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Berchtold, Martin W., Heinrich Brinkmeier, and Markus Müntener. Calcium Ion in Skeletal Muscle: Its Crucial
Role for Muscle Function, Plasticity, and Disease. Physiol Rev 80: 1215–1265, 2000.—Mammalian skeletal muscle
shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and
energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal
muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their
cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur
in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or
exercise. Additionally, the muscle fibers are arranged in compartments that often function as largely independent
muscular subunits. All muscle fibers use Ca21 as their main regulatory and signaling molecule. Therefore, contractile
properties of muscle fibers are dependent on the variable expression of proteins involved in Ca21 signaling and
handling. Molecular diversity of the main proteins in the Ca21 signaling apparatus (the calcium cycle) largely
determines the contraction and relaxation properties of a muscle fiber. The Ca21 signaling apparatus includes 1) the
ryanodine receptor that is the sarcoplasmic reticulum Ca21 release channel, 2) the troponin protein complex that
mediates the Ca21 effect to the myofibrillar structures leading to contraction, 3) the Ca21 pump responsible for Ca21

reuptake into the sarcoplasmic reticulum, and 4) calsequestrin, the Ca21 storage protein in the sarcoplasmic
reticulum. In addition, a multitude of Ca21-binding proteins is present in muscle tissue including parvalbumin,
calmodulin, S100 proteins, annexins, sorcin, myosin light chains, b-actinin, calcineurin, and calpain. These Ca21-
binding proteins may either exert an important role in Ca21-triggered muscle contraction under certain conditions
or modulate other muscle activities such as protein metabolism, differentiation, and growth. Recently, several Ca21

signaling and handling molecules have been shown to be altered in muscle diseases. Functional alterations of Ca21
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handling seem to be responsible for the pathophysiological conditions seen in dystrophinopathies, Brody’s disease,
and malignant hyperthermia. These also underline the importance of the affected molecules for correct muscle
performance.

I. INTRODUCTION

The functional units of skeletal muscles are the mus-
cle fibers, long cylindrical multinucleated cells. They vary
considerably in their morphological, biochemical, and
physiological properties. Different fiber types can be dis-
tinguished in each muscle. The fiber type composition,
varying from muscle to muscle, is the basis of the well-
known structural and functional muscular diversity. The
fibers can change their characteristics in response to a
large variety of stimuli leading to muscular plasticity. All
muscles use Ca21 as their main regulatory and signaling
molecule. Therefore, muscle plasticity is closely linked
with and highly dependent on the Ca21 handling system.

In 1882 Ringer found that the isolated frog heart
contracted when incubated in a solution prepared with
London tap water but not in a one prepared with distilled
water. This led to the important discovery that the ability
of the heart muscle to contract depends on the presence
of Ca21 in the external solution (423). Indeed, it has been
demonstrated that the function of all muscle types is
controlled by Ca21 as a second messenger.

Control of contraction and relaxation by Ca21 in
different types of muscle is achieved by three major
mechanisms. The first activation mechanism, first discov-
ered and best described, is the troponin-tropomyosin sys-
tem associated with the actin filaments. It is restricted to
skeletal and cardiac muscles. In the second mechanism,
found in smooth muscles of vertebrates, Ca21, together
with calmodulin (CaM), activates myosin light-chain ki-
nase, which (through phosphorylation of the myosin light
chains) initiates muscle contraction. The third mecha-
nism consists of direct binding of Ca21 to myosin which
regulates contraction in muscles of certain invertebrates
such as scallop. This system depends on the presence of
the regulatory light chains of myosin.

The aim of this review is to summarize the present
knowledge of muscle plasticity in the context of Ca21

signaling and handling, which is of crucial importance to
our understanding of normal muscle function and muscle
diseases.

This article focuses mainly on the complexity of the
Ca21 handling system in the skeletal muscle of mammals,
although reference is made on several occasions to cardiac
and smooth muscle and when appropriate to muscles of
other vertebrates. Muscle fiber type diversity analyzed at the
histological level and functional consequences of fiber type
composition are described in some detail (see sect. II) to
emphasize the importance of the morphological studies for

understanding muscle plasticity in response to a given stim-
ulus and its dependence on the Ca21 handling apparatus.

Speed of muscle contraction and relaxation as well
as other physiological parameters are critically dependent
on the special composition of components belonging to
the Ca21 handling apparatus. Molecular details of the
Ca21 cycle as well as muscle fiber-type specific variations
are presented and discussed at a structural and functional
level. The main players in the Ca21 cycle are indicated in
the schematical presentation shown below.

In the resting state of the myofiber, Ca21 concentra-
tions in the cytosol are maintained at ;50 nM. The Ca21

cycle starts with a surface membrane and transverse tu-
bular (T system) depolarization leading to a release of
Ca21 from the sarcoplasmic reticulum (SR) via the ryan-
odine receptor (RyR), which elevates cytosolic Ca21 lo-
cally to ;100 fold higher levels. The conversion of an
electrical into a chemical signal at the t-tubule membrane
is activated through charge-dependent structural changes
of the dihydropyridine receptor (DHPR). Because the
DHPR in skeletal muscles are not involved to a major
degree in the initial increase of myoplasmic Ca21 as Ca21

channels, they are not discussed in detail. In the skeletal
muscle Ca21 binds in a fast reaction to one of the troponin
subunits [troponin (Tn) C] on the thin filament. Upon
Ca21 binding to TnC, contraction is activated.

In addition to triggering muscle contraction through
the troponin system, Ca21 may also affect the muscle
contraction apparatus through direct interaction with my-
osin and other motor proteins. In addition, Ca21 controls
the energetics of the muscle by regulating the provision of
ATP when needed (512). The latter two aspects are not
covered by the present review. Because several transcrip-
tion factors are known to be regulated by Ca21 (reviewed
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in Ref. 153), another, so far not addressed, possibility for
Ca21-dependent regulation of muscular activity would be
by transcriptional regulation of genes for proteins impor-
tant in the Ca21 cycle.

In myofibrils, there is a variety of Ca21-binding proteins
(CaM, S100 proteins, calpains, calcineurin, sorcin, and an-
nexins) that are not directly involved in the primary process
of muscle contraction and relaxation but that may be impor-
tant for muscle performance and plasticity. Therefore, some
features of these proteins (especially CaM and calpain) with
respect to their regulatory effects on the primary Ca21 cycle
components are discussed in this review.

Ca21 translocation from the myofibril to the SR is
likely to be facilitated in the fast-twitch skeletal muscle by
the high-affinity Ca21-binding protein parvalbumin (PV).
However, both contraction and relaxation speed decrease
as the animal gets bigger. This is mirrored by a decreasing
PV content of fast-twitch fibers in larger animals; in hu-
mans, these fibers completely lack PV. The energy-depen-
dent Ca21 uptake into the SR is mediated by the SR
ATPase, an enzyme that itself is regulated by both Ca21-
and CaM-dependent phosphorylation. The Ca21 cycle is
completed by binding of Ca21 to the high-capacity, low-
affinity Ca21-binding protein calsequestrin.

A major goal of this article is to discuss conse-
quences of malfunctioning of the crucial elements of the
Ca21 cycle that may lead to a variety of muscle diseases.
Elevated cytoplasmic Ca21 levels can cause activation of
certain proteases, lipases, and nucleases. Altered physio-
logical properties of muscle, altered gene transcription
and transformation of muscle fibers, necrosis, and apo-
ptosis may be consequences. Well-known Ca21-related

diseases described in this article are certain forms of
myopathies (related to channel malfunctioning), malig-
nant hyperthermia (related to Ca21 release mechanisms),
and dystrophinopathies which involve several Ca21 han-
dling systems and are therefore treated separately in sec-
tions IID, IIIB, and V.

Several recent reviews and book articles deal with var-
ious aspects of muscle plasticity and single components of
the Ca21 cycle apparatus. The reader is referred to just one
article on each subtopic which should contain sufficient
citations for further reading: muscle plasticity (396), myofi-
brillar protein isoforms (453), molecular muscle diversity
(52), the ryanodine receptor (469), the troponin system
(490), PV (390), the Ca21-ATPase (320), calsequestrin (187),
dystrophinopathies (499), calcium release channel diseases
(351), and muscular channelopathies (296).

II. SKELETAL MUSCLE AS A DYNAMIC ORGAN

A. Most Muscles Display a Mosaic

of Heterogeneous Fiber Types:

Compartmental Arrangement

The fiber types present in a muscle can be distin-
guished with different morphological, biochemical, or
physiological methods. Histochemical methods are based
mostly on myofibrillar adenosinetriphosphatase (mATP-
ase) activity or on enzymes of the aerobic and anaerobic
energy metabolism (Fig. 1).

FIG. 1. Serial cross sections of hu-
man deltoid muscle stained for myofibril-
lar ATPase (mATPase) after preincuba-
tion at pH 10.5 or 4.3, cytochrome c

oxidase (Cyt C ox), and a-glycerophos-
phatase dehydrogenase (a-glyc), respec-
tively. The fiber types are indicated; for
IIB (IIX) fibers, see text. They show a
largely reciprocal staining pattern after
acid and alkaline preincubation, respec-
tively, as well as in the reaction for cyto-
chrome c oxidase and a-glycerophos-
phatase dehydrogenase, respectively.
The plate illustrates the establishment of
morphological fiber typing. Original mag-
nification, 395.
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1. Fiber typing

Morphological and functional differences of muscles
and muscle fibers (mainly in frog and rabbit) were known
for a long time (170, 412, 481). However, systematic fiber
typing did not start until the 1950s after Krüger had dis-
tinguished in several vertebrates (including humans) fi-
bers with “Fibrillenstruktur” (evenly dispersed myofi-
brils) and fibers with “Felderstruktur” (myofibrils
arranged in bundles) (273, 274, 276). In the following
decades several classification systems were proposed
that are summarized in Table 1.

Dubowitz and Pearse (106) described in 1960 histo-
chemically two fiber types, termed type I and type II,
respectively. They showed that both fiber types displayed
“reciprocal” activities of oxidative and glycolytic enzymes
(Fig. 1). Using a histochemical assay for mATPase that
was earlier introduced by Padykula and Herman (386),
Engel (118) reported a low mATPase activity in the type I
and a high mATPase activity in the type II fibers in hu-
mans. The group of type II fibers was subsequently sub-
divided into IIA and IIB fibers (Table 1).

Analyzing the rat semitendinosus muscle by electron

TABLE 1. Synopsis of different fiber-type classification schemes

Classification Animals; Methods

Histochemical-ultrastructural classification

Fibers with
“Felderstruktur”

Fibers with “Fibrillenstruktur” Dog, human, mouse, rabbit, rat, rhesus monkey; histology
(274, 276)

Type I Type II Goldfish, human, pigeon, rat, toad; histochemistry (106)
ATPase low ATPase high Human; histochemistry (mATPase) (118)
B (“moderate”) C (“dark”) A (“light”) Rat; histochemistry (succinic dehydrogenase activity) (496)

Formaldehyde
resistant

Formaldehyde sensitive Cat, rabbit, rat; histochemistry (ATPase, formaldehyde) (174)

Beta (alkali labile,
acid stabile)

Alpha (acid
labile, alkali
stabile)

Alpha-beta (intermediate) Cat, rat; histochemistry (mATPase) (442, 563)

D (“dark”) L (“light”) M (“moderate”) Rat; histochemistry (mATPase) (562)
I IIA IIB Human, rabbit, rat; histochemistry (mATPase) (46, 47)
Intermediate Red White Rat; ultrastructure (150)
I IIA1 IIA2 IIA3 Dog, horse, rabbit, rat; histochemistry (mATPase, acid

lability) (163)
I IIA IID/IIX IIB Rat; histochemistry, biochemistry, morphometry (91)

MHC isoform classification

I-MHC 2A-MHC 2X-MHC 2B-MHC Rat; immunohistochemistry, biochemistry, MHC (452, 454,
455)

MHC I MHC IIA MHC IIX MHC IIB Human, rat; histochemistry, immunohistochemistry,
biochemistry, SDS-PAGE, RT-PCR (119, 446, 447)

I IIa IId/IIx IIb Mouse, rat, rabbit; histochemistry, immunohistochemistry,
biochemistry, MHC, morphometry (18, 180, 427, 493)

Physiological-metabolic classification

Tonic Phasic Cat, hedgehog, human, mouse; histology, physiology (274)
Low ATPase activity

of myosin
High ATPase activity of myosin Rabbit; biochemistry (19)

“Intermediate” slow-
twitch oxidative
(SO)

“Red” fast-
twitch
oxidative
glycolytic
(FOG)

“White” fast-twitch glycolytic (FG) Guinea pig; histochemistry, biochemistry, physiology (20, 393)

Slow, essentially
oxidative (SO)

Fast,
essentially
oxidative
(FO)

Fast,
oxidative
and
glycolytic
(FOG)

Fast, essentially
glycolytic (FG)

Mouse, rabbit; histochemistry, cluster analysis (489)

Type S slow
contracting
fatigue resistant

Type FR fast
contracting
fatigue
resistant

Type FF fast contracting fast fatigue Cat; physiology (56)

Slow (pCa50 2 pSr50

, 0.7)
Fast (pCa50 2 pSr50 . 1.0) Mouse, rat; physiology (calcium/strontium activation

characteristics) (129, 403, 498)

In each classification scheme, the different groups are generally nonoverlapping. Although there is a basic correspondence between the
different classification schemes, they are not fully interchangeable. Reference numbers are given in parentheses. MHC, myosin heavy chain;
mATPase, myofibrillar ATPase.

1218 BERCHTOLD, BRINKMEIER, AND MÜNTENER Volume 80



microscopy, Gauthier (150) also could distinguish three ma-
jor fiber types (Table 1). In subsequent ultrastructural and
morphometric investigations of mammalian muscles, the
classification was mainly based on the mitochondrial con-
tent and the width of the Z bands (115, 208, 379). With
respect to mitochondria, it should be noted that in small
mammals (e.g., mouse, rat) the highest amount of mitochon-
dria is seen in type IIA fibers, whereas in larger animals this
is the case with type I fibers. Type IIB fibers exhibit the
smallest width of the Z band paralleled by the lowest relative
volume density of mitochondria. However, human muscle
fibers can more reliably be classified by electron microscopy
on the basis of the M-band structure (474).

Schiaffino et al. (455) described in 1985 in the rat an
additional fast-twitch fiber type that was later termed type
2X. In the late 1980s, Pette and co-workers (18) electro-
phoretically identified the myosin heavy chain (MHC) IId
in rodents. Fibers containing this MHC isoform were
termed type IID fibers. It was shown that type IID fibers
are identical to type 2X (IIX) fibers and hence these fibers
are designated as type IID/X fibers (Table 1).

In different species more than 10 intermediate fiber
types have been described histochemically and biochem-
ically in limb and trunk muscles (14, 46, 226, 231, 243, 251,
304, 433, 492, 494). Most of these subtypes or intermediate
types have been shown to be hybrid fibers with respect to
the coexistence of different types of myosin. In normal
mature muscle fibers of humans and rodents, the coexist-
ence of different slow- and fast-type MHC isoforms is
frequently observed (30, 38, 94, 287, 395, 446, 447, 476,
493); all three MHC isoforms I, IIa, and IIb can occasion-
ally be coexpressed in a single muscle fiber (447). With
increasing age (see below) also the percentage of muscle
fibers coexpressing two or three MHC increases (5).

