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Abstract

This review summarizes current information on structural and functional

changes that occur during muscle atrophy and hypertrophy. Most published

studies consider an increase in total mass of a muscle as hypertrophy,

whereas a decrease in total mass of a muscle is referred to as atrophy. In

hypertrophy, the rate of synthesis is much higher than the rate of degradation

of muscle contractile proteins, leading to an increase in the size or volume of

an organ due to enlargement of existing cells. When a muscle remains in

disuse for a long period, the rate of degradation of contractile proteins

becomes greater than the rate of replacement, resulting in muscle atrophy.

This defect may occur as a result of lack of nutrition, loss of nerve supply,

micro-gravity, ageing, systemic disease, prolonged immobilization or disuse.

An understanding of the specific modifications that occur during muscle

atrophy and hypertrophy may facilitate the development of novel techniques,

as well as new therapies for affected muscles.
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Atrophy and hypertrophy are two opposite conditions

that can be found in pathological or diseased muscles.

Atrophy is characterized by a wasting or loss of the

muscle mass (A1) and usually involves a decrease in the

size or cross-sectional area (CSA) (A2) of an individual

myofibre or a number of myofibres (Grounds 2002). In

contrast, hypertrophy is an increase in muscle mass

(Russell et al. 2000) and CSA (Russell et al. 2000,

Grounds 2002), specifically due to an increase in the

CSA of individual muscle fibres (Grounds 2002). As a

result, the muscle strength (A3) and the bone mass

(Fluckey et al. 2002) are significantly affected.

To maintain homeostasis, the biological response of

the human body generates a dynamic balance between

synthetic and degradative processes (Mitch & Goldberg

1996, Lecker et al. 1999a, Hornberger & Esser 2004)

for both atrophic and hypertrophic muscles. This

dynamic balance occurs in response to any stimuli

(Hoffman & Nader 2004), due to processes that

promote muscle growth via increased protein content.

Moreover, it can result either from increased protein

production, decreased protein breakdown, or a combi-

nation of both of these aspects of protein turnover. The

processes that govern the extent of muscle atrophy are

based on the magnitude of the regulated decline in rate

of protein synthesis, increased level of oxidative damage

(A4), and subsequent unregulated protein degradation

(Hudson & Franklin 2002, Glass 2003). For example,

inhibitors of the proteosome block increases in protein

breakdown normally seen in atrophy (Tawa et al.

1997), the level of ubiquitinated conjugates increase

during atrophy (Lecker et al. 1999b) and genes that

encode various components of the ubiquitin pathway

increase during atrophy (Attaix et al. 2001, Gomes

et al. 2001). An increase in muscle activity stimulates

the expression of a protein growth factor known as

insulin-like growth factor I (IGF-I). IGF-I has been

shown to be sufficient to induce hypertrophy through

either autocrine or paracrine mechanisms (De Vol et al.

1990, Barton-Davis et al. 1999). IGF-I expression is
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increased during compensatory hypertrophy (De Vol

et al. 1990) caused experimentally by removing several

muscles to force those remaining to take up the

resultant increase in load.

Muscle atrophy

The causes of muscle atrophy are from several sources,

such as neuromuscular diseases, immobilization and

denervated conditions. In addition, the muscle atrophy

may also take place, secondary to some devastating

injuries or common health problems (Kandarian &

Stevenson 2002, Jackman & Kandarian 2004), such as

spinal cord injury (SCI) (Shields 1995, Castro et al.

1999), ageing and various systemic diseases (A5),

respectively. Moreover, the condition may be exacer-

bated by starvation (Mitch & Goldberg 1996, Jackman

& Kandarian 2004, Lecker et al. 2004), micro-gravity

(A6), detraining (A7), reduction in neuromuscular

activity (Fitts et al. 2000), decreased levels of hormones

(A8), increases in protein degradation (A9), decreases in

protein synthesis (A10), decreases in protein content

(Jackman & Kandarian 2004), and various forms of

reduced use (A11).

