussion
▼
Our study is the first to directly compare the effects of different 
rest intervals on acute hormonal responses and long-term mus-
cular adaptations using low-load RT to failure with all other 
variables kept constant. We showed that both short- and long-
rest intervals between sets in low-load RT to failure induce sim-
ilar acute hormonal responses immediately post-workout 
(Experiment 1). In regard to longitudinal responses, both groups 
displayed marked increases in muscle CSA and strength without 
significant differences noted between groups (Experiment 2).
Previous research observed elevated physiologic responses 
including stress markers (plasma epinephrine, norepinephrine, 
dopamine, cortisol, lactate, heart rate and RPE) after heavy load 
RT (10RM) with short rest intervals (10 s) [15]. However, it is 
unclear whether the high load or the extremely short rest inter-
vals triggered these physiologic responses. In line with previous 
studies investigating hormonal responses in low-load RT with 
short rest intervals (30 s) [25], we noted significant acute 
increases in GH and IGF-1 immediately post-exercise in both 
groups without differences between conditions. In our study, GH 
and IGF-1 increased between 33.7–33.8 and 27.7–29.9 ug/l, 
respectively, compared to 8.82 and 30 ug/l, respectively in previ-
ous research [25]. The differences in GH increases might be due 
to the nature of exercises used in each study (bench press and 
back squat vs. leg press). However, the same level of increases in 
both groups in our study point to similar metabolic stress levels 
regardless of rest intervals during low-load RT. From these 
results we can hypothesize that rest interval duration is not a 
major factor affecting metabolic stress with low-load RT per-
formed to failure. Further, the increases observed in our study 
for GH and IGF-1 (~30 ug/L) are similar or higher compared to 
the results of previous research investigating the effects of 
medium- to high-load RT on acute hormonal responses (~20–
30 ug/L) [16, 26, 34, 35]. Since no significant post-exercise 
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increases were observed for T in any of the groups, our results 
confirm past results showing that higher-load RT may be neces-
sary to induce higher acute T increases [2, 11, 16] whereas low-
load RT might be superior for inducing GH and IGF-1 increases. 
It should be noted that a larger sample size might have improved 
the accuracy of our results. Further, our results with regard to 
metabolic stress could have been improved by adding measure-
ments of acute stress and muscle damage such as plasma cre-
atine kinase, muscle soreness, ratings of perceived exertion, 
thigh circumference/swelling and counter-movement jump 
height.
Our results support the results of previous studies showing that 
low-load RT can be an effective means to promote muscle hyper-
trophy [3, 23, 24, 29]. We observed a CSA increase of 9.8 % (S) and 
10.6 % (L) for the triceps. Previous research showed similar tricep 
CSA increases with low-load RT (9.8 %) after 6 weeks of bench 
press RT with 180-s rest between sets [24] and a 5.2 % increase 
after 8 weeks of RT with 90-s rest [29]. Our study showed thigh 
CSA increases of 5.7 % in the S group and 8.3 % in the L group. 
Although no significant between-group differences were noted 
with respect to CSA changes, the ES clearly favored L vs. S (0.93 
vs. 0.58, respectively) indicating that shorter rest intervals may 
blunt muscle growth in the lower body during low-load RT. Pre-
vious research demonstrated a 9.5 % increase in muscle thick-
ness after 8 weeks of low-load RT with 90 s rest between sets 
[29] and 6.8 % CSA increase after 10 weeks with 120-s rest [22]. 
Interestingly, the aforementioned studies showing significant 
hypertrophic increases with low-load training all used either 
MRI or ultrasound imaging to assess changes in muscle growth. 

On the other hand, studies showing no increases following low-
load RT to failure employed muscle biopsy to assess hypertrophy 
[5, 32]. As previously shown, single-site muscle biopsy may not 
reflect whole muscle hypertrophy [20], which in turn may have 
confounded the ability to detect significant changes in CSA over 
time. Moreover, it is possible that sarcoplasmic hypertrophy 
(increase of noncontractile proteins and fluid) might contribute 
to the CSA increases observed with low-load RT [19, 27].
Even though a direct comparison between studies above cannot 
be made due to differences in study methodologies, the body of 
research indicates that low-load RT to failure produces similar 
hypertrophic increases at a variety of different rest interval 
lengths. Our direct comparative study confirmed these results, 
demonstrating that low-load RT to failure resulted in marked 
CSA increases regardless the length of rest between sets. Indeed, 
the similar hormonal responses between rest interval condi-
tions indicate comparable levels of metabolic stress, which may 
have mediated muscle gains.
Previous studies showed superior CSA increases with longer rest 
intervals (1 vs. 3 min) [30] and decreased myofibrillar protein 
synthesis and intracellular signaling with shorter rest intervals 
(1 vs. 5 min) [21] in medium- to high-load RT [21]. However, our 
results suggest that findings may be different for low-load RT. 
The combination of short rest periods and high-load RT might 
hinder the ability to reach a volume threshold necessary to trig-
ger anabolic pathways [36, 37]. Specifically, the associated 
fatigue from short rest intervals results in a drop-off in the num-
ber of repetitions performed on subsequent sets that may con-
ceivably result in an insufficient stimulus to maximize 
hypertrophic gains. In our study, the number of repetitions for 
the S group did not fall below 12 repetitions even in the last set. 
We propose that with low-load RT, the repetition threshold nec-
essary to trigger a maximal anabolic response can be achieved 
throughout the sets even though rest intervals are very short, 
potentially via heightened metabolic stress. Therefore the length 
of rest intervals might affect muscle hypertrophy more in high-
load RT compared to low-load RT, particularly in the upper body 
musculature.
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Fig. 1 Average changes ( ± SD) in a serum growth 
hormone (GH), b insulin-like growth factor 1 (IGF-
1) and c testosterone (T) before (B) and immedi-
ately after (P0), 15 min (P15), 30 min (P30) and 
60 min (P60) after a single bout of RT.  
* p < 0.05 vs. B

Table 1 Average total number of repetitions.