Some muscles of the craniofacial region which are
not concerned with locomotion, such as extraocular (e.g.,
rat, Ref. 548), laryngeal (e.g., rabbit, thyroarytaenoid, Ref.
312), or jaw-closing muscles (e.g., cat, masseter, tempo-
ralis, Ref. 434), exhibit “super-fast” fibers. These fiber
types contain superfast MHC isoforms and are phenotyp-
ically distinct from both fast-twitch oxidative and fast-
twitch glycolytic muscle fibers of the body and limbs.

Presently, for practical reasons, the most widely used
classification of fiber types is still the one based on the pH
lability of the mATPase activity which distinguishes only
type I, IIA, and IIB fibers (46). Unfortunately, in many
investigations, no distinction is made between type IIB
fibers and the recently discovered IIX fibers (164, 452).
The fast fiber types showing the lowest activity of the
cytochrome c oxidase (or succinate dehydrogenase, SDH)
and the highest activity of the a-glycerophosphate dehy-
drogenase are also in humans, analogously to rat and
mouse, frequently termed IIB fibers. However, in humans,
these fibers express the IIx but not the IIb MHC isoforms
(119, 446) and should be correctly designated IIX fibers.

Therefore, these fibers are termed in this review IIB when
dealing with rat, mouse, or rabbit muscle and IIB(IIX)
when dealing with human muscle (Fig. 1). The histochem-
ical staining characteristics of a given fiber type may vary
considerably from species to species. The different
schemes (Table 1) of classification are not fully inter-
changeable (79, 370, 488). Only recently simultaneous
measurements of mATPase, SDH, and a-glycerophos-
phate dehydrogenase activities and cross-sectional area
in MHC-based fiber types have been performed (427).
Significant interrelationships between these parameters
have been found on a fiber-to-fiber basis.

2. Metabolic fiber profile and physiological

characteristics

The fiber types show differences in their oxidative
and glycolytic capacities that generally correlate with
differences in contractile and other physiological proper-
ties (Table 1). However, these correlations are only gen-
eral ones. In a histochemically defined fiber type, the
metabolic profile and the physiological characteristics
need to be defined separately.

Twitch contraction (i.e., time to peak) and half-relax-
ation times differ to a great extent between fast-twitch
and slow-twitch muscle fibers, but there is a substantial
overlap between these two groups. These properties are
critically dependent on the Ca21 sensitivity of the con-
tractile apparatus and on the efficiency of Ca21 uptake
into the SR. A third factor is the efficiency of the myosin
motor itself, which is composed of different protein iso-
forms in different muscle fibers. Many events in the Ca21

cycle also contribute to large differences in resistance to
fatigue between fast and slow muscles (reviewed in Ref.
497).

3. Compartmentalization (i.e., a regional

specialization of muscle fibers)

Already at the beginning of this century specific re-
gional variations in fiber composition have been noticed
in mammalian muscles (96). In the rat, some neck and
thoracic (165, 169, 314, 401) and most limb muscles (13,
16, 409, 410, 529) exhibit a predominance of oxidative
type I and type IIA fibers in the deep portions and a
predominance of glycolytic type IIB fibers in the superfi-
cial portions. This is demonstrated with staining for the
fast fiber (IIA and IIB) specific PV in the rat extensor
digitorum longus muscle (Fig. 2). Lexell et al. (302) found
in extensor digitorum longus and tibialis anterior muscle
of rabbits an analogous situation. In humans, a similar
gradient from deep to superficial has been found in mus-
cles of the upper and lower limb (237, 475), in paraverte-
bral muscles (473), and the masseter muscle (424). Al-
though the trapezius muscle exhibited an increase of type
I and IIA fibers at the expense of type IIB (IIX) fibers from
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cranial to caudal in both genders (305, 306), the tempo-
ralis muscle showed an increase of the proportion of pure
slow type I fibers in a postero-anterior direction at the
expense of hybrid slow/fast fibers (268). Quantitative
morphological study of whole vastus lateralis muscle
from childhood to old age has revealed a life-long rear-
rangement of these compartments (475).

4. Muscle fiber transformation and type-specific

gene expression

Much information is available on the biochemical,
morphological, and physiological phenotype of specific
fiber types and how these fiber types can be transformed.
However, little is known on the accompanying changes in
the expression of the corresponding genes and the in-
volved control mechanisms. The signals and early cellular
events that exert this control are poorly understood. Sev-
eral major technical problems hamper the analysis of fiber
type specific gene expression. Investigations cannot be
carried out on cultured cells, since these do not differen-
tiate to the point they do in vivo. Therefore, work on
whole animals has to be carried out. Some data are avail-
able from transgenic mouse work. For example, the my-
osin light chain (MLC) 1 fast (1f) promoter (102) or the
MLC3f promoter (249) in combination with the enhancer
located 39 to the MLC1/3 locus (containing both genes)
were found to be expressed in fast type II fibers of ani-
mals made transgenic with these regulatory elements cou-
pled to reporter genes. This indicates that the used pro-
motor together with the enhancer contain sufficient
information to allow fiber-specific expression. However,
correct subtype distribution as found in the normal situ-

ation was not achieved. A variety of factors may be re-
sponsible for this discrepancy. Maybe not all required
DNA elements were present in the constructs. Alterna-
tively, the site of transgene integration into the genome,
the chromatin configuration or genomic imprinting during
embryonic development might have caused the differ-
ences.

The method of direct gene transfer into the muscle
has been used to investigate the regulatory sequences for
the fiber type-specific expression of the MLC-1 slow/ven-
tricular (MLC-1s/v) gene. Constructs with 59-flanking re-
gions of this gene showed a preferred expression pattern
in the slow fibers (534) as found in the endogenous situ-
ation. However, several problems are encountered as well
when this method is used. The transgenic DNA is not in a
genomic configuration, since it is localized on a extra-
chromosomal plasmid and expression is relatively low if
the muscle is not regenerating. So far, no common se-
quences present in different genes with the same fiber
type specificity are known. It is also not established how
the known myogenic transcription factors govern fiber
type-specific gene expression. There are some indications
that members of the myogenic helix-loop-helix transcrip-
tion factor family such as MyoD, which is expressed
mainly in type II fibers, and myogenin, which is expressed
mainly in type I fibers (217, 537), are involved in the
differentiation and transformation process. However,
there is no clear evidence for a specific causal involve-
ment (271). Differentiation of fast-twitch and slow-twitch
fibers can also occur when either the MyoD or the myo-
genin gene is knocked out. Possibly there exists redun-
dancy in transcription factors for muscle differentiation.

FIG. 2. Immunohistochemical demon-
stration of parvalbumin in the superficial
and deep portion of rat extensor digitorum
longus muscle. Because parvalbumin is in-
volved in the relaxation process, the type
IIB fibers that are fast contracting and fast
relaxing show throughout a strong staining
intensity. Sixty to seventy percent of the
type IIA fibers are intermediately stained,
whereas the remaining type IIA and the
type I fibers that are slow contracting and
slow relaxing are nonreactive. The com-
partmentation of the muscle is clearly
seen; the superficial (“white”) portion dis-
plays a higher relative amount of IIB fibers
than the deep (“red:) one. Original magni-
fication, 360.
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Other groups of transcription factors such as MEF-2,
M-CAT binding factor, and SRF known to regulate muscle
genes have not been investigated for their involvement in
fiber type-specific gene expression (453).

Regulation of fiber type-specific gene expression can
also be achieved posttranscriptionally. It has been shown,
for example, that the pool of transcripts for a muscle gene
family producing several isogenes remains constant al-
though levels of the different isogene products may vary
greatly during development. This has been demonstrated,
for example, for TnC and TnCf isogenes (538).

5. Summary

In conclusion, every muscle within an animal is
unique in terms of fiber type composition and distribution
pattern within the muscle. In animals the fiber composi-
tion of homologous muscles can vary considerably from
species to species. Within a species in a given muscle the
proportion of type I fibers increases with body size and
body weight. In contrast, in humans the interindividual
variability of the fiber composition is considerable. Al-
though a given muscle may consist mainly of fast-twitch
fibers in one individual, it may be totally made up of
slow-twitch fibers in an other individual (237, 527, 544,
545). A muscle can functionally adapt to a broad spectrum
of activities. The molecular mechanisms involved in these
adaptations and the early molecular and cellular events
taking place in these processes are still poorly under-
stood. However, DNA sequences important for the regu-
lation of fiber-specific gene expression as well as tran-
scription factors involved in this process can now be
investigated by the use of transgenic animals or by direct
gene transfer into the muscle of living animals.

B. Changes of Fiber Type Composition and

Calcium Handling Apparatus During

Development and Aging

1. Development

In vertebrates, most skeletal muscles derive from the
paraxial mesodermal tissue that condenses into the seg-
mentally arranged somites. During the further maturation
in each somite, the cells are compartmentalized. The dor-
solateral compartment is called myotome; it contains two
subsets of myogenic precursor cells. The cells of one
subset are destined to become the axial musculature,
whereas the cells of the other subset migrate into the
periphery to form the muscles of the body wall and the
limbs (see Refs. 32 and 57 for further references). Myo-
genic determination occurs independently in somites and
limb buds (239). The myogenic precursor cells differenti-
ate to become myoblasts, which later fuse to become
three discrete populations of myotubes (first, secondary,

tertiary) that then develop into myofibers (104). The later
stages of myogenesis are more dependent on the myo-
genic regulatory factor (MRF) myogenin than early stages
(532). Protein and mRNA studies have demonstrated that
myosin isozymes follow an embryonic . neonatal . adult
transition during mammalian and avian skeletal muscle
development (547). In mice, the accumulation of slow
MLC in the slow-twitch muscle fibers occurs during pre-
natal myogenesis, whereas the accumulation of the fast
MLC in the fast-twitch muscle fibers is a postnatal phe-
nomenon (541). For further details of embryonic myogen-
esis and the regulatory pathways underlying the genera-
tion of the definitive skeletal muscle diversity, the reader
is referred to the following reviews (52, 248).

Studies on chicken muscle have shown that the Ca21

handling system (Ca21 release, storage, and uptake) de-
velops in two stages. A temporary Ca21 regulating system
is established at the periphery of the myotubes during
myofibrillogenesis [around embryonal day E5.5]. This pe-
ripheral system is subsequently replaced by the more
highly specialized central system (t tubules/SR) during
myotube-to-myofiber transition (between E15 and E16)
(510). The avian calsequestrin homolog, a Ca21-binding
protein responsible for Ca21 storage in the SR, was de-
tected in limb primordia of chicken embryos as early as
E5 (67). Calsequestrin and its mRNA increased ;10-fold
before myoblast fusion. Cross-linking studies revealed
that, during postnatal development, the oligomerization
state of Ca21 regulatory components including the RYR,
the sarco(endo)plasmic reticulum Ca21-ATPase (SERCA)
and calsequestrin increased (143). This indicates that pro-
tein-protein interactions become more and more complex
during development and are important for the correct
function of the adult muscle.

The appearance of PV during myogenesis and matu-
ration has been investigated in frog and rat; in Xenopus

laevis, PV is first detected at embryonic stages 24–25,
when myotomal muscles are differentiating (463). In the
rat, PV immunoreactivity appears only postnatally and
varies considerably from muscle to muscle. PV can be
detected in the tibialis anterior muscle at the fourth post-
natal day where it reaches the adult checkerboard pattern
2 days later. In contrast, in the intrinsic muscles of the
tongue, in diaphragm, and in intercostal muscles, PV im-
munoreactivity does not appear until the second week.
The fact that differences in PV expression do not corre-
late in time with the differentiation of fiber types (as
judged by myosin ATPase activity) probably suggests that
myosin and PV are regulated by different mechanisms
(384).

2. Aging

In aging rodents, a progressive loss of muscle fibers
paralleled by fiber type conversion (see below) from “fast
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twitch” to “slow twitch” has been observed (58). This
process was later shown to be both muscle and fiber
specific (135, 353). In humans too, the changes with age
differ from muscle to muscle. For this reason, age
changes, mainly the ones in relation to oxidative capacity,
are controversially reported in the literature (212), while
the selective atrophy of type II (A and B) fibers is well
documented (166, 209, 256, 284, 285, 404; see Ref. 515 for
further references). Electrophoretic investigation of sin-
gle fibers of vastus lateralis and biceps brachii muscles of
young (23–31 yr old) and elderly men (68–70 yr old)
showed, with increasing age, an increasing number of
muscle fibers with coexistence of different MHC isoforms
(258). Very old subjects (average age, 88 yr) displayed
52.6% muscle fibers coexpressing two or three MHC in the
vastus lateralis muscle (5). Thus a separation into slow
and fast fibers becomes misleading in very old individuals.
In elderly men and old animals, in old age the muscles
retain their individual adaptability in response to physical
exercise (257, 286, 495, 531). Atrophy of fibers due to
aging can be attenuated by training (339).

An age-related impairment of intrinsic SR function,
i.e., the rate of Ca21 uptake and the fractional rate of SR
filling, and a decrease in SR volume are the most probable
factors underlying the decreased speed of contraction in
old fast-twitch motor units (288). Additionally, uncou-
pling of sarcolemmal excitation and SR Ca21 release have
been assumed as a major determinant of weakness and
fatigue (89). Indeed, with increasing age, an increase of
the number of RYR1 ryanodine receptor uncoupled from
DHPR has been found in rat (soleus and extensor digito-
rum longus muscle; Ref. 418) and human (vastus lateralis
muscle; Ref. 89). DHPR-RYR1 uncoupling leads to a sig-
nificant reduction in the amount of releasable Ca21 in
skeletal muscles from old animals and humans. However,
the effects of aging considerably vary from muscle to
muscle (367).

C. Fiber Transformations and Modulation

of Calcium Signaling and Handling Depending

on Altered Neuronal Input, Exercise,

and Other Factors

1. Neural input, cross-reinnervation, and electrical

stimulation

Muscle fiber transformations as the basis of muscular
plasticity occur in response to a variety of systemic or
local stimuli in humans and animals. Investigation of mus-
cle plasticity mainly started after the classical cross-rein-
nervation experiments of Buller and co-workers in 1960
(50). Since then it has been repeatedly shown that the
firing patterns of the innervating motoneurons largely
determine the characteristics of muscle fibers (195) (for
further references, see Refs. 52, 396, 397, 440). Thus re-

innervation by motoneurons with a different firing pattern
leads, within a few months, to changed properties of the
reinnervated muscles. This is evidenced by an altered
fiber type distribution with corresponding changes of the
concentration of the fast fiber specific PV (360, 362) and
other proteins important for Ca21 handling in the muscle
(364). It has been shown that the degree and the time
course of the fiber transformation depends on the size
ratio of the two muscles which are cross-reinnervated (51,
244). It also depends on the ratio of type IIA and type IIB
motoneurons within the reinnervating motor nerve (514).

The effects of cross-reinnervation can, to a large
extent, be both reproduced and opposed by long-term
electrical stimulation (reviewed in Refs. 396, 399, 400).
Artificial stimulation that activates all motor units of the
stimulated muscle induces a specific remodeling of the
muscle fibers leading to a shift of the fiber type distribu-
tion. This remodeling encompasses the major, myofibril-
lar proteins, membrane-bound and soluble proteins in-
volved in Ca21 dynamics, and mitochondrial and cytosolic
enzymes of energy metabolism. Stimulation work has
been mainly carried out on fast-to-slow transition by
chronic low-frequency stimulation (continuous at 10 Hz)
(232, 440) and much less on slow-to-fast transition by
phasic high-frequency stimulation [e.g., 60 pulses at 100
Hz every 60 s (309, 310) or 40 pulses at 40 Hz every 5 min
(301)].