Among acute and critically ill patients, the onset of

muscle atrophy is rapid and severe, beginning within 4 h

of hospitalization (Kasper et al. 2002). In the first few

weeks during hospitalization, the antigravity or the

extensor group muscles will show greater atrophy than

non-antigravity or flexor group muscles (Fitts et al. 2000,

Kasper et al. 2002). During extended periods of hospi-

talization, a prolonged unused limb leads not only to an

impairment of the muscle function (A12), but also to a

deleterious alteration in the muscle morphology (Bloom-

field 1997), manifested in symptoms such as a decrease in

muscle mass (A13), a reduction of the muscle fibre

diameter (Widrick et al. 1997, Kasper et al. 2002), and a

reduction in the overall number of muscle fibres (Kasper

et al. 2002). Moreover, this condition may also have a

negative affect on bone health by decreasing bone mineral

density at the lumbar spine, femoral neck and calcaneus

(Bloomfield 1997, Hasselgren 1999). Interestingly, the

duration of immobility has been shown to be positively

correlated with the degree of muscle atrophy (A14).

The early signs of muscle atrophy found in these

patients are accompanied by general weakness (A15)

and fatigue (A16), especially in the lower limb (A17). In

fact, these clinical signs may be caused either by the

medication or pathological condition per se. Therefore,

it is inappropriate to conclude the patient’s condition

based only on muscle testing alone. Some other clinical

assessments such as electrodiagnosis, computerized

muscle strength analysis and biochemical analyses are

essential for providing verification and further confir-

mation of the status of the muscles in question. The

clinical assessments for disuse muscle atrophy can be

performed at the bedside, accompanied with the

strength assessment by observing muscle movement,

muscle tone, muscle size and muscle strength.

Changes in muscle atrophy

Muscle fibre CSA

At the cellular level, there are some noticeable changes

in the muscle cell including sarcomere dissolution and

endothelial degradation (Oki et al. 1995). In addition,

there is a marked reduction in the number of mitoch-

ondrias (Rifenberick et al. 1973, Mujika & Padilla

2001), accumulation of connective tissue (Oki et al.

1995), elimination of apoptotic myonuclei (Smith et al.

2000), and a decrease in capillary density and signs of

tortuosity (Hudson & Franklin 2003).

The general appearance indicates a noticeable reduc-

tion in the muscle fibre CSA when the muscle is in an

atrophic condition (A18). Edgerton et al. (1995) have

studied a tendency towards of muscle fibre atrophy in

three astronauts using tissue biopsies obtained from the

vastus lateralis muscle. They found a significant reduc-

tion in the muscle fibre CSA as well as a marked decrease

in the type IIb > type IIa > type I fibres, respectively,

after these astronauts spent 11 days in a micro-gravity

environment in space. In addition, Widrick et al. (1999)

took tissue biopsies of the soleus muscle from four

astronauts on the 45th day before spaceflight (SF) and

made a comparison with the samples taken from the

17th day of SF. They found a similar reduction as

previously reported by Edgerton et al. (1995) in which

the type IIa and the type I fibre CSA had declined by

26% and 15%, respectively. Moreover, Kawashima

et al. (2004) have investigated the physiological CSA of

thigh adductor muscles of 10 healthy subjects (five men

and five women) and found an atrophic change in these

muscles following 20 days of bed rest. In this case,

muscle wasting due to disuse can be restored to its

original size after a 1 month period of reambulation.

Consequently, the production of muscle force is pro-

portional to the number of days of disuse (A19). The

decrease in muscle fibre CSA due to the atrophic

condition can affect not only the maximal force (A20)

and muscle power output, but also the locomotor

activity (Hudson & Franklin 2002). The degrees of

muscle weakness due to SF or bed rest (LeBlanc et al.

1992, Fitts et al. 2000, Stein & Wade 2005) are

correlated with the period of unloading (A21).

Myonuclear number and domain size

Disappearance of myonuclear is one of the pathological

signs of muscle atrophy (A22). Studies in animals which
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have undergone SCI (Dupont-Versteegden et al. 1999,

2000) or hindlimb immobilization (Smith et al. 2000)

have shown a reduction in nuclear number. In addition,

Machida & Booth (2004a) have reported that this sign

can be coincident with the decrease of muscle fibre CSA.

However, several groups of investigators have suggested

that the quantitative loss of myonuclei during muscle

atrophy is not always proportional to the decrease of

muscle fibre CSA, but to a smaller myonuclear domain

size (Allen et al. 1996, 1997, Smith et al. 2000). Another

study carried out on patients following 2–4 months of

bed rest by Ohira et al. (1999) has also shown a distinct

decrease in myonuclear domain size without any change

in myonuclear number. Due to the difference in the

muscle fibre type ratios, the question regarding myonu-

clear loss is whether specific fibre types are more or less

sensitive to myonuclear shifts in comparison with the

others (Edgerton et al. 2002). The slow or type I myosin

heavy chain-expressing (MHC-expressing) fibres in rats

contain a greater number of myonuclei per unit length

than the fast fibres (Allen et al. 1996). Several micro-

scopic studies in adult rats were able to induce an

atrophic condition that demonstrated type I fibres also

seem to lose more myonuclei than type II fibres (A23).