Bench press Back squat

S 76.6 ± 9.6 95.03 ± 4.3
L 117.7 ± 26.6 * 147.45 ± 6.83 * 
Mean total number of repetitions ( ± SD) for the bench press and back squat.   
* p < 0.05 significant difference compared to S
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Previous research indicates a positive association between train-
ing volume and muscle hypertrophy in moderate- to high-load 
RT. In a recent meta-analysis, Krieger [17, 18] found a clear dose-
response relationship whereby multiple set training was associ-
ated with a 40 % greater hypertrophy-related ESs compared to 
one set in both trained and untrained subjects. On the surface, 
the results from our study would seem to indicate that this dose-
response relationship between training volume and muscle 
hypertrophy does not exist with low-load RT. However, it 
remains possible that because of the large number of repetitions 
performed in each condition, the volume of training reached a 
threshold whereby further increases were unnecessary to maxi-
mize the hypertrophic response. Further, comparable hormonal 
responses indicating similar metabolic stress in both groups 
were recorded. In this regard, both groups seem to have achieved 
enough volume under similar metabolic stress conditions, lead-
ing to similar muscle gains. Moreover, the greater ES values seen 
in L vs. S with respect to quadriceps CSA suggests that reduc-
tions in volume from short rest periods may have had a negative 
effect on lower body hypertrophy. This hypothesis warrants fur-
ther investigation.
It has been previously observed that low-load RT (25–35RM) 
increases endurance more as compared to high load RT (8–12RM) 
with the same rest interval length (90 s) for both groups [29]. 

However rest interval length (1 vs. 3 min) did not affect endur-
ance improvements with high-load RT (8–12RM) [30]. During 
the 8 weeks of RT, both groups showed a trend for increased 
fatigue resistance; however, the elevations were more pro-
nounced in the L group, especially for the squat exercise. We can-
not speculate as to why the trend for endurance was higher in 
the L group, although our data supports previous results show-
ing that low-load RT enhances local muscular endurance.
Strength increases have been shown to be load dependent 
[24, 29]. The relationship between strength increases and rest 
interval during high-load RT is controversial. Some studies found 
no relationship between rest interval length and strength gains 
[1, 4], while some others found a positive association [30]. Our 
results (bench press: 9.9 % (S), 6.5 % (L); back squat: 5.2 % (S), 5.4 % 
(L)) showed similar results to previous low-load training proto-
cols for the bench press (2 %, 90 s rest – 8.6 %, 180 s rest) and back 
squat 1RM increases (8.8 %, 180 s rest) [24, 29] without significant 
between-group differences. These results confirm that compared 
to high-load RT, in which increases of 21 % [24] for the bench 
press and 19.6 % [29] for the squat have been reported, low-load 
RT produces suboptimal albeit significant strength increases in 
both the upper and lower body. Consistent with previous research 
for high-load RT [1, 4], our results showed that the length of rest 
intervals does not affect strength gains in low-load RT.
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Fig. 2 Average cross-sectional area (CSA) chang-
es ( ± SD) for the triceps a and thigh b muscles and 
average 1 RM changes ( ± SD) for the bench press  
c and back squat d after 8 weeks of short rest (S) 
or long rest (L) RT. *  p < 0.05 vs. pre.

Table 2 Average CSA increases.

L group (n = 10) ES S group (n = 11) ES

Pre- Post- Pre- Post-

Triceps CSA (cm2) 5.3 ± 1.2 5.8 ± 1.1 * 0.43 6.6 ± 1.1 7.2 ± 1.2 * 0.52
Thigh CSA (cm2) 37.5 ± 3.7 40.7 ± 3.2 * 0.93 41.0 ± 3.4 43.3 ± 4.4 * 0.58
Mean cross-sectional area (CSA) ± SD. ES = Effect size.  *  p < 0.05 significant change compared to pre-value

Table 3 Average 1RM increases 

L group (n = 10) ES S group (n = 11) ES

Pre- Post- Pre- Post-

Bench press 1RM 64.4 ± 10.7 69.5 ± 11.2 * 0.47 69.1 ± 12.0 76.1 ± 12.3 * 0.58
Back squat 1RM 113.2 ± 16.6 118.9 ± 17.3 * 0.34 119.1 ± 19.2 125.5 ± 17.0 * 0.35
Mean one repetition maximum (1RM) ± SD. ES = Effect size. * p < 0.05 significant change compared to pre-value
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In conclusion, the results of our study demonstrate that different 
rest interval lengths in low-load RT lead to similar muscle hyper-
trophy, strength and acute hormonal responses (GH, IGF-1). 
Marked gains in muscle mass can be achieved with short dura-
tion low-load RT as long as each set is performed to failure. Fur-
ther, even though strength gains are suboptimal compared to 
high-load RT, low-load RT to failure can improve strength 
regardless of the length of the rest intervals.

Conflict of interest: The author have no conflict of interrest to 
declare.
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Fig. 3 Average number of repetitions (sum of 4 sets) ( ± SD) for the 
bench press a and back squat b exercises for each resistance session for 
the period of 8 weeks (total of 16 RT sessions).
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