Both types of conversion show substantial species
differences that are still not yet fully understood. They
involve, e.g., the replacement of degenerating and de novo
formation of regenerated fibers in rabbits (460) and
guinea pig (301), whereas they are entirely due to trans-
formation of preexisting fibers in rats (91, 301). When
rabbit tibialis anterior muscles were stimulated continu-
ously at 2.5, 5, or 10 Hz for 10 mo, interestingly in muscles
that had received 2.5-Hz stimulation, fast myosin isoforms
were found to predominate, and the muscles showed the
highest levels of oxidative and glycolytic activity (506).

Possible differences in posttranscriptional regulation
may result in the transient accumulation of atypical com-
binations of fast and slow MLC and MHC isoforms, giving
rise to the appearance of hybrid fibers (294). Recently, it
has been suggested that the drastic depression of the
energy state in stimulated muscle fibers could act as an
important signal initiating the fast-to-slow transformation
process (72). Already after 3 wk of chronic low-frequency
stimulation the neuromuscular junctions of the stimu-
lated (fast-twitch) muscles showed a partial transforma-
tion toward a morphology characteristic of slow-twitch
muscle in rabbits (480). The neuromuscular junctions
became smaller, and the secondary postsynaptic folds
were more closely spaced. In senescent rats, the fiber
shift was significantly less pronounced after low-fre-
quency stimulation (539). This stimulation pattern sup-
pressed the expression of the Ca21-binding protein PV in
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fast-twitch rabbit muscles (259, 260). In humans, intermit-
tent electromyostimulation could increase endurance
without concomitant morphological or biochemical
changes (253).

2. Physical exercise and detraining

Muscle fiber transformations in consequence of
cross-reinnervation or electrical stimulation have been
mostly studied in rodents. In humans, the most intensively
studied fiber transformations are both the ones following
physical exercise and detraining (10, 36, 160). For many
years, it has been recognized that endurance training
leads to an increase of slow-twitch type I fibers (162, 230,
231). Only much later was it shown conclusively that the
fiber distribution can also change in the opposite direc-
tion {an increase of fast-twitch type II [A 1 B(X)] fibers}
as a consequence of repeated 30-s “all-out” sprints (120,
121, 229).

3. Overload and hypogravity

Partly comparable with physical exercise and de-
training are mechanical overload and hypogravity, respec-
tively. Mechanical overload (induced by stretch or abla-
tion or tenotomy of synergists) leads to hypertrophy.
Ultrastructural myofibrillar disruptions, mitochondrial al-
terations, glycogen pooling, and a significant increase in
the number of myonuclei and satellite cells are observed
in the early stages (3, 479). Recently, it has been shown
that calcineurin plays an important role as a mediator of
the Ca21 effect on gene transcription in hypertrophy (111,
366, 468; for more details, see sect. IVE). Additionally, fiber
splitting paralleled by a shift of the fiber distribution
toward the oxidative type I fibers has been reported (179,
247, 391). Many studies show that in several animal spe-
cies certain forms of mechanical overload can increase
muscle fiber number (10, 247). Overload experiments
have shown that active musculature not only produces
much of the circulating insulin-like growth factor I (IGF-I)
but also utilizes most of the IGF-I produced (see review in
Ref. 159). The discovery of the locally produced IGF-I
appears to provide the link between the mechanical stim-
ulus and the activation of gene expression.

Exposure to hypogravity decreases muscle strength
in humans and animals mostly affecting the postural mus-
cles (108). Zhou et al. (570) showed that fibers expressing
only slow (type I) MHC in the vastus lateralis of space
craft crew members were significantly reduced after a
relatively brief (11 days) exposure to space flight (570).
However, it was suggested that adaptive changes subse-
quent to weightlessness were more dependent on the
muscle function (involving mainly postural muscles) than
on the fiber type (498). In rats exposed to a 7-day space
flight, Riley and co-workers (422) found shrinkage of the
majority of the soleus and extensor digitorum longus

fibers; in soleus, ;1% of the fibers appeared necrotic.
Ca21-activated protease activities of soleus fibers from
rats on space craft were significantly increased. Hypo-
gravity conditions induced by walking on crutches (28),
bed rest (107, 126, 199) (for further references, see Ref.
139), or hindlimb suspension (11, 216, 382, 443) lead to
reduction in muscle mass and strength. The reduction in
strength is more pronounced in extensors than in flexors
(11, 107, 422), and the muscular changes are species
specific (11). In addition to atrophy, fiber in a transitional
state (showing a mismatch between MHC isoforms at the
mRNA and protein level) and myofibrillar damage have
been reported (4, 216, 382, 443). To our knowledge the
Ca21-binding proteins have not yet been investigated in
muscles exposed to hypogravity.

4. Hormones

Many hormones (e.g., growth hormone, insulin, thy-
roid hormones, sex hormones) exert a strong systemic
influence on skeletal muscles during development as well
as in the adult stage (for further references, see Refs. 134,
136). The hormonal effect on muscles is also mirrored in
the widespread use and misuse of hormone analogs, e.g.,
in sports or meat production.

For the thyroid hormones, it has been shown in rats
that both hypo- and hyperthyroidism were paralleled by
modifications in the fiber type composition. 3,39,5-Triiodo-
thyronine (T3) induces terminal muscle differentiation
and regulates fiber type composition via direct activation
of the muscle-specific myoD gene family (103). Gender-
and muscle-specific differences were observed in regula-
tion of myosin heavy chain isoforms by thyroid hormones
(289). PV distribution and concentration were largely un-
affected in all thyroid states. This indicates that the mus-
cular alterations are likely caused by a direct action of the
thyroid hormone on muscle fibers, and not via their ner-
vous input (363). The sexually dimorphic muscles (e.g.,
perineal, masticatory, laryngeal), also under strong hor-
monal control, will not be further considered.

5. Unspecific local stimuli

In addition to these specific and/or systemic stimuli,
also local and unspecific stimuli can elicit muscular reac-
tions. As an example, fiber transformations of fast- into
slow-twitch fibers, and vice versa, have been observed in
neck muscles of the rat after an incision of the overlying
skin (359).

6. Muscle fiber transformation

In mammalian muscles, fiber transformations proba-
bly occur according to the following scheme (modified
from Refs. 30, 164, 229, 231, 359)
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Endurance exercise or overload, for example, lead to a
transformation in the direction from right to left, whereas
detraining or hypogravity leads to a transformation in the
opposite direction. The fiber type at right is IIB in rodents
and IIX in humans (see above). The “intermediate” fiber
types are intermediate with respect to metabolic profile
and myosin composition. In normal muscles, these fiber
types are found in only small amounts. However, in mus-
cles undergoing a transformation, their percentages are
increased independently of the direction of the fiber trans-
formation. Such an increase has been shown for type IB
and IIC fibers (between type I and IIA in the scheme) in
rats after unspecific stimulation (359) and for IIC fibers in
healthy humans after physical training (231) or in patients
with cervical dysfunctions (527, 545). Subjects with man-
dibular prognatism and deficient occlusion have revealed
in their masseter muscle an increased frequency of inter-
mediate IM fibers (between type I and IIA) (425, 516).

7. Summary

In summary, skeletal muscles are composed of a
large variety of morphologically and functionally different
fiber types. Today the classification of fiber types based
on the pH lability of their mATPase (alkali labile/acid
stabile and vice versa) is still widely used. However, to
overcome its limitations, fiber types have to be defined
according to additional criteria (e.g., analysis of MHC,
metabolic profile). The arrangement of the heterogeneous
muscle fibers in variable compartments leads to the
uniqueness of every muscle. As dynamic structures, mus-
cle fibers are able, although with considerable species
differences, to change their morphological and functional
characteristics in response to a large spectrum of both
local and general stimuli.

D. Fiber Transformation in Diseased Muscles:

Hereditary Myotonias and Periodic Paralyses

Muscle fiber transformations paralleled by an altered
fiber composition are also encountered as secondary ef-
fects in muscle diseases as hereditary myotonias and
periodic paralyses, which are disorders of skeletal muscle
excitability. Myotonia is caused by runs of nerve indepen-
dent action potentials at the sarcolemma (Fig. 3, myotonic
response). Incomplete muscle relaxation and transient
muscle stiffness are the consequences of this hyperexcit-
ability (234, 435). Paralysis is brought about by strong
membrane depolarization and following inexcitability of
the sarcolemma. Before 1990, the underlying genetic de-
fects were not known in any of these diseases in humans
and animals (mouse, goat, and horse). Since that time,
most of the disorders have been recognized as mutations
in genes coding for voltage-dependent ion channels. Re-
cently, the diseases, called muscular channelopathies,
were reclassified and grouped as either sodium channel
(SkM1) disorders, chloride channel (ClC-1) disorders
(Fig. 3, Table 2), or Ca21 channel disorders. This subject
has been extensively reviewed (203, 295, 296). The most
frequent disease of this group of disorders is probably the
recessive chloride channel myotonia (affected between
1:23,000 to 1:50,000). The aim of this section is to discuss
the secondary consequences of increased muscle excit-
ability and activity on muscle structure, function, and
fiber type composition in the different affected species.

The hereditary Na1 and Cl2 channelopathies are not
accompanied by muscle fiber necrosis, regeneration, or
persistent weakness. In some cases of the dominant chlo-
ride channel disorder myotonia congenita (Thomsen)
muscle fiber hypertrophy, an increased number of central
nuclei, and type I fiber atrophy were observed (45),
whereas other cases were normal. In recessive myotonia
(Becker), also caused by ClC-1 gene mutations, three-
quarters of the patients show muscle hypertrophy. A

FIG. 3. Myotonia and muscle fiber type changes.
Mutations in Na1 (1) or Cl2 (2) channels or the lack of
the sarcolemmal chloride channel (ClC-1; 2) can lead
to overexcitability of the sarcolemma (myotonia). Nor-
mal muscle responds with single action potentials
upon single stimuli, whereas myotonic muscle often
responds with runs of action potentials. Increased
membrane excitation can cause protein kinase C
(PKC) activation in the nucleus and changes in the
pattern of myogenic regulating factors (MRF). The
myogenic factors control gene transcription and there-
with couple membrane excitation to the muscle fiber
type. A second signaling pathway involves cytoplasmic
Ca21. The propagation of action potentials into the
transverse tubule system (TT) activates the L-type
Ca21 channel and stimulates Ca21 release from the
sarcoplasmic reticulum (SR) via the ryanodine recep-
tor (RyR). A Ca21 signaling pathway into the nucleus is
suggested.
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slight increase of serum creatine kinase (CK) was found
in some cases. Occasionally, muscle biopsies from pa-
tients with paramyotonia congenita, a dominant Na1

channel disorder, showed focal myofibrillar damage

(149). Myotonia of mouse and goat are caused by chloride
channel (ClC-1) defects; however, the phenotype shows
differences between the species. In murine myotonia, the
degree of muscle stiffness and the frequency of the myo-

TABLE 2. Hereditary muscle diseases with altered Ca21 handling and fiber-type abnormalities

Disease Gene Products
Chromosomal Location/

Responsible Gene Presumed Function Role in Disease Reference No.

Duchenne muscular dystrophy
(DMD), murine muscular
dystrophy (mdx)

Dystrophin X p21 Connection of
cytoskeleton and
DAG complex

Loss of mechanical
membrane
stability

62

Limb girdle muscular
dystrophies (LGMD)

LGMD1A ? 5q22/?
LGMD1B ? 1q11-21/?
LGMD1C Caveolin 3 3p25/CAV3 Invaginations of

plasma
membrane

Disruption of
caveolae
formation

333, 352

LGMD2A n-Calpain 15q15/CANP3 Protease Loss of proteolytic
activity

419

LGMD2B Dysferlin 2q13/DYSF 21, 307
LGMD2C g-Sarcoglycan 13q/SGCG Connects

dystrophin to the
ECM

Instability of DAG
complex

374

LGMD2D a-Sarcoglycan 17q21/SGCA Connects
dystrophin to the
ECM

Instability of DAG
complex

429

LGMD2E b-Sarcoglycan 4q12/SGCB Connects
dystrophin to the
ECM

Instability of DAG
complex

35

LGMD2F d-Sarcoglycan 5q33/SGCD Connects
dystrophin to the
ECM

Instability of DAG
complex

372

Congenital muscular
dystrophy (CMD), murine
dystrophia muscularis-2J
(Dy2J)

Laminin a2
chain

6q/LAMA2 ECM component 192
505

Malignant hyperthermia (MH)
MHS1 Ryanodine

receptor
19q13.1/RyR1 Ca21 release from

SR
Excessive Ca21

release
39, 315, 323

MHS2 ? 17q11.2-q24/? Increased
cytoplasmic
Ca21

300

MHS3 ? 7q/? Increased
cytoplasmic
Ca21

222

MHS4 ? 3q13.1/? Increased
cytoplasmic
Ca21

503

MHS5 L-type Ca21

channel
(DHP
receptor)

1q31/CACLN1A3 Ca21 channel of TT
system, voltage
sensor

Changed
inactivation
properties; RyR
activation

356

MHS6 ? 5p/? Increased
cytoplasmic
Ca21

431

Brody’s disease SERCA1 16p12/ATP2A1 Uptake of Ca21

into SR
Loss of function,

reduced Ca21

uptake

377

Sodium channel myotonias Na1 channel 17q23/SCN4A Depolarization
during action
potential

Overactivity causes
hyperexcitability

296

Chloride channel myotonias
(Thomsen, Becker)

Cl2 channel 7q35/CLCN1 Stability of resting
potential

Loss of function
causes
hyperexcitability

296

DHP, dihydropyridine; SERCA, sarco(endo)plasmic reticulum Ca21-ATPase; ECM, extracellular matrix; SR, sarcoplasmic reticulum; RyR,
ryanodine receptor; DAG, dystrophin-associated glycoprotein.
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tonic discharges are much more pronounced compared
with myotonia in humans and goats. Thus myotonic
mouse muscle is a biological model of a chronically and
extensively stimulated muscle (267, 336, 550). In aged
myotonic mice, elongation of tendons and bone deforma-
tions have been observed (193). This points to a consid-
erable increase of force development of myotonic muscle
in vivo.

1. Alteration of fiber type composition of myotonic

muscle

In mice and to a minor extent in the myotonic goat
and humans, muscle histological, immunohistochemical,
and biochemical investigations revealed secondary
changes of myotonia. Reduced glycolytic enzyme activity
(482) and changes in the muscular lipid composition (414)
were reported. Both findings are consistent with in-
creased amounts of mitochondria in myotonic muscles. In
1984, Jockusch and co-workers (501) showed that in myo-
tonic adr muscle the content of PV was drastically re-
duced (adr, arrested development of righting response).
They suggested that the impaired muscle relaxation seen
in adr mice could be a consequence of the PV deficiency.
After clarifying that electrically induced myotonia is re-
sponsible for the aftercontractions of adr muscle (336),
the biochemical changes in myotonic muscle were rein-
terpreted as fiber type transformations in response to the
different stimulation pattern. The most drastic changes
occur in predominantly fast-twitch muscle in the myo-
tonic mouse. Electrophoretic and histochemical analysis
(234) revealed a shift from IIb to IIa myosin heavy chain
expression in the predominantly fast-twitch tibialis ante-
rior and gastrocnemius muscles. The slow-twitch soleus
muscle, consisting of ;70% type I fibers in the normal
mouse, shows a composition of only 50% type I and 50%
type IIA fibers in the myotonic mouse. This may be ex-
plained by the different pattern of electrical and mechan-
ical activity of myotonic soleus muscle. Alternatively,
consequences of the smaller size of myotonic mice (about
one-half of the body weight of controls) can contribute to
the reduction of type I fiber number. The RNA for the type
IIB specific protein PV was found much decreased in
myotonic muscle, whereas the mRNA for a slow-twitch
muscle specific protein p19/6.8 was increased (261). The
chronic application of tocainide, a drug which normalizes
membrane excitability, reverted the fiber type transfor-
mations of myotonic muscle (235, 416). These results
indicate that the fiber type abnormalities of myotonic
muscle are secondary adaptations to the different pattern
of electrical stimulation.