Similar findings were obtained in human subjects whose

leg muscles were inactive during SF or hindlimb

unloading (HU) (A24). These studies found a greater

reduction in myonuclear number in type I MHC-

expressing fibres of the soleus muscle when compared

with the type II MHC-expressing fibres of the plantaris

muscle. However, a study of neonatal muscle fibres in

rats under the reduced weight-bearing conditions shown

similar reductions in the fibre size, myonuclear number

and myonuclear domain size among all fibre types

(Ohira et al. 2001).

Muscle fibre type

After a few weeks of immobilization, muscles composed

predominately of type I fibres assumed properties

characteristic of type II fibres (A25). Tischler et al.

(1993) has demonstrated that the slow-twitch fibres of

the extensor muscles in young rats during SF-induced

atrophy show a marked increase in susceptibility.

Following a 5.4-day SF, the weights of the gastrocnem-

ius, plantaris and soleus muscles, but not the tibialis

anterior and extensor digitorum longus muscles, were

decreased by 16%, 24%, and 38% respectively. In rats,

the slow-twitch fibres of the antigravity and extensor

group muscles, such as the soleus and adductor longus

muscles, were actually more affected by atrophic

conditions than the fast-twitch fibres and flexor group

muscles (Fitts et al. 2000). Kauhanen et al. (1998)

utilized a free microvascular muscle flap technique for

9 months and found that the mean muscle fibre diam-

eter of the type I fibres was decreased, whereas that of

the type II fibres varied from 56% to 73%. However,

Booth (1982) found an absolute reduction in the

number of the slow-twitch fibres, but no significant

change was observed in the absolute number of the fast-

twitch fibres in the cross-section of the soleus muscles

from limbs that had experienced immobilization for

4 weeks. This finding is consistent with the subsequent

reports from Edgerton et al. (1975) and Maier et al.

(1976) which show a decrease in the proportion of

slow-twitch fibres of the immobilized limbs. In contrast,

Cardenas et al. (1977) employed the similar immobi-

lized model and also reported no significant change in

the total number of muscle fibres of the soleus muscle.

These findings are supported by the results obtained

from many studies which show no change in the

number of fibres despite significant increase in the

muscle mass (A26).

Muscle volumes

Akima et al. (2000) utilized a magnetic resonance

imaging (MRI) technique to measure the volume of

knee extensor, knee flexor and plantar flexor muscles

before and after 2 weeks of SF and found similar

reduction of 5.5–15.4%, 5.6–14.1% and 8.8–15.9%,

respectively. In addition, they noticed that the degree of

atrophy induced by the 2-week SF was greater than that

induced by the 20-day bed rest. The MRI results of the

SF crew members during 17 days of the mission also

shown a decrease in the muscle volume of 5–17% for

most muscle groups, accompanied with a loss in the

bone mineral content proportional to the lean body

mass by approx. 3.4–3.5% (LeBlanc et al. 2000).

Moreover, Henriksen et al. (1993) have reported an

increase in the interstitial fluid volume (IFV) during

muscle atrophy. They suggested that the increasing IFV

might be responsible for the loss of muscle mass and

contractile proteins.

Amounts of muscle protein and DNA

In atrophic muscles, the amount of the contractile

proteins (A27), a-actin mRNA (Babij & Booth 1988),

and cytochrome c mRNA (Morrison et al. 1987, Babij

& Booth 1988) are enormously reduced. By comparing

per gram of the muscle mass, there is a decreased

utilization of b-hydroxybutyrate, palmitate and glucose,

and levels of high-energy phosphates decline (Booth

1977), as do levels of oxidative enzymes (Sasa et al.

2004) such as citrate synthase (Bebout et al. 1993),

malate dehydrogenase (Rifenberick et al. 1973), and

phosphokinase (Carmeli et al. 1993). In rats, the first

week of muscle wasting with HU is primarily caused

by a decline in protein synthesis, whereas myofibril
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degradation does not reach its maximum until days

9–15 (Thomason et al. 1989). Moreover, the responses

of the tissue-cultured myofibres to SF were quite similar

to that reported for humans and animals in space

(Vandenburgh et al. 1999). Thus, there is little alter-

ation in muscle protein degradation rates (Stein &

Schluter 1997, Vandenburgh et al. 1999), or muscle

metabolic rates (Miu et al. 1990, Vandenburgh et al.