In the myotonic goat, the proportion of fast myosin
isoforms was found to be increased in all muscles tested
(326), in contrast to the results with myotonic mouse
(234). The difference may be explained by the fact that
the muscle fiber type composition of bigger mammals

differs from that of small rodents by a higher proportion
of type I fibers at the expense of type IIA and IIB fibers. In
human myotonic muscle, a lack of fast-twitch glycolytic
type IIB (IIX) fibers was reported (77). This is consistent
with the reduction of type IIB fibers in mice and the
reduction of the MHCIIb isoform.

In addition to the fiber type changes, muscle hyper-
trophy was observed in some human disorders with myo-
tonia, independent of whether they are based on Cl2

channel (45) or on Na1 channel mutations. Our favored
interpretation for this finding is that the myotonia is equiv-
alent to exercise and stimulates protein synthesis in mus-
cle. In contrast to human myotonia, mouse myotonia is
accompanied by reduced body weight and reduced mus-
cle mass of the affected animals (542). This seems first
surprising, but as mentioned above, mouse myotonia is
more intense than human and goat myotonia. A reduced
opportunity of food intake, insufficient respiration, and
other handicaps may be responsible for the growth re-
striction of myotonic mice.

2. Muscle activity, intracellular signaling, and gene

transcription

Fiber type transformation in myotonic muscle and in
chronically stimulated muscle has been described at the
protein and mRNA levels for many years. However, it is
still not clarified how altered muscle membrane and con-
tractile activity influences muscular gene transcription. In
the last few years two signal transduction pathways have
been discovered that seem to be important for the cou-
pling of membrane excitation and altered gene transcrip-
tion. First, it was shown by Huang et al. (215) that protein
kinase C (PKC) couples membrane excitation to acetyl-
choline receptor inactivation (Fig. 3). After electrical
stimulation of denervated chicken muscle the activity of
PKC in the nucleus was found 100-fold increased, and this
increase was correlated with the inactivation of AChR
subunit genes. Later the same group showed that the
myogenin gene, coding for a transcription factor belong-
ing to a family of myogenic factors (48), declined in
transcriptional activity after electrical stimulation compa-
rable to the rate of AChR gene inactivation (213). It has
been reported that phosphorylation by PKC inactivates
myogenin (303). Compared with controls, myotonic adr
muscle is characterized by increased levels of the myo-
genic factors myogenin and herculin (or MRF4) and a
reduction of the MyoD level. The differences in mRNA
levels of MHCIIb, MHCIIa, MHCIIx, and MHCI genes (158)
were attributed to the different pattern of myogenic fac-
tors.

The second signal transduction cascade that came
into question involves intracellular Ca21 (Fig. 3). Huang
and Schmidt (214) showed that electrical stimulation, via
an increase of Ca21, causes AChR a-subunit gene inacti-
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vation. It has not been clarified whether this mechanism
also involves myogenic factors. Recently, it was shown
that calcineurin, a calcium-dependent phosphatase, is a
possible mediator of fiber type conversion in response to
electrical stimulation. The overexpression of calcineurin
in cultured muscle caused slow-fiber-specific gene ex-
pression, whereas calcineurin inhibition led to a slow to
fast conversion of rat soleus muscle in vivo (66) (for
further discussion, see sect. IVE). In other cell systems
(neurons, glial and liver cells, and T lymphocytes) CaM
and CaM-binding proteins have been detected in the nu-
cleus (15). It has further been shown (in nonmuscle cells)
that CaM, via the activation of CaM-dependent kinases II
or IV, can phosphorylate transcription factors, and it was
suggested that CaM may have a general role in RNA
processing or splicing (15). Calcium, in most cases to-
gether with CaM, can use different routes to signal
through ras to modulate survival, differentiation, and
plasticity in neurons (130).

3. Summary

The primary defects in myotonias and periodic paral-
yses are due to mutations in the genes coding for voltage-
dependent ion channels. The increased membrane exci-
tation causes several secondary changes including fiber
type transformations. The murine animal models of myo-
tonia will be especially valuable in elucidating the link-
ages between membrane excitation, muscle activity, and
gene transcription. Changes in Ca21/CaM-dependent cell
signaling are likely to be involved in the secondary
changes observed in myotonic muscle.

III. PLASTICITY OF THE CALCIUM

HANDLING APPARATUS

A. Calcium release from the SR

1. Structural and functional considerations

The RyR to which the plant alkaloid ryanodine spe-
cifically binds is the major channel for Ca21 release from
intracellular stores in skeletal muscle; it mediates the
t-tubular depolarization-induced Ca21 release from the SR
(Fig. 4). Several review articles exist on the structure and
function of the RyR (74, 131, 324, 458). In skeletal muscle,
activation of Ca21 release from the SR is controlled by a
voltage sensor in the transverse tubular (tt) membrane
(459). Elementary Ca21 signal events have recently been
subcellularly localized in the skeletal muscle. These sig-
nals represent openings of individual RyR in the SR mem-
brane and have been termed Ca21 sparks and Ca21

quarks, respectively (reviewed in Ref. 371). The initial
Ca21 release activates additional Ca21 sparks by Ca21-
induced Ca21 release from the SR. It is believed today that
the signal transmission from the DHPR to the RyR is
achieved by mechanical coupling. This is fully compatible
with the original hypothesis of Schneider and Chandler
(459) that charged components in the sarcolemma and t
tubules move in response to depolarization, and this is
coupled to a charged component in the SR. That asym-
metric charge movement is related to the excitation-con-
traction coupling could be demonstrated by many studies.
For example, it has been shown that in soleus muscle of

FIG. 4. The ryanodine receptor and
its function in Ca21 release. Proposed
arrangement of proteins in the SR and
target proteins of Ca21 in the cytoplasm.
The transverse tubular membrane is part
of the plasma membrane of the muscle
fiber. The interaction of the a-subunit of
the Ca21 channel, also known as dihydro-
pyridine receptor (DHPR), and the Ca21

release channel of the SR called ryano-
dine receptor (RyR1) connects both
membranes, tubular and SR membranes.
This connection is responsible for elec-
tromechanical coupling. Several cyto-
plasmic and SR proteins are associated
with the DHP/RyR complex (triadin,
calsequestrin, FK506 binding protein, and
calmodulin). Calcium release from the
SR via the RyR1 triggers muscle contrac-
tion and multiple cellular effects by bind-
ing of Ca21 to a variety of other target
proteins. Reuptake of Ca21 from the cy-
toplasm into the SR is carried out by the
SR calcium pump.
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paraplegic rats (after spinal cord transsection) the voltage
dependence of contraction (twitches and K1 contrac-
tures) and charge movements changed in parallel (109)
compared with normal animals. Another study shows that
T3, which shifts the soleus muscles toward fast physiol-
ogy, also increases the amount of charge movement and
both the voltage dependence of charge movement and
tension shifted to more positive potentials (110). Voltage-
dependent depolarization-induced activation is indepen-
dent of a Ca21 inward current (reviewed in Ref. 64).
However, the maintenance of the function of the voltage
sensor depends on external Ca21. It seems that Ca21 has
a stabilizing effect that supports excitation-contraction
(EC) coupling (reviewed in Refs. 340, 458). In contrast,
the heart muscle RyR (RyR2) is activated during EC cou-
pling by Ca21 influx through the DHPR, a phenomenon
referred to as Ca21-induced Ca21 release (reviewed in
Ref. 123). Because Ca21 influx through the Ca21 sensor is
of secondary importance for skeletal muscle physiology,
this mechanism is not discussed in this article.

In the mouse BC3H1 cell line, which serves as a
model for muscle differentiation, it was found that in the
proliferative state of the cells the predominant release
channel was inositol 1,4,5-trisphosphate (IP3) sensitive
and therefore identified as the endoplasmic reticulum
Ca21 channel, whereas after differentiation, the Ca21 mo-
bilization potential was mostly caffeine sensitive, indica-
tive of the RyR (SR Ca21 channel) (96b). This suggests
that differentiation of the BC3H1 myoblast phenotype
induces the expression of RyR and reduces IP3 receptor
activity, a process which might also take place in muscle
development in vivo. Investigations on the expression of
RyR isoforms and IP3 receptors during development of
skeletal muscle or in the specialized adult muscle indicate
that various combinations of Ca21 release channels could
contribute to the fine tuning of Ca21 regulation in the
skeletal muscle (reviewed in Ref. 486).

Because the RyR has a very central position in the
context of Ca21 handling in muscle physiology and plas-
ticity, it is not surprising that it is also a molecular switch
that is highly complex and a target of many regulatory
pathways. We therefore discuss its structure and regula-
tion in some detail and summarize the knowledge on
putative interacting molecules that could contribute to its
performance.

The RyR is a homotetramer (see Ref. 324), and 50% of
all these complexes are located in close proximity to the
DHPR (131, 140–142, 408). In addition, it has been shown
that RyR channels are highly clustered square structures
arranged in regular rows and that the corners of adjacent
channels contact each other (438). There is ;66% amino
acid sequence identity among the skeletal, cardiac, and
brain isoforms (324). Fast and slow skeletal muscle fibers
contain predominantly one RyR isoform (RyR1), but the
RyR density is higher in fast fibers (81). Some of the

biochemical features of the RyR and other molecules
discussed in this review article are listed in Table 3.

2. Ca21 regulation

Ca21 dependence of the RyR activity is achieved by
several different mechanisms. The Ca21 release proper-
ties of isolated triad preparations (composed of the ter-
minal cisternae of the SR, the RyR, and the transverse
tubular membrane) could be shown to be influenced in a
dual mode by Ca21 (561). The channel is activated by low
Ca21 concentration (50% activation at 0.5 mM) and inhib-
ited at higher Ca21 concentration (50% inhibition at 0.15
mM), suggesting that there are two classes of Ca21-bind-
ing sites involved in channel regulation. This leads to a
situation of positive- and negative-feedback regulation of
Ca21 release by Ca21 which is reflected in a bell-shaped
curve of Ca21-dependent Ca21 release (Fig. 5). Single RyR
channel measurements in a lipid bilayer experiment
showed that increasing the luminal (SR) Ca21 concentra-
tion from 0.1 to 250 mM increased channel activity at
negative holding potentials at the cytosolic side. Increase
of Ca21 concentrations from 1 to 10 mM in the “luminal”
chamber resulted in a decrease of channel activity at
negative holding potentials and increased activities at
positive holding potentials. This suggests that luminal
Ca21 flux through the RyR regulates channel activity by
allowing Ca21 to have access to activation and inactiva-
tion sites that are on the cytoplasmic domain of the RyR
(196). It is highly likely that different modes of Ca21

handling in different fiber types or at different stages
during development affect the activity of the RyR differ-
entially. When the RyR is activated by t-tubule depolar-
ization, the released Ca21 may cause further increase in
the rate of Ca21 release, and this is followed by a reduc-
tion in the rate of Ca21 release (96b).

Nitric oxide (NO) was found to inhibit the RyR in
skeletal (343) and heart muscle (567). Both the rate of
Ca21 release from the SR and the open probability were
affected. This inhibition causes depression of contractile
force, and because the major form of the NO synthase in
muscle is of the Ca21/CaM-dependent type, this regulation
would represent another feedback loop in Ca21 signaling.
Ca21 would activate NO synthase through CaM, and NO
would reduce Ca21 release from intracellular stores. In a
recent article by Xu et al. (558), direct action of NO on the
cardiac RyR was demonstrated through S-nitrosylation of
thiol groups.

Free Mg21 is present in the muscle at millimolar
concentrations. At this concentration this ion inhibits RyR
channel activity (281, 290). Mg21 could bind either to the
activating high-affinity Ca21-binding site in a competitive
fashion or to the low-affinity inhibitory Ca21-binding site
(338). A third possibility is binding to another site that
would block Ca21 conduction (477). An explanation why
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Mg21 cannot permanently inhibit RyR is provided by Hain
et al. (178) in that Mg21 can only block the nonphospho-
rylated state of the RyR which can be phosphorylated by
protein kinase A or CaM kinase. The effect of Mg21 is also
mediated through phosphatase 2C, which is activated by
Mg21 (reviewed in Ref. 469).

An important question concerning intracellular Ca21

storage organelles is how they get refilled after Ca21 is
depleted. It is known for many cell types that depletion of
intracellular Ca21 stores results in the activation of a
store-operated Ca21 channel at the plasma membrane
that enables the reloading of internal Ca21 stores. This
Ca21 current, the Ca21 release-activated current (ICRAC),

may be responsible for long-term Ca21 effects and oscil-
lations. The signals involved in transmitting the informa-
tion of Ca21 depletion as well as the channel themselves
are not well characterized. By single-cell patch-clamp
analysis in cultured skeletal muscle cells, Hopf et al. (206)
found Ca21 leak channels that were sensitive to two new
dihydropyridine compounds, as well as to manganese
influx and an inhibitor of tyrosine kinase. Thus the Ca21

leak channel might have an important function for filling
the intracellular Ca21 stores in normal contractile activity
besides the voltage-dependent Ca21 channel, which also
has been shown to mediate the store refilling. However, it
was shown that continuous muscle activity in mammalian

TABLE 3. Ca21 and calmodulin binding proteins potentially implicated in skeletal muscle function

Protein Isoforms Mr

Ca21

Binding
CaM

Binding Proposed Function Selected Reviews

Troponin C Fast 17,000 1 Myofibril Ca21 sensor protein 152
Slow/cardiac 17,000 1 Myofibril Ca21 sensor protein

Calmodulin 17,000 1 Multifunctional 432
S100a 10,000 1 Activation of twitching, possibly other

functions
572

Parvalbumin 12,000 1 Ca21 transport from myofibrils to SR 26
Myosin light chain 2 17,000 1 Thick filament component 451
Ryanodine receptor 324

Skeletal RyR1 550,000 1 1 Ca21 release channel of SR
Heart/brain RyR2 550,000 1 1 Ca21 release channel of SR
Brain RyR3 550,000 1 1 Ca21 release channel of SR

Ca21 pump 224
Fast adult SERCA1a 110,000 1 1 Ca21 transport into SR
Fast neonatal SERCA1b 110,000 1 1 Ca21 transport into SR
Heart, slow twitch, smooth

muscle
SERCA2a 110,000 1 1 Ca21 transport into SR

Smooth muscle,
nonmuscle

SERCA2b 110,000 1 1 Ca21 transport into SR

Nonmuscle SERCA3 110,000 1 1 Ca21 transport into SR
Myosin light-chain kinase 87,000 1 Phosphorylation of myosin 502
Calpain m 80,000 1 Ca21-dependent protease 508

m 80,000 1 Ca21-dependent protease
P94 94,000 1 Ca21-dependent protease
light chain 30,000 1 Ca21-dependent protease, regulatory

subunit
Glycogen synthase kinase 3 58,000 1 Glycogen metabolism 552
Histidine-rich calcium

binding protein (HCP)
170,000 1 Regulator of ryanodine receptor? 82

Phosphorylase kinase
Subunit a 133,000 1 Regulator of ryanodine receptor? 188
Subunit b 125,000 1 Regulator of ryanodine receptor?
Subunit g 43,000 1 Regulator of ryanodine receptor?
Subunit d 17,000 1 Identical to calmodulin

CaM kinase II a 54,000 1 Ca21-dependent multifunctional kinase 250
Calcineurin A 61,000 1 Ca21-dependent phosphatase 171

B 17,000 1 Calmodulin-like subunit of calcineurin
Calsequestrin Fast 45,000 1 Ca21 storage protein of the SR 560

Slow/cardiac 45,000 1 Ca21 storage protein of the SR
Calreticulin 60,000 1 Ca21 storage protein, other functions 368
Annexin VI 68,000 1 Ca21-dependent phospholipid binding 113

VII 51,000 1 Ca21 channel 491
Sorcin 22,000 1 Transsarcolemmal transport? 345
NO synthase (nNOS) 160,000 1 Possibly involved in relaxation 42
a-Actinin 100,000 1 Thin filament component 373
Dystrophin 500,000 1 Connects thin filaments with

sarcolemma
6

NO, nitric oxide; CaM, calmodulin; RyR, ryanodine receptor; SERCA, sarco(endo)plasmic reticulum Ca21-ATPase; SR, sarcoplasmic reticulum.
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skeletal muscle causes a dramatic increase of total mus-
cle Ca21 (122). However, Ca21 concentrations in store
organelles were not measured directly in these studies.

Taken together, the importance of the RyR for Ca21-
regulated muscle function can hardly be overemphazised.
This large protein complex provides on the one hand the
entry site for activating signals coming through surface
membrane depolarization and DHPR activation. On the
other hand, it releases Ca21 from the SR, a process which
is tightly controlled by the concentration of Ca21 in the
SR as well as by many other factors playing regulatory
roles with mostly unknown molecular mechanisms.

3. Proteins that interact with RyR

In skeletal muscle, direct interaction of the DHPR in
the t tubules of the plasma membrane with the RyR in the
SR is believed to be responsible for EC coupling via a
structural change in the DHPR that induces a structural
alteration in the RyR, which finally triggers the opening of
Ca21 release channels (426) (see Fig. 4). Biochemical
evidence for a link between the two receptors has been
reported by Marty et al. (327). RyR interact with a variety
of accessory proteins believed to modulate the activity of
these Ca21 channels (reviewed in Ref. 317). The following
proteins have been shown to bind directly to the RyR or
affect the gating properties of the RyR: glyceraldehyde-39-
phosphate dehydrogenase (41), aldolase (41), annexin VI

(97), 170-kDa low-density lipoprotein binding protein
(80), S100 protein (124, 325), CaM, 60-kDa CaM-depen-
dent protein kinase (82), calsequestrin (365, 560), FK506
binding protein (233), triadin (173), and junctin (238).
Whether some of these proteins use common docking
sites on the RyR is presently not known. Because this
review focuses on Ca21-related issues, we discuss in more
detail calsequestrin and CaM. They are both potentially
involved in Ca21-governed RyR function and regulation.
In addition, new literature on FK506 binding protein is
reviewed since this protein seems to have a major func-
tion for RyR regulation.

4. Calsequestrin

Calsequestrin is the main Ca21-binding protein of the
SR, with high capacity and low affinity for Ca21. The
biochemical features of this protein are discussed in sec-
tion IVD (see also Table 3). Calsequestrin contains no
transmembrane segments and is therefore believed to be
located within the lumen of the SR (132, 387). A region of
the protein (amino acid 86–191) was shown to bind to the
junctional face membrane of the SR (71). Experiments
with ryanodine receptor Ca21 release agonists, such as
polylysine or caffeine, suggest that the RyR, when acti-
vated by such agents, induces a release of Ca21 from
calsequestrin (219, 464). Experiments using fluorescent
probes that were bound to SR proteins point in the same
direction. In the presence of calsequestrin, the fluores-
cence intensity of the probe increased with luminal Ca21

but not in its absence (220). Therefore, it was concluded
that the Ca21-dependent conformational change of calse-
questrin causes a change in the shape of SR membrane
proteins, including the RyR. A recent study shows that
calsequestrin controls the RyR channel in a phosphoryla-
tion state-dependent fashion. Calsequestrin, exclusively
when phosphorylated, enhanced the open probability of
the RyR fivefold and increased the open time twofold
(509). It is possible that calsequestrin interacts with the
95-kDa protein triadin, a protein thought to bind to both
the RyR and the DHPR (63). Because triadin contains a
region of basic amino acids in the luminal domain, it was
suggested that it could interact with the acidic protein
calsequestrin and provide a functional connection to the
RyR (335). Recently, it was found that the luminal domain
of triadin interacts with calsequestrin in a Ca21-depen-
dent manner and therefore triadin might anchor calse-
questrin to the junctional region of the SR and might thus
be important for functional coupling in the Ca21 cycle
(172). Purified triadin inhibits [3H]ryanodine binding to
the solubilized heavy fraction of the SR of rabbit skeletal
muscle and reduces the opening of the RyR (380). The
same study shows that calsequestrin potentiates the Ca21-
dependent [3H]ryanodine binding and that this effect was
reduced by triadin. That triadin functionally interacts with

FIG. 5. Ca21 dependence of Ca21 release of SR vesicles. Effect of
Ca21 and calmodulin on 45Ca21 efflux from SR vesicles. Relative Ca21

efflux rates are first-order efflux constants of 45Ca21 determined in the
absence (V) or presence (●) of calmodulin at the indicated concentra-
tions of free Ca21 in the efflux media. For experimental details, see
Reference 522.
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the skeletal RyR was also shown by antibodies directed
against the COOH-terminal part of triadin, which induces
a decrease in the rate of Ca21 release from SR vesicles as
well as a decrease of the open probability of the RyR Ca21

channel incorporated in lipid bilayers (167). Junctin, an-
other calsequestrin binding protein of 26 kDa with se-
quence homology to triadin, was found abundantly in
junctional membranes and could therefore as well serve
to bring calsequestrin in proximity to the RyR (559). In a
recent study, the close proximity of calsequestrin and the
RyR in fast- and slow-twitch rabbit skeletal muscle was
demonstrated by immunoblot analysis of chemically
cross-linked membrane vesicles enriched in triad junc-
tions (365).

5. CaM

CaM binds to the RyR and affects its function in a
complex positive and negative way (357, 465). CaM is a
ubiquitous intracellular Ca21 receptor containing typical
EF-hand structural elements that bind Ca21 in a specific
way (see Fig. 9 and Ref. 311). The term EF-hand refers to
the two COOH-terminal a-helical sequence stretches in
PV which are oriented in a perpendicular way and con-
nected by a loop that contains amino acid residues serv-
ing as Ca21 ligands. Proteins containing such structural
elements are named EF-hand proteins (272). Generally, at
submicromolar Ca21 concentrations (1027 to 1029 M),
CaM activates the channel by increasing the open proba-
bility in a dose-dependent fashion, and at high free Ca21

(10 mM), CaM (0.1–1 mM) inhibits channel activity (53). It
has been shown that CaM inhibits Ca21 release from
skeletal SR vesicles by a factor of 2–3 (337). Half-maximal
inhibition was found between 0.1 and 0.2 mM and maximal
inhibition at 1–5 mM CaM. The bell-shaped Ca21 depen-
dence of Ca21 release (see Fig. 5) between 0.1 and 100 mM
was not shifted by CaM. Only its amplitude was altered. In
the absence of ATP, CaM decreased the mean open time
of the skeletal RyR by ;40% (478), and nanomolar CaM
concentrations inhibited ryanodine binding to the purified
brain RyR (334). In a recent study using mutant mice
expressing only type 1 or 3 RyR, it was shown that CaM
regulates the Ca21-induced Ca21 release of skeletal mus-
cle in a RyR isoform-specific fashion (221).

Tripathy et al. (522) found that activation of the Ca21

release channel by CaM occurs at ,0.2 mM Ca21, whereas
at micro- to millimolar Ca21 concentration, CaM was
inhibitory. Binding kinetics revealed on and off rates of 50
and 30 s21, respectively, indicating that CaM exerts its
two opposing effects on channel activity without dissoci-
ation from the RyR. Another independent investigation
(53) comes to the same conclusion concerning the mod-
ulatory activity of CaM.

CaM-dependent protein kinase was found to be
tightly associated with several junctional terminal cister-

nae (JTC) proteins of which several were phosphorylated
in a Ca21-dependent way, indicating that this system is
involved in regulation of functions linked to these struc-
tures (68).

A 60-kDa CaM-dependent protein kinase in the junc-
tional cisternae of the SR of rabbit fast muscle inhibits
RyR function, although it does not directly phosphorylate
the Ca21 channel (82). However, this kinase phosphory-
lates triadin and a histidine-rich Ca21-binding protein
(204, 421, 470), possibly explaining the regulatory func-
tion of this enzyme.

In addition to being involved in regulation of the RyR,
CaM is a key signal transmitter in a broad variety of other
important muscle activities such as metabolism. Further-
more, CaM might have modulatory functions as an acti-
vator of CaM kinases and phosphatase and by this means
indirectly affects the Ca21 cycle. Examples of CaM targets
with known catalytic or regulatory functions in the skel-
etal muscle are phosphorylase kinase (188), glycogen syn-
thase kinase (552), CaM kinase II (250), calcineurin (171)
(see also sect. IVE), NO synthase (42), and dystrophin (6).
For biochemical features, see Table 3. A more complete
list of CaM targets is presented in Reference 432. Re-
cently, Pyk2, a stress-related kinase that signals through
mitogen-activated protein kinase and promotes apoptosis,
has been proposed to be activated by CaM (90). Another
newly discovered group of enzymes shown to be Ca21/
CaM dependent are DAPK, serine/threonine kinases, in-
volved in apoptotic Ca21 signaling and shown to be
present in the skeletal muscle (70, 245). It is not clear
whether all these mentioned pathways are important for
gene regulation in skeletal muscle, but all the necessary
components have been shown to exist in muscle cells.

6. FK506 binding protein

The tetrameric RyR channel binds four molecules of
the FK506 binding protein (233), which has a stabilizing
effect on the RyR and coordinates its activity (43). In a
recent article it has been postulated that FK506 binding
protein also coordinates the opening of several adjacent
channels to release Ca21 in a simultaneous way (328). Such
a coupled gating would allow the regulation of channels that
are not associated with voltage-dependent channels.

7. Summary

Taken together, the association of the RyR with the
Ca21-binding proteins calsequestrin and CaM provide
many possibilities for regulating the important Ca21 chan-
nel activity in the cell. In addition to direct binding of
Ca21-regulated cellular components, Ca21 can also affect
the RyR in an indirect fashion through Ca21/CaM-depen-
dent phosphorylation or dephosphorylation. Considering
different RyR and calsequestrin isoforms and the regula-
tion of the expression level, the RyR Ca21 channel is
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clearly an important component in processes that govern
muscle plasticity.

B. Malignant Hyperthermia, a Disease

of Calcium Release

The RyR that has been discussed in the previous
section plays a crucial role in malignant hyperthermia
(MH). MH is known in humans (95, 319) and pigs; it is
caused by a pathophysiological response of skeletal mus-
cle to some anesthetics and muscle relaxants. An MH
crisis is life threatening and one of the main causes of
death during general anesthesia in humans. The occur-
rence has been estimated to be between 1:12,000 and
1:40,000 general anesthesias (351). An attack starts with
muscle hypermetabolism, contractures, and a following
dramatic rise in body temperature [up to 1°C per 5 min
and up to 43°C (hyperthermia) (168)]. The susceptibility
to develop MH (MHS) during anesthesia is genetic and is
transmitted as an autosomal dominant trait. MHS can be
tested by exposure of biopsied muscle bundles to trigger
substances, such as caffeine, halothane, succinylcholine,
ryanodine (116, 283, 513a), or 4-chloro-m-cresol (197).
When muscle bundles of individuals with MHS are ex-
posed to one of these drugs, the bundles show faster force
production or respond at lower drug concentrations com-
pared with controls. This has led to the design of stan-
dardized in vitro contracture tests (283, 513b), which are
widely used for testing MHS.

Although MHS can be life threatening during gen-
eral anesthesia, the affected individuals appear to be
without symptoms during normal life. The disposition
is genetically heterogeneous, but the common underly-
ing effect leading to a MH crisis is an excess of Ca21 in
the sarcoplasm (Fig. 6; Ref. 351). Secondary changes
are the clinically observed muscle contractures, a high

rate of ATP consumption and synthesis, and the in-
crease in muscle temperature and body temperature. If
the process cannot be terminated by pharmacological
means, i.e., the application of dantrolene (540), an in-
hibitor of the SR Ca21 release, muscle tissue gets se-
verely damaged and very soon secondary effects in-
cluding heart failure, renal failure, and neurological
complications can occur (319).

Porcine MH develops principally in an identical way
and can be provoked with the same trigger substances:
halothane, succinylcholine, or 4-chloro-m-cresol (218).
However, pigs that are homozygous for the genetic dispo-
sition also respond to stress with muscle stiffness, hyper-
metabolism, and high temperature. Animal transportation
in a hot environment can lead to stress-induced death
(porcine stress syndrome) (319, 417). Another difference
between human and porcine MHS is the tendency of
faster growth and a faster increase in muscle mass of
MHS pigs compared with controls. This property, which
was desired and selected by the breeders, points to the
side effect of hypertrophy of porcine MHS muscle. The
mechanism of hypertrophy is not yet clarified, but as in
mdx muscle (see sect. V), a sustained increase of cyto-
plasmic Ca21 and subsequent calcineurin-dependent sig-
nal transduction into the nucleus (366, 468) could under-
lie this effect (see Figs. 3, 13, and 14).

1. MH caused by mutations in the RyR1 gene

The disposition for MH is genetically heterogeneous
in humans, and the underlying molecular defects are
known only in a fraction of the affected families. In ;50%
of the affected patients, point mutations in the RyR1 gene,
coding for the major Ca21 release channel of skeletal
muscle, have been made responsible for MHS. All the
known 25 different mutations (39, 315, 323) are point
mutations causing amino acid exchanges in the RyR1

FIG. 6. Mechanisms for the development of malignant
hyperthermia (MH). Part of a muscle fiber (longitudinal
section) is shown, with sarcolemma, sarcoplasmic reticu-
lum (SR), and mitochondria as shown in Figure 4. In
addition, a transverse tubule (TT) system with the L-type
Ca21 channel consisting of 4 subunits (a1, a2/d, b, g) and
the ryanodine receptor (RyR) are shown. Mutations in the
RyR (1) or the a1-subunit of the Ca21 channel (2) are
responsible for the susceptibility for MH (MHS1, MHS5).
The application of certain anesthetics during general an-
esthesia can lead to excessive Ca21 release from the SR. If
the Ca21 control mechanisms cannot compensate for the
release, the excess of cytoplasmic Ca21 causes sustained
muscle contraction and rigidity, increased energy produc-
tion and consumption, as well as ADP, CO2, and heat
production. Finally, the activation of degradative enzymes
leads to membrane damage and cell death. Brody’s disease
(3) is caused by mutations in SERCA1, which can lead to
a complete loss of SERCA1 function. The disease is char-
acterized by slowing muscle relaxation.