1999), and there is preferential loss of myofibrillar

proteins (A28). In the case of muscle fibres, the DNA

fragmentation and nuclear destruction would eliminate

some unneeded myonuclei, while leaving the remaining

myonuclei and the fibre itself relatively unharmed

(Edgerton et al. 2002). Evidence for DNA fragmenta-

tion and transformations in myonuclear morphology

indicative of apoptosis were observed in the muscle

fibres of hindlimb suspended rats (Vandenburgh et al.

1989), denervated rats (Vandenburgh et al. 1990), as

well as in immobilized rabbit muscle (Smith et al. 2000).

Muscle disuse is a pathological condition that affects

not only the biochemical and cellular levels, but also the

locomotive behaviour level. In addition, some of the

structural changes associated with muscle disuse atro-

phy are pathological and prolonged recovery periods

are often required before full muscle and locomotion

performance is re-established (Hudson & Franklin

2002). The studies in frogs (St-Pierre et al. 2000,

Hudson & Franklin 2002), and some hibernating

mammals such as bears (Harlow et al. 2001) and rats

(Booth & Seider 1979) have shown that disused muscles

actually require a long period time (3–4 months) of

recovery to re-establish their strength and locomotor

performance.

Muscle hypertrophy

Hypertrophy of a muscle is a multidimensional process

involving several factors such as growth factors (GFs)

(Adams & Haddad 1996, Semsaria et al. 1999), IGFs

(A29), clenbuterol (Argiles et al. 2001), anabolic ster-

oids (Beiner et al. 1999, Argiles et al. 2001), hormones

(A30), the immune system (Shephard & Shek 1998),

and satellite cells (A31). For example, in a study

investigating IGF-I peptide levels in human muscle

following 10 weeks of strength training in old men and

women (aged 72–98 years), it was shown that there was

a c. 500% increase in the levels of IGF-I within the

muscle fibres of these subjects after the training period,

as determined using immunohistochemistry (Singh et al.

1999). This demonstrates that the peptide levels in older

muscles may adapt over the longer-term to exercise

training. Indeed, the results of longitudinal strength

training studies have confirmed that the muscles of even

very elderly people are able to exhibit a hypertrophy

response to resistance exercise (A32).

IGF-I is also thought to be involved in the activation

of satellite cells (Barton-Davis et al. 1999, Machida &

Booth 2004a), satellite cells are small mononucleate

muscle stem cells located between the sarcolemma and

basal lamina of muscle fibres. Recently, the link

between satellite cell number and myofibre size has

been demonstrated in both untrained and hypertrophied

human muscle fibres (Kadi & Thornell 2000). These

cells, when activated, are believed to proliferate and

differentiate into myoblasts, which then fuse with

existing fibres, thus providing new nuclei to maintain

the ratio of DNA to protein for fibres undergoing

hypertrophy. The link between IGF-I, satellite cells, and

hypertrophy has been shown in studies where localised

infusion of IGF-I into the tibialis anterior muscle of

adult rats resulted in an increased total muscle protein

and DNA content (Adams & McCue 1998). More

recently, Bamman et al. (2001) reported a 62% increase

in IGF-I mRNA concentration in human muscle 48 h

after a single bout of eccentric resistance type exercise.

Changes in muscle hypertrophy

Muscle fibre CSA

Myofibre CSA increases during overload-induced

hypertrophy of a muscle. Radial enlargement of muscle

fibres after resistance training or external loading

confers to the muscle a greater potential for maximal

force production. During load-induced myofibre hyper-

trophy there is an increased accumulation of contractile

and non-contractile muscle proteins, and the synthesis

and degradation rates of these proteins are critical for

determining their net quantity (Goldspink 1991). Pro-

tein synthesis and degradation rates have been shown to

be altered in hypertrophying muscle (Goldberg 1969,

Laurent et al. 1978).

Overload-induced hypertrophy is a complex event,

but the research in this area supports a two-stage model

of muscle adaptation to overload: (1) during regulation

at the onset of hypertrophy, muscle protein synthesis

increases during overload-induced muscle hypertrophy

in both humans and animals (A33). Wong & Booth

(1990) found that the major mediator of increased

myofibril protein synthesis in the rat gastrocnemius

muscle after acute isotonic resistance exercise was not

RNA abundance, but most likely increased RNA

activity (g protein per lg RNA); and (2) during regu-

lation at later stages of hypertrophy, myofibrillar

protein mRNA levels increase later from overload-

induced enlargement in most hypertrophy models.