1232 BERCHTOLD, BRINKMEIER, AND MÜNTENER Volume 80



(Fig. 4). The first detected mutation, R614C in humans
(154), is homologous to the mutation causing MHS in pigs,
R615C (211). Ryanodine receptors with the R615C muta-
tion show an increased [3H]ryanodine binding in the pres-
ence of Ca21 (350) and have an increased open probabil-
ity compared with control when incorporated into
bilayers (127). The latter effect has recently been attrib-
uted to a lower sensitivity of R615C mutated RyR to Mg21.
The inhibition of the RyR by Mg21 is probably physiolog-
ically important to adjust a normal level of activity of the
RyR. Thus the loss of Mg21 sensitivity could lead to
overactivity of the release channels (290, 291). Further-
more, SR vesicles with the mutated RyR1, prepared from
pig or human muscle, show a higher affinity for ryanodine
and increased sensitivity for Ca21 (349). The RyR1 with
the R615C mutation was shown to be more sensitive to
activating CaM concentrations (378) and muscle fibers,
and myotubes from pigs with MHS have a lower threshold
for contraction upon electrical stimulation and exposure
to extracellular K1 (147). Recently, it was shown that the
G2434R mutation of the human RyR1 causes similar
changes of physiological and pharmacological properties
as the R614C mutation. The G2434R mutation also caused
a higher sensitivity of the RyR to activating Ca21 concen-
trations, when tested in membrane preparations with a
ryanodine binding assay. In addition, the sensitivity of the
mutated channel to caffeine and 4-chloro-m-cresol was
increased (420), and inhibition by high Ca21 concentra-
tions and CaM were reduced. All known MHS causing
mutations of the RyR1 are localized in the proposed cy-
toplasmic part of the release channel, the domain respon-
sible for the coupling to the DHP receptor (Fig. 4). The
mutations seem to confer the RyR into a hypersensitive
state leading to excessive Ca21 release after direct bind-
ing of trigger substances or by activation via depolarizing
agents and after DHPR activation.

Although excessive Ca21 release into the sarcoplasm is
common in MH and although the mutated RyR may show
similar physiological properties (420), there is evidence for
differences in phenotypes in the absence of triggering
agents. Some mutations appear to have no effect in the
absence of drugs, i.e., they probably do not cause changes in
cytoplasmic Ca21 (compared with controls) during normal
muscle activity. Some mutations, as the R615C in pigs, lead
to hypertrophy, probably by increased cytoplasmic Ca21 at
rest or during normal muscle activity. A third category of
MH-causing mutations (39, 315, 402) is at the same time
responsible for central core disease (CCD). This muscle
disorder is characterized by central cores of debris in mus-
cle fibers. For this the best explanation is a marked Ca21

release through the mutated RyR at rest (315) and following
Ca21-dependent degradation of myofibrils and mitochon-
dria, which then form the central cores.

2. Other genetic defects related to MH

To complete the discussion on MH, a short overview on
other MH candidate loci, unrelated to the RyR locus, is
given. As mentioned above, RyR1 gene mutations (chromo-
some 19q13.1) account only for a part of the MHS cases. This
first gene locus for MHS was named MHS1. On the basis of
genetic linkage studies, there is evidence for at least five
other MHS loci called MHS2 (chromosome 17q11.2-q24, Ref.
300), MHS3 (chromosome 7q, Ref. 222), MHS4 (chromo-
some 3q13.3, Ref. 503), MHS5 (chromosome 1q31, Ref. 356),
and MHS6 (chromosome 5p, Ref. 431). Candidate genes
exist for some of the loci (Table 2). The MHS3 locus con-
tains a chromosomal segment that includes the gene for the
a2/d-subunit of the skeletal muscle L-type Ca21 channel, but
a mutation has not been found in the gene. In any case, the
linkage data added evidence for a considerable heterogene-
ity of MHS. Recently, MHS5 was confirmed as an indepen-
dent MHS locus after a mutation in the CACLN1A3 gene
(356), coding for the a-subunit of the muscular L-type cal-
cium channel had been found.

3. Summary

In summary, MH is a disorder of Ca21 release of
skeletal muscle with the phenotype of increased sensitiv-
ity of muscle to certain trigger substances used during
anesthesia. The finding that MHS can be caused by muta-
tions in the RyR1 and the muscular L-type Ca21 channel
points to the whole complex of associated proteins which
form the t-tubule/SR connection (Figs. 4 and 6). Structural
integrity and function of this complex seem to be highly
important for the normal process of muscle activation. To
clarify the genetic and physiological basis of the MHS loci
2, 3, 4, and 6 will lead to great progress for the under-
standing of the skeletal muscle Ca21 control. The fact that
the myoplasmic Ca21 level can get out of control as a
consequence of changes of the RyR function underlines
the importance of this component of the calcium cycle.

C. The Calcium Switch at the Myofibrils:

the Troponin Complex and Calcium Control

at the Myofibrils

1. Structure and function

After its release from the SR, Ca21 binds in a fast
reaction to one of the troponin subunits (TnC) which
forms the regulatory complex with tropomyosin on the
thin filament (112, 152, 411) (Fig. 7). This event is fol-
lowed by a transient tension development at the contrac-
tile apparatus leading to muscle contraction.

As reflected in Ca21 dependence curves, the Ca21

concentrations leading to half-maximal tension develop-
ment are markedly different in type I, IIA, and IIB muscle
fibers. TnC, one prominent factor in the Ca21 cycle, influ-
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ences the sensitivity differentially by displaying two dif-
ferent isoforms. Fiber type I contains TnCs (slow, identi-
cal with the heart form) and both type IIA and IIB contain
TnCf (fast). The fact that TnCf contains two, and TnCs
only one, regulatory Ca21-binding site does not fully ex-
plain the physiological difference (for further discussion,
see Ref. 453). It has to be mentioned that although TnC
binds Ca21 directly, it is not the only factor responsible
for the myofibrillar Ca21 sensitivity. The other troponin
subunit isoform as well as the tropomyosin, myosin, and
myosin binding proteins affect the Ca21 sensitivity too.
Ca21-dependent force generation is depressed by low pH.
The depression is highest in cardiac muscle, intermediate
in fast muscle, and lowest in slow muscle. A recent study,
where different isoforms of the troponin complex were
exchanged in skinned cardiac muscle fibers, shows that

TnC is the determinant of the differential pH sensitivity of
the fast and skeletal muscle, whereas it is TnI in the slow
muscle (358).

TnCf binds two Ca21 in a fast reaction and with mod-
erate affinity (5 3 106 M21) in the NH2-terminal part of the
molecule, and two further Ca21 bind with slow kinetics and
with high affinity (5 3 108 M21) in the COOH-terminal part
(430) (for kinetics of Ca21 exchange, see also Fig. 8).

As a consequence of Ca21 binding to TnC, a move-
ment of TnI releases the inhibitory effect of the troponin
complex and allows thin and thick filaments to interact as
shown by resonance energy transfer and cross-linking
experiments (511).

TnC belongs to the superfamily of EF-hand Ca21-
binding proteins, of which PV (see sect. IVA) was the first
member to be analyzed at the three-dimensional level (for

FIG. 7. Troponin (Tn) C as a myofi-
brillar Ca21 switch molecule. Model of
the troponin-tropomyosin-actin organiza-
tion is according to Gagné et al. (145);
TnC is shown in blue for the NH2 domain
and pink for the COOH domain. TnI is
shown in red (NH2-terminal domain),
brown (COOH-terminal domain), and yel-
low (inhibitory region). TnT is shown in
green. Myosin is shown in green (myosin-
S1), red (essential light chain), and yel-
low (regulatory light chain) in stick rep-
resentation. Tropomyosin is shown in
light blue and darker blue stick represen-
tation. Note that only TnC, myosin, and
tropomyosin are represented by known
structure. TnT and TnI structures are
modeled. Actin monomers are repre-
sented by white spheres. a: Organization
in the relaxed state of muscle. The COOH
domain of TnC is bound to Mg21. The
NH2-terminal domain of TnI is anchored
on the COOH domain of TnC, whereas
the inhibitory region and COOH-terminal
domain of TnI make contact with actin and
tropomyosin. This organization keeps the
thin filament in a conformation that pre-
vents myosin from properly interacting
with actin. b: Organization after two Ca21

bind to the NH2 domain of TnC, which in
turn interacts with TnI. The inhibitory re-
gion and COOH domain of TnI are then
released from actin. This leads to a confor-
mation of the thin filament that allows the
proper formation of the actomyosin com-
plex. The power stroke can then occur (not
shown here) sliding the thin filament to the
right. (Figure kindly provided by Drs. S.
Gagné and B. Sykes, Edmonton, Canada.)
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a review, see Ref. 272). PV contains the prototypic high-
affinity Ca21-binding sites that were later found in all
other members of this superfamily. The Ca21-binding

sites of the EF-hand structure (see Fig. 9) provide the
coordinating ligands for Ca21 at the vertices of a pentag-
onal bipyramid. TnC contains 8 a-helices designated A-H
and a short NH2-terminal a-helix.

In a study where all four Ca21 sites of chicken skel-
etal muscle TnC were individually mutated, it could be
demonstrated that the NH2-terminal sites are needed for
regulation and that both COOH-terminal sites are needed
for binding of TnC to the thin filament (483). This is in
contrast to results obtained for the cardiac TnC, where it
seems that metal binding to one site of the COOH-termi-
nal part is sufficient (369) for both functions.

2. Conformational change upon Ca21 binding

The molecular nature of the conformational change
in TnC, which is Ca21 dependent and needed for trigger-
ing muscle contraction, is not entirely understood. Based
on the structural model by Herzberg et al. (198) and a
series of mutagenesis experiments, Gergely et al. (152)
proposed that the conformational shift consists of a Ca21-
induced angular movement of one pair of helical seg-
ments relative to another pair of helices in the NH2-
terminal domain. By a joint movement of helices B and C
away from helices A and D, the structure of the protein is
changed in a Ca21-dependent fashion. This structural
change exposes a hydrophobic patch that could be im-
portant for TnI binding. Another site of similar structure
is formed by the helical segments in the COOH-terminal
domain. This view is supported by the fact that introduc-
tion of a disulfide bridge into the NH2-terminal domain
blocks the conformational change and consequently also
the Ca21 regulatory activity (152). Reduced TnC used as a

FIG. 8. Kinetics of metal exchanges with troponin C and parvalbu-
min. Approximate values are according to Reference 405 (see also Ref.
390 for further literature). Kinetics of Ca21 binding to troponin C (reg-
ulatory sites) and parvalbumin dictate the order of the flow of released
Ca21 to first troponin C followed by binding to parvalbumin in the fast
skeletal muscle. For simplicity, kinetics of the troponin C high-affinity
sites are neglected. They are in the range of the constants for parvalbu-
min. The oval symbol is used for troponin C, and the square is used for
parvalbumin. Open symbols indicate the metal free state, and solid
symbols indicate the metal loaded state.

FIG. 9. Structures of parvalbumin
and CaM in stereo view. Comparison of
the structures of a-parvalbumin and CaM
(COOH-terminal domain) both in the
presence of Ca21. The main structural
units are colored in blue, yellow, and red
with increasing freedom of local mobil-
ity. For details see Reference 17. (Figure
kindly provided by Dr. Balledelon, Mont-
pellier, VT.)
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control showed normal behavior. Direct evidence of
movement of a-helices upon Ca21 binding to TnC was
later shown using fluorescence probes attached to Cys
residues introduced by site-directed mutagenesis at spe-
cific locations (445).

3. Interaction with other troponin subunits

How the two lobes of TnC interact with TnI to loosen
its association with actin is beginning to be unraveled.
TnC makes multiple Ca21-dependent and Ca21-indepen-
dent interactions with TnI and TnT. The so-called inhibi-
tory segment in the middle of TnI (residues 96–116) has
been shown to interact with the C-helix in the NH2-termi-
nal domain of TnC (263, 299) and also with regions in the
COOH-terminal part of TnC. It seems that the interactions
at both sites are necessary for full regulatory activity of
TnC. The interaction with the COOH-terminal site is nec-
essary for stabilization of the complex, and the one of the
NH2-terminal domain is directly coupled to the release of
inhibition by TnI. A recent NMR study using TnI peptides
and chicken skeletal TnC shows that residues 97–136 of
TnI are involved in binding to the two lobes of TnC under
Ca21-saturating conditions and that the interaction with
the regulatory domain of TnC is complex (332). It seems
that particularly acidic residues (E53, E54, E60, E61 and
E85, D86) are important for the complex protein-protein
interaction among TnI and TnC (264, 265). TnI seems to
associate with TnC in an antiparallel fashion. The COOH-
terminal part of TnC interacts with the NH2-terminal part
of TnI and vice versa (125, 262). In a binary complex, both
proteins are in an extended conformation, and TnI seems
to wrap around TnC (383). In the absence of Ca21, the
inhibitory region in TnI binds to actin and inhibits ATPase
activity. By binding to TnC in the presence of Ca21, this
domain is moved away from actin, and inhibition is re-
lieved. This is followed by a displacement of tropomyosin.

Whereas a multiplicity of fast and slow forms of TnT
isoforms exists, TnC and TnI each occur only in a slow
and a fast form. The expression of all troponin forms in
skeletal muscle is under neuronal control. During muscle
transformation, e.g., from fast to slow, isoforms of all
three troponin forms change. Fast and slow isoforms of
all three subunits may coexist in transforming muscle
fibers, indicating an enormous plasticity of the troponin
switch system (182).

The interaction of actin with myosin affects the tropo-
nin system in a reverse fashion. Ca21 binding to TnC is
enhanced by cross-bridge attachment. By this, the Ca21

signal is amplified. Ca21 binds first to troponin, activating
myosin binding to the thin filament. This leads to additional
cross-bridge attachments through enhanced Ca21 binding or
by changing the thin filament structure directly (37).

4. Summary

In summary, the Ca21 transiently released from the SR
through the RyR activates muscle contraction utilizing TnC
as a direct target. Ca21 binding to TnC changes its structure
and influences other troponin subunits, finally leading to
activation of the myosin ATPase. This cascade of events
finally leads to muscle contraction. Similar to the switch at
the RyR also this event can be fine-tuned to the need of an
individual cell type, muscle, or developmental stage if iso-
form diversity of the troponin subunits are considered.

IV. VARIATIONS IN CALCIUM TRANSPORT

AND STORAGE SYSTEMS

A. Parvalbumin as a Relaxation Factor

in Fast-Twitch Muscle Fibers

1. Structure and proposed function

Skeletal muscle relaxation after a single twitch or a
tetanic contraction is initiated by a fall in sarcoplasmic
Ca21 concentration. The following three consecutive
steps of Ca21 removal largely dictate the efficiency of the
relaxation process: dissociation of Ca21 from TnC, trans-
location near the site of entry into the SR, and uptake into
the SR by the Ca21-Mg21-ATPase (the “Ca21 pump”). It is
not known which of these mechanisms is rate limiting in
slow-relaxing muscle fibers. Interspecies comparison
(191) as well as force measurements of single slow- and
fast-twitch muscle fibers (210) showed a positive correla-
tion between PV content and relaxation rate, indicating
that PV could facilitate Ca21 translocation within the
sarcoplasm and therefore be a limiting factor for relax-
ation in fast-twitch muscles. It is generally agreed that PV,
which has relatively slow on/off rates for Ca21 (see Fig.
7), would not compete for Ca21 with TnC, but would
rather bind Ca21 after the triggering of muscle contrac-
tion. PV can be detected in fast-contracting/relaxing mus-
cle fibers of rodents starting ;4–6 days after birth. The
time period of the maximal increase in PV coincides with
the differentiation of the fast-twitch muscle function, in-
dicating that PV is involved in fast-twitch muscle function.
Therefore and for reasons mentioned later, it was pro-
posed that this protein could act in the process of muscle
relaxation by facilitating Ca21 transport from the myofi-
brils into the SR (151, 156, 175, 392). However, no direct
evidence for an involvement of PV in the relaxation pro-
cess has been obtained until very recently when mice with
deleted PV genes were analyzed (462).

PV is a high-affinity Ca21-binding protein found at
high concentration in fast-contracting/relaxing skeletal
muscle fibers of vertebrates (reviewed in Refs. 26, 27,
390). In rat and mouse, the type IIB fibers show the
strongest immunoreactivity for PV with different degrees
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of intensity (Fig. 2). The majority of type IIA fibers (60–
70%) exhibit moderate (also graded) staining intensity.
The remaining type IIA and the type I fibers lack PV (65,
144, 190, 363). The different muscle fibers of the rabbit
exhibit a very similar distribution of PV (292, 456). In
human muscles, PV is detectable exclusively in intrafusal
fibers (137).

This protein has a molecular mass of 12 kDa and
binds two Ca21 with high affinity. Its structure and for
comparison that of calmodulin (only COOH-terminal
part) are shown in Figure 9. Interestingly, PV, which binds
both Mg21 and Ca21, has a much more rigid structure
compared with CaM, which exclusively binds Ca21 but
with lower affinity as PV (17). For carp PV, Robertson et
al. (430) calculated dissociation rates in the range of 10
and 1 s21 for Mg21 and Ca21, respectively (Fig. 7). Be-
cause half-relaxation time is generally much below 100 ms
after a single twitch, it has to be assumed that the disso-
ciation rates of metals from PV are quite different in vivo
compared with values obtained in vitro, allowing a rapid
exchange of Ca21 which is important for muscle relax-
ation, because the more recently measured Ca21 affinity
constants (KCa) for PV are generally severalfold lower
than estimated earlier (especially for KCa values obtained
from PV of mammals); PV may also play an important role
in muscle relaxation after a single twitch.

2. Functional experiments

Cross-reinnervation of slow- and fast-twitch muscles
which changes physiological and biochemical properties
of the muscles leads to an alteration of the PV content. In
the cross-reinnervated fast-twitch muscle, the PV content
is decreased whereas in the cross-reinnervated slow mus-
cle PV amounts increase (360, 362) (see sect. IIC). PV
changes are among the first alterations observed during
transformation and are followed by changes of the con-
tractile apparatus. Electrical stimulation of fast-twitch
muscle leading to a slow phenotype decreases the PV
content (293, 397). PV concentrations in fast fibers of
small mammals are higher than in fast fibers of bigger
animals (191). The latter fibers are known to contract and
relax slower than the corresponding ones in small ani-
mals. All these studies indicate that PV is associated with
fast-twitch muscle function and predict a functional role
of PV in the relaxation process. However, based on metal
binding kinetic properties of PV in vitro, this hypothesis
has been challenged (236, 405, 430).

To test whether PV could act as a relaxing factor,
direct gene transfer (1, 535, 551) was applied in normal
and regenerating rat soleus muscles that do not synthe-
size detectable amounts of PV (361). Two weeks after in
vivo transfection with PV cDNA under the control of
various viral promoters, considerable levels of PV mRNA
and protein were detected in uninjured and even higher

amounts in regenerating muscles. Half-relaxation time
was significantly shorter in transfected than in nontrans-
fected muscles or in muscles transfected with nonfunc-
tional cDNA constructs, whereas time to peak and twitch-
to-tetanus ratios as well as force production remained
unchanged (Fig. 10). The inverse correlation between
half-relaxation time and PV concentration in the trans-
fected muscles in a dose-dependent fashion directly dem-
onstrated for the first time the physiological function of
PV as a relaxing factor in mammalian fast-twitch skeletal
muscles (361).

Recently, the function of PV in fast-contracting/relax-
ing muscles could also be directly demonstrated in mice
lacking PV due to gene knock out (462). The decrease of
Ca21 concentration seen after a 20-ms stimulation of the
isolated extensor digitorum longus was slower (33%
lower rate constant of Ca21 decay) in knockout mice
compared with wild-type animals. This led to an increase
of the half-relaxation time. In addition, because of a
higher Ca21 concentration in the muscle, the force gen-
erated during a single twitch was 40% higher in PV (2/2)
mice compared with PV (2/1) and PV (1/1) mice. In
contrast to the results obtained by direct gene transfer
(361) the knockout experiment shows that the presence
of PV may also shorten the time needed to obtain peak
twitch tension. Comparing these two experiments, one
has to consider that in the direct gene transfer experiment
a slow muscle (soleus) with ectopic PV expression was
investigated, whereas in the knock-out experiment a fast
muscle (extensor digitorum longus) with completely abol-
ished PV expression was analyzed. These results clearly
demonstrate that PV plays a critical role in fast and phasic
muscle contraction.

FIG. 10. Contraction physiology of slow and fast and genetically
altered muscles. Isometric twich contractions of normal soleus (SOL)
and extensor digitorum longus (EDL) muscle, as well as of transfected
SOL (PV-SOL), were normalized to illustrate the reduced relaxation time
paralleled by an unaltered contraction behavior of a tranfected SOL by
direct transfer of PV cDNA. [From Müntener et al. (361).]
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3. Summary

In conclusion, the majority of experimental data
points to the function of PV as a relaxing factor in the
specialized fast-twitch muscle. The millimolar PV concen-
tration in these muscles seems to be needed mostly for
enabling relaxation after prolonged contraction. Proof of
this hypothesis is now available from direct gene transfer
experiments as well as from analysis of PV knockout
mice.

B. Calcium Uptake by SERCA

1. Structure and function

After Ca21 has travelled through the RyR Ca21 re-
lease channel and activated the TnC muscle contraction
switch system, it has to be pumped back into the SR by
the ATP-dependent Ca21 pumps, which represents the
third member of the crucial Ca21 cycle. The dissociation
constant for Ca21 is ;0.5 mM, and a maximal velocity of
6.4 and 2.4 mmolzg fiber protein21zmin21 in fast and slow
single fibers, respectively (441), has been measured.

SERCA belong to the cation-transport ATPases occurring
most likely in a tetrameric form (for more biochemical
features, see Table 3). It is believed that a single polypep-
tide spans the membrane 10 times and that the NH2

terminal as well as the COOH terminal and the major part
of the protein are located in the cytosol (reviewed in Ref.
225) (see Fig. 11). A variety of analyses have revealed that
SERCA are structured as a globular lobe protruding into
the cytosol and connected with the membrane through a
stalk. It seems that the luminal part of the protein is only
minor. Aspartic acid at position 351 in the large ex-
tramembraneous domain was identified as the catalytic
site undergoing phosphorylation as an intermediate step
of the catalytic cycle.

The cation-binding site is located in a membrane
domain at some distance (;5 nm) from the catalytic site.
Binding of Ca21 occurs in a protein crevice where one
Ca21 is bound deeply and its outward dissociation can be
blocked by a second Ca21 bound less deeply in the same
crevice. It was proposed that the four amphiphilic helices
that contain the six residues involved in Ca21 binding as
identified by site-directed mutagenesis are clustered in

FIG. 11. The Ca21 pump. Structure of the Ca21-ATPase is according to Biglelow and Inesi (29). A: overall
3-dimensional structure of the Ca21-ATPase. A large segment (50% of the total protein) protrudes on the cytosolic side
of the membrane with a narrow stalk, connected to a large head. Ten helical segments cross the membrane. Very little
of the protein extends into the luminal side of the membrane. B: diagram of the distribution of the protein sequence in
the cytosolic, transmembrane, and luminal space. The cytosolic head structure is composed of two major segments. The
larger, residues 319–763, contains the catalytic site Asp-351, which is phosphorylated during the catalytic turnover, and
the ATP binding site. The smaller cytosolic loop, residues 107–261, is likely to participate also in the folded structure.
The six residues essential for Ca21 binding are shown within the membrane in helices 4, 5, 6, and 8. The splice mutation
is marked by the triangles. The diagram is essentially derived from the analyses of MacLennan et al. (318) and Clarke et
al. (69). [Modified from Inesi and collaborators (224, 225).]

1238 BERCHTOLD, BRINKMEIER, AND MÜNTENER Volume 80



such a way that optimal binding of cations is provided and
a channel can be formed (see Fig. 11). Interestingly, one
of the residues involved in Ca21 binding (Glu-309) is in
transmembrane helix 4 which continues into the cytosol
into a domain containing Asp-351. The entire sequence
from position 309 to 351 could adopt a helical configura-
tion. Therefore, displacement or rotation of this helix
caused by phosphorylation could directly affect Ca21

binding. This sequence is highly conserved among Ca21

and other transport ATPases, indicating an important role
in the functional linkage between ATP hydrolysis and
cation pumping.

It has been proposed that the cooperative Ca21 bind-
ing in the ATPase has similar features as found in the
crystal structure of Ca21-binding protein thermolysin. In-
terestingly, in the duplex binding site of thermolysin,
three acidic side chains are shared by both Ca21. On the
basis of the knowledge of the critical residues for Ca21

binding in the ATPase, it is reasonable to speculate that
this enzyme adopts a very similar Ca21 coordination to
that found in thermolysin. A large amount of experimental
data supports the idea that a single conformational
change of the pump from state E1 to E2 may explain how
Ca21 can be pumped through the membrane by the Ca21-
ATPase: E1 and E2 conformational stages would display
high and low cation binding affinities with different vec-
torial orientations, respectively. The equilibrium between
the two states would be controlled by ligand binding and
ATP consumption (for review, see Ref. 224). On the basis
of kinetic studies it was possible to construct energy
diagrams for the catalytic and transport cycle. One mole
of enzyme binds 2 mol Ca21 cooperatively. Active trans-
port is dependent on the functional linkage between the
phosphorylation and the Ca21-binding domain. Interac-
tion of Ca21 with the pump occurs in a stepwise fashion,
indicating that most likely several conformational
changes have to be executed to reorient the enzyme with
respect to the membrane. Conformational change is
needed for the cooperative binding of two Ca21, occlu-
sion of the bound Ca21, and progress through a channel
formed by transmembrane helices.

2. Isoform expression

SERCA are encoded by three different genes which
by alternative splicing are able to encode five different
isoforms. Expression of these proteins is tissue specific
and developmentally regulated (556). SERCA1 is found
exclusively in the skeletal muscle, exhibits a fast-twitch
specific expression, and produces an adult isoform
(SERCA1a) and a neonatal (SERCA1b) isoform. On the
other hand, SERCA2 is expressed in all tissues. SERCA2a
is a muscle-specific protein (heart, slow-twitch skeletal
muscle, and smooth muscle) appearing very early in de-
velopment, whereas SERCA2b is found in nonmuscle tis-

sues and in smooth muscle cells. In the cell line BC3H1 it
was shown that development of the myogenic phenotype
involves the activation of expression of SERCA2 and also
induced an isoform switch from isoform SERCA2b to
SERCA2a. Myoblasts expressing SERCA2a showed a de-
creased sensitivity of Ca21 uptake to the Ca21 pump
inhibitor thapsigargin, suggesting functional differences
that could have a profound effect on Ca21 handling and
muscle plasticity (96a). During regeneration from no-
texin-induced skeletal muscle necrosis of rat soleus mus-
cle, SERCA expression was shown to be regulated in an
isoform-specific fashion (566). In SERCA2a, the COOH-
terminal stretch of SERCA2b of 49 amino acids is re-
placed by 4 amino acids leading to functional differences
(316, 533). Isoform switching requires activation of a spe-
cific splice process at the 39-end of the primary gene
transcript. This seems to be a specifically regulated pro-
cess and not due to generally altered splicing activity or
decrease of polyadenylation efficiency at the upstream
polyadenylation site and is only active in differentiated
muscle cells (528). SERCA3 is expressed at high levels in
platelets, lymphoid cells, and some endothelial cells (33,
555). By in situ hybridization, Wu et al. (554) found that
SERCA3 is expressed most abundantly in large and small
intestine, thymus, and cerebellum and in several other
tissues in lower abundance. High levels of expression
were also detected in various lymphoid and endothelial
cells. Therefore, it was concluded that SERCA3 plays a
critical role in regulating physiological processes in cells
in which Ca21 signaling is important. In addition, SERCA3
has been found to be present transiently together with
SERCA2a in early heart development (7).

Denervation of both slow-twitch and fast-twitch mus-
cle leads to downregulation of either SERCA2a or
SERCA1, respectively. Expression of the alternative iso-
form was not affected by denervation. Physiological pa-
rameters, e.g., contraction time, changed consistently
with reduced ATPase activity (461), although it is note-
worthy that many other proteins that alter contractile
properties are also changed in their expression.

Structurally, the SERCA isoforms are quite similar,
although their tissue specificity indicates functional dif-
ferences. Two papers deal with the functional implica-
tions of ATPase isoforms using the same technology.
Different ATPase pumps were expressed in COS cells,
and their activity was monitored (316, 520). Ca21 depen-
dencies were identical among SERCA1 and SERCA2a, but
SERCA3 has a lower Ca21 affinity and Ca21 dependence.
In addition, an altered pH dependence on Ca21 transport
was found for SERCA3. This difference is due to contri-
butions of the nucleotide binding/hinge sequence as well
as to the COOH-terminal transmembrane domains (see
Fig. 11). The ATP dependence was the same in the three
isoforms. SERCA2b was shown to have a lower turnover
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rate for Ca21 and ATP hydrolysis compared with
SERCA1a and -2a.

3. Regulation

In cardiac and slow-twitch skeletal but not in fast-
twitch skeletal muscle, the Ca21-ATPase is regulated by
an intrinsic protein, phospholamban (472). Phospholam-
ban inhibits the Ca21 pump by reducing its Ca21 affinity,
which is critical for the speed of cardiac muscle relax-
ation. When phospholamban is phosphorylated by protein
kinase A or CaM kinase after b-adrenergic stimulation, it
dissociates from the Ca21 pump and thereby the inhibi-
tion is abolished. A membrane-associated CaM kinase
phosphorylates the Ca21 pump (557) in addition to phos-
pholamban in the heart muscle. Membrane attachment
could occur through a newly discovered anchor protein,
a-KAP, which targets the CaM kinase II holoenzyme to the
SR membrane (22). It was reported that the heart and
slow-twitch muscle Ca21 pump can be directly phosphor-
ylated and may also be regulated by either membrane-
bound CaM kinase or exogenously added CaM kinase II
(183). However, other reports question the significance of
this alternative activation pathway (376, 415). Similar to
the RyR (see section IIIA), also SERCA is inhibited by NO
(227). Both SERCA activity and Ca21 uptake were inhib-
ited by pretreatment of SR preparations with NO at a
concentration of 250 mM for 1 min.