Skeletal a-actin mRNA has been shown to increase

between 3 and 6 days of chronic stretch overload

(Carson et al. 1996). The increased mRNA template

can be achieved by increasing the transcription rate of
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the given gene and/or the addition of a satellite cell

derived nuclei. Kadi et al. (2004) have demonstrated

that the high plasticity of satellite cells in response to

training, providing new insights into the long-term

effects of training followed by detraining. This research

has shown that moderate changes in the size of muscle

fibres can be achieved without the addition of new

myonuclei, which indicates that existing myonuclei are

able to support a certain level of muscle fibre hypertro-

phy. Hypertrophying muscles appear to be sensitive to

both loading conditions and the muscle fibre’s micro-

environment, both of which govern the degree of

enlargement that the muscle fibre has achieved. Inte-

grins are proteins which connect the extracellular

matrix to the cytoskeleton by spanning the sarcolemma.

These integrins play a role as receptors, so that

alterations in cell shape are a result of mechanical

signals which have been shown to alter gene expression

in the nucleus, and integrin receptors may play a

prominent role in this pathway (Schwartz & Ingber

1994).

Skeletal muscle fibres have a remarkable ability to

alter their phenotype in response to environmental

stimuli or perturbations. An example of this capacity for

adaptive change, or plasticity, is the cell hypertrophy

that occurs after resistance training. There is a general

consensus that resistance training causes hypertrophy of

all muscle fibre types, with fast fibres often showing a

somewhat greater response than slow fibres (A34). In

addition, McCall et al. (1996) have reported that the

pattern of hypertrophy differed between the type I and

II fibres. In the type I population, the hypertrophy

occurred in the medium size fibres, whereas the entire

range of fibres underwent hypertrophy in the type II

population. Finally, the distribution of type II fibres was

much wider than that of type I fibres, both before and

after training. Other studies in human muscle fibres

have reported that the CSA of vastus lateralis muscle

fibres containing type I, IIa or IIa/IIx MHC increased by

an average of 30% after 36 resistance training sessions

(Widrick et al. 2002). These data are consistent with the

resistance training-induced increases in slow- and fast-

fibre CSA reported in the histochemical literature (A35).

Muscle fibre type

The effects of transgenic or exercise-induced hypertro-

phy on shifts in muscle fibre type were investigated by

scoring the percentage of type I, type IIb and type IIa/x

MHC-positive fibres in gracilis anterior and gracilis

posterior muscles. Minimal fibre type changes have

been observed previously in the myosin light chain/

mIGF-I transgenic mice (Musaro et al. 2001), whereas

significant fibre type changes have been observed with

voluntary exercise (Allen et al. 2001). In addition, Paul

& Rosenthal (2002) have investigated these fibre

transmutations in two mouse gracilis muscles, in

response to expression of a muscle-specific IGF-I trans-

gene (mIGF-I) or to chronic exercise. The gracilis

anterior muscle shown decreased type I and type IIa/x

MHC-positive fibres, with an increase in type IIb MHC-

positive fibres, although the trend was not statistically

significant. Exercise, rather than the expression of the

myosin light chain/mIGF-I transgene appears to be the

determinant of fibre type changes in this muscle, since

only muscles from the wild-type-exercise and IGF-

exercise have shown a significant increase in type IIb

MHC-positive fibres. The gracilis posterior muscle also

has shown a slight decrease in the number of type I

MHC-positive fibres with a trend toward a greater

number of type IIa/x MHC-positive fibres at the cost of

type IIb fibres. The preferential increase in type IIa/x

over type IIb-positive fibres in this muscle compare with

the gracilis anterior muscle likely reflects the specific

activity patterns and loading of these muscles. These

results indicated that the proportion of fibre phenotype

is predominantly influenced by exercise in both the

single and the multiple-innervated muscle.

Muscle volume

A pronounced adaptive response to high-intensity or

weight bearing exercise interventions is muscle hyper-

trophy. The increased mass of active muscle groups is

achieved by an increase in the volume of individual

myofibres (Green et al. 1999). The enlarged myofibre

can only expand with the insertion of new nuclei,

because a constant ratio of nuclei to cytoplasmic

volume is maintained throughout all hypertrophic

responses (McCall et al. 1998, Barton-Davis et al.

1999). Thus, hypertrophy is dependent on the prolifer-

ative activation of satellite cells and their myogenic

differentiation (Seale & Rudnicki 2000) before fusion

with the existing myofibre (Garry et al. 2000). Another

study observed in 60 healthy men (aged 18–35 years)

treated with graded doses of testosterone are associated

with concentration-dependent increases in CSA of both

type I and type II muscle fibres and myonuclear number.

They concluded that the testosterone-induced increase

in muscle volume can be attributed to muscle fibre

hypertrophy (Sinha-Hikim et al. 2002).

Protein synthesis

Muscle hypertrophy is a condition characterized by

increasing protein accumulation in the stimulated mus-

cle cells. It is due to an imbalance turnover rate between

increased protein synthesis and the lesser protein

breakdown (Hornberger & Esser 2004). It is known

that a period of resistance training enhances protein
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synthesis in human muscles (A36). The enhancement of

protein synthesis might be mediated by pre-translational

(alteration in the abundance of mRNA), translational

(alteration in protein synthesis per unit of mRNA), or

post-translational (transformation of the protein such as

phosphorylation) events (Booth et al. 1998, Tipton &

Wolfe 1998). It is suggested that changes in the

translational efficiency are responsible for the early

stages of protein synthesis enhancement (Laurent et al.

1978). During the later stages of protein synthesis

enhancement, it appears that pre-translational events

become critical (abundance of mRNA) (Adams 1998).

In this respect, adult muscle fibres are multinucleated

cells where each myonucleus controls the production of

mRNA and protein synthesis over a finite volume of

cytoplasm, a concept known as the DNA unit or

myonuclear domain (Cheek 1985, Hall & Ralston

1989). There is evidence showing that a stimulation of

myofibres with low-frequency, high-intensity intermit-

tent currents produces a hypertrophic change, resulting

in a 45–80% increase in total protein synthesis

(Vandenburgh et al. 1989) and 15–30% decrease in

total protein degradation (Vandenburgh et al. 1990).

The increase in translational capacity is indicated by

increased numbers of ribosomes which leads to protein

expression and protein synthesis, respectively (Nader

et al. 2002). The newly synthesized contractile proteins

are likely to be incorporated into the existing myofibrils.

However, there is a limit to the growth of myofibrils.

After reaching this particular threshold limit, each

myofibril can initiate a separation process. All together,

it is generally accepted that muscle hypertrophy results

primarily from the growth of individual muscle cells

rather than increasing the number of muscle fibres.

Conclusion

Muscle can be characterized by two terms, hypertrophy

and atrophy, depending on whether there is an increase

in the total mass of a muscle or a decrease in the total

mass of a muscle, respectively. In almost all cases,

muscle hypertrophy results from an increase in the

number of actin and myosin filaments in each muscle

fibre, thus causing enlargement of individual muscle

fibres, which is called fibre hypertrophy. This usually

occurs in response to contraction of a muscle at near

maximum force. Hypertrophy occurs to a much greater

extent when the muscle is simultaneously loaded during

a contractile process. It is known that the rate of

synthesis is much higher than the rate of degradation of

muscle contractile proteins during hypertrophy, leading

to an increase in the size or volume of an organ due to

enlargement of existing cells. When a muscle remains in

disuse for a long period, the rate of degradation of

contractile proteins occurs more rapidly than the rate of

replacement, resulting in a defect called muscle atrophy.

Muscle atrophy may occur from lack of nutrition, loss

of nerve supply, micro-gravity, ageing, systemic dis-

eases, as well as from prolonged immobilization or

disuse. Examination of the muscle fibre may reveal a

shrinking of diameter and strength, in addition to a

fundamental alteration of the types of remaining muscle

fibres. Antigravity muscles that frequently contract to

support the body typically have a large number of slow

fibres (type I), which appear to change more rapidly

than fast fibres (type II) during prolonged periods of

unloading. This process is often quite rapid, as one

complete cycle is completed every few weeks. Details of

the structural and functional changes that occur during

atrophy and hypertrophy muscles, as well as mechan-

istic explanations for how these changes occur, are

lacking. Basic questions that must be addressed in this

field follow logically from the material presented herein.

What are the proteins that are altered within atrophied

and hypertrophied muscles? Are the signalling proteins

essential to the mechanisms regulating muscle atrophy

and hypertrophy? Does the muscle respond differently

to varying causes of atrophy and hypertrophy? Does the

age of the fibres have an influence on the atrophy and

hypertrophy process affecting the properties of the

muscular tissue? These are the types of questions that

must ultimately be answered to develop rational ther-

apy and rehabilitation strategies to be able to provide

effective treatment to affected muscles.
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