In pathological situations such as ischemia and aci-
dosis, intracellular Ca21 increases and leads to cellular
injuries. It has been shown that the Ca21 affinity of the
SERCA decreases dramatically when the pH is lowered.
At low pH, the ATPase channel remains open regardless
of the cation concentration in the medium. Natural fatty
acids such as arachidonic acids that are increased in
cellular ischemia activate Ca21 efflux through the Ca21-
ATPase (93).

4. Plasma membrane Ca21 pump

In addition to SERCA, plasma membrane Ca21-ATPase
(PMCA) and Na1/Ca21 exchangers are also found in muscle.
They are localized in the t-tubule fraction of slow- and
fast-contracting skeletal muscles in regions (junctional
membranes) where the DHPR are also found. The PMCA
isoform expressed in muscle seems to be PMCA1 (436). The
authors of this work propose the following working hypoth-
esis. The gap between the t tubules and the SR terminal
cisternae is a place where large concentrations of Ca21 (up
to 1 mM) accumulate after the depolarization-activated Ca21

release from the SR (see Fig. 4). This would then inhibit
ryanodine channel activity either directly or through the
action of CaM (see also section IIIA). On the other hand,
Mg21 in the cytoplasm (mM range) efficiently inhibits the
Ca21 release. The optimal activation of PMCA at Ca21 con-
centrations above 1024 M would allow an efficient extrusion

of Ca21 into the lumen of the t tubules, which is connected
with the extracellular space. In addition, the Na1/Ca21 ex-
changer may have a modulatory function on the Ca21-de-
pendent Ca21 release from the SR. The coordinating mole-
cule regulating Ca21-dependent actions was proposed to be
CaM, which has been found in significant amounts tightly
bound to junctional gap proteins of isolated terminal cister-
nae (see also section IIIA).

5. Summary

In summary, SERCA transport Ca21 back into the SR
under high consumption of energy. Although many struc-
ture-function relationships of this protein including func-
tional analysis of the ATP and Ca21-binding sites are
known, and mechanistic models are available, the physi-
ological significance of the differentially expressed iso-
forms and their molecular regulation are unclear at
present.

C. Mutations in SERCA1 Cause Brody’s Disease

Brody’s disease is a very rare inherited human
muscle disorder of SR Ca21 uptake. The patients suffer
from impaired muscle relaxation. Muscle stiffness is
aggravated after 10 –15 s of intensive exercise (44). The
stiffness is not due to electrical overactivity of the
plasma membrane as known from classical myotonias
(296, 435), so the syndrome was called “silent myoto-
nia” in early reports. Microsome preparations from
muscle biopsies from patients with Brody’s disease
showed an extremely low Ca21 transport activity of
,5% of control (242). In another report, the Ca21-
ATPase activity was ;50% of control, both in whole
muscle homogenates prepared from biopsies and mus-
cle cultures (24). Furthermore, histochemical analysis
revealed a marked reduction of Ca21-ATPase in type II
muscle fibers as detected with a monoclonal antibody,
whereas type I fibers showed normal immunoreactivity
(84, 242). In agreement with the lack of immunoreac-
tivity in the histochemical stain, the 100-kDa protein
band corresponding to the SR Ca21-ATPase was also
markedly reduced in immunoblots of muscle biopsy
extracts (84). This suggested a specific defect in the
expression of SERCA1, the Ca21-ATPase isoform of
fast-twitch muscle (Fig. 11). In other cases of Brody’s
disease, SERCA1 and SERCA2 expression were normal,
but a reduction of Ca21-ATPase activity in type II [A
and B(X)] muscle fibers was found, indicating a loss of
function of the SR Ca21 pump (25).

1. Mutations in the SERCA1 gene

A search for mutations in ATP2A1, the gene coding
for SERCA1, revealed genetic heterogeneity in Brody’s
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disease. Zhang et al. (569) could not find any mutation in
the ATP2A1 gene in three patients. Odermatt et al. (377)
detected three different mutations in two families that
were associated with an autosomal recessive inheritance.
One mutation occurred at the splice donor site of intron 3,
and the two other mutations led to premature stop codons
in ATP2A1 (377). The mutation C592T causes a change of
the codon CCA (Arg-198) to TGA (stop) and truncates
SERCA1 at position 197 (Fig. 11). On the basis of the
current model of the structure-function relations of
SERCA-type Ca21 pumps (321), the resulting protein
lacks the nucleotide and Ca21-binding domains and is
therefore ineffective. The same result, lack of nucleotide
and Ca21-binding domains, is predicted for the splice
mutation. The third discovered nonsense mutation,
C2025A, disrupts the Ca21-binding domain of the trun-
cated protein, leaving the nucleotide binding site func-
tional (321, 377). Thus all three mutations probably result
in inactive SERCA1 proteins in vivo (Fig. 11). From these
data the surprising consequence arises that the muscles of
the affected individuals completely lack functional
SERCA1 and that the type II muscle fibers work fairly well
without the fast-twitch isoform of the SR Ca21 pump. The
nature of possible compensatory mechanisms remains to
be clarified.

2. Secondary effects on muscle fibers and muscle

Histochemical analyses of biceps brachii and quad-
riceps muscle biopsies showed atrophy of type II [A
and B(X)] muscle fibers. A considerable fraction of type
II fibers from patients with Brody’s disease was ,50
mm in diameter. Such small diameters were not ob-
served in any of the control fibers, although the control
group consisted mainly of patients with peripheral neu-
ropathies, disorders characterized by chronic partial
denervation (242). In about one-half of the fibers, cen-
tral nuclei were observed, but hypercontracted or ne-
crotic fibers, ongoing regeneration or replacement of
muscle tissue by connective tissue (fibrosis) was not
reported (84, 242). Thus, despite of the lack of SERCA1,
the fast-twitch muscle fibers of patients with Brody’s
disease are protected against damage by high cytoplas-
mic Ca21. The fact that muscle stiffness, provoked by
exercise, decreases after a period of rest indicates that
Ca21 is obviously reduced to a base level by mecha-
nisms other than Ca21 pumping by SERCA1.

Considering Ca21 in its cycle of release and uptake, a
slowing down of Ca21 uptake into the SR can be tolerated
by muscle fibers, if a normal Ca21 resting level is finally
reached. Much worse conditions seem to be a continuous
release of Ca21 via defective RyR or a continuous exces-
sive Ca21 influx via a leaky plasma membrane.

D. Calcium Storage in the SR by Calsequestrin

and Calreticulin

1. Structure and function

Calsequestrin is the major Ca21 storage protein in the
SR of all striated muscles (for reviews, see Refs. 187, 560;
see Fig. 4 for its intracellular location). It is a glycoprotein
of the high mannose type located within the terminal
cisternae of the SR, close to the luminal site of the junc-
tional membrane. Its role is most probably to complete
the Ca21 cycle in facilitating the transport of Ca21 from
the site of uptake by the Ca21 pump to the location of
Ca21 release by the RyR. In addition, evidence is accumu-
lating that calsequestrin directly modulates the release of
Ca21 (see also sect. IIIA). In addition to binding Ca21 with
low affinity (dissociation constant of 400–600 mM at 150
mM KCl and of 100 mM at 20 mM KCl) and high capacity
(40–50 mol/mol), calsequestrin can be expected to neu-
tralize the potentially negative effect of Ca21 on SR func-
tion (e.g., inhibition of the Ca21 pump) (354). Calseques-
trin has an isoelectric point of pH 3.75 with more than 30%
of acidic residues and binds Ca21 electrostatically with its
acidic COOH terminus.

The two forms (fast and cardiac) of calsequestrin
mainly differ in their COOH-terminal part. The cardiac
form has an extended COOH terminus (residues 361–
391) with 71% acidic residues and contains a second
glycosylation site and several consensus phosphoryla-
tion sites for casein kinase II that have been found to be
phosphorylated in vivo (59). The transcript for the fast
form is expressed as the sole form in the fast-twitch
muscle, as the major form in slow-twitch muscle, and is
absent in the heart (12, 31, 81). In contrast, the cardiac
form is the only transcript in cardiac muscle, a minor
transcript in slow-twitch muscle (25% of total calse-
questrin), and not expressed in fast-twitch muscles.
Calsequestrin has also been found in various smooth
muscle tissues and nonmuscle cells such as neurons
and even in plant cells (406).

There is a two- to fourfold higher membrane RyR
density in fast-twitch versus slow-twitch skeletal muscle,
but physiological characteristics of the RyR channel are
not significantly different and the same isoform is ex-
pressed. Because distribution of cardiac and fast-twitch
muscle calsequestrin differs depending on the fiber type,
it is possible that calsequestrin modulates Ca21 release
channel physiology to some degree in a fiber-type-specific
fashion (81).

2. Regulation of expression

Cardiac calsequestrin is expressed at all stages
during heart development. In skeletal muscle, the fast
and heart isoforms are coexpressed during neonatal
development as well as in cultured myoblasts. In later
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stages, the rate of synthesis of the cardiac form de-
creases (388). Turning off the cardiac calsequestrin
synthesis takes place between 2 and 4 wk postnatally
(437). Immunocytochemical investigations of chicken
embryos at the stage of early myofibrillogenesis (at day
E5.5) revealed that the DHPR, the RyR, and the internal
protein calsequestrin directly associated with the junc-
tional surface of the SR are already in place at the
periphery of the muscle fiber (510). During late embry-
onic development (E15 to E16), complex t-tubule net-
work and internal SR transverse tubule junctions are
formed, and all the components of the Ca21 handling
system can be detected more internally. These results
indicate that complexity of the Ca21 handling system
develops in parallel to the formation of the t-tubule/SR
system. The MRF myogenin seems to control the syn-
thesis of calsequestrin in the developing muscle (12).
Additionally, innervation seems to regulate calseques-
trin expression. Denervation has been shown to in-
crease its concentration as well as RyR levels but has
no significant effect on nonjunctional Ca21-binding
proteins such as the Ca21 pump. This suggests that
the neuronal input may regulate Ca21 handling by al-
tering protein levels of the junctional region of the SR
(297).

3. Mode of action

Calsequestrin undergoes structural changes (in-
crease of a-helical content, loss of hydrophobicity) in-
duced by Ca21 binding (385). Secondary structure predic-
tions suggest that the NH2-terminal part contains mostly
a-helix and b-sheet, whereas the COOH-terminal part con-
tains turn and coil structures (464). Hydropathy plot anal-
ysis indicates a low probability of membrane-spanning
domains. It has been shown that calsequestrin interacts
indirectly through bridging proteins with the RyR (see
also sect. IIIA). A protein of 26 kDa named junctin, that is
highly charged and basic and has binding activity for
calsequestrin, was characterized (238). This protein is
found in abundance in junctional membranes of cardiac
and skeletal muscle SR and contains a single transmem-
brane domain. It shows similarity to triadin and aspartyl-
b-hydrolase, which are both endoplasmic reticulum pro-
teins with one transmembrane domain. It was suggested
that junctin might be important for the formation and
function of the Ca21 release complex. In addition, the
luminal domain of triadin was found to bind calsequestrin
in a Ca21-dependent manner and may inhibit reassocia-
tion of calsequestrin with the junctional face membrane
(172). Both triadin and junctin may be calsequestrin-an-
choring proteins and thereby couple calsequestrin and
RyR channel activity (Fig. 4).

It is unknown so far how calsequestrin contributes to
the mechanism of Ca21 release on a molecular level.

However, several observations indicate that calsequestrin
is involved in the Ca21 release process. It was demon-
strated, for example, that calsequestrin is essential for the
myotoxin a-induced Ca21 release from skeletal muscle
SR (381). Another study shows that myotoxic drugs affect
the SR protein calsequestrin and the related mitochon-
drial Ca21 storage protein calmitine by increasing proteo-
lytic degradation of these proteins (313). In addition, in
direct experiments where the open probability of the RyR
was measured, it was shown that calsequestrin in the
presence of millimolar Ca21 increases the open probabil-
ity of the RyR (246).

4. Calreticulin

Calreticulin is regarded as the nonmuscle calseques-
trin homolog present at highest concentration in the en-
doplasmic reticulum. In addition to Ca21 storage, this
protein has been implicated in many other cellular activ-
ities including regulation of nuclear processes such as,
e.g., gene transcription (reviewed in Ref. 368). During
muscle differentiation, it seems that calreticulin, which is
present before myotube fusion and then is replaced by
calsequestrin, appears slightly before the sarcomeric my-
osin gene expression starts (269). In the L6 myogenic
differentiation model cell line, calsequestrin was found to
be expressed when differentiation is induced, whereas
calreticulin levels were constant throughout differentia-
tion except from a minor decline at a very late stage (513).
This study also shows that the two proteins are coex-
pressed and colocalized to the SR. In addition, calreticulin
but not calsequestrin was also found in the perinuclear
region. Other studies where endoplasmic marker proteins
were used to follow muscle differentiation confirm that
the SR is basically a specialized form of the endoplasmic
reticulum adapted to muscle function and that endoplas-
mic marker proteins coexist with the muscle-specific pro-
teins that are responsible for efficient Ca21 handling
(536).

5. Summary

To summarize, the low-affinity and high-capacity
Ca21-binding protein calsequestrin is used to store Ca21

in the SR. By buffering Ca21 in the SR, the concentration
of the free ionic calcium is kept low (an important role
because Ca21 is toxic at high concentrations) and the RyR
activity as well as the Ca21-ATPase activity are affected
by the Ca21 concentration in the SR. Calsequestrin is
produced in a fast and a cardiac isoform and is considered
the muscle cell homolog of calreticulin, which seems to
control other cellular activities in addition to its Ca21

storage function in the ER and SR.
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E. Potential Role of Other Calcium-Binding

Proteins Not Directly Involved in the Calcium

Cycle: Calpain, Sorcin, Annexins, S100 Proteins,

Myosin Light Chains, a-Actinin, and Calcineurin

1. Calpains

A) STRUCTURE AND MODE OF ACTIVATION. Calpains are cys-
teine proteases that are Ca21 dependent (for review arti-
cles, see Refs. 282, 507, 508). Because it seems that these
proteases have a profound effect on crucial components
of the Ca21 cycle, including the RyR, and the troponin
complex, they are discussed in some detail. Calpain con-
sists of a large and a small subunit of 80 and 30 kDa, both
of which bind Ca21 in CaM-like structures with 4 EF-hand
domains (Fig. 12). Experimental data suggest that activa-
tion of calpains by Ca21 involves dissociation of the two
subunits (564). At present, however, it is unclear how the
activity of calpain is regulated in the cell. It seems that
tight control is absolutely necessary to prevent unwanted
damage by proteolysis. One important aspect in regula-
tion is that activated calpains are very unstable. Devia-
tions from normal calpain levels may be lethal as indi-
cated by the fact that manipulation by overexpression or
inhibition is at present difficult if not impossible. It is still
mysterious how the moderate Ca21 dependence of cal-
pain found in vitro is modified in the cell to adapt to

physiological conditions. Suzuki et al. (508) propose that
the first step in activation is a Ca21-dependent transloca-
tion to the cell membrane in the heterodimeric form,
since the small subunit is responsible for membrane in-
teraction by its hydrophobic NH2 terminus (Fig. 12). Cal-
pain can then be activated by phospholipids. This leads to
autolysis (with a large subunit of 76 kDa and a small
subunit of 18 kDa being the active forms) at the cell
membrane, since phospholipids decrease the Ca21 re-
quirement of the enzyme. Alternatively, activation can
also be achieved by a Ca21-dependent dissociation of the
small from the large subunit. Possibly cellular factors not
yet identified are involved in calpain activation. The dis-
sociated 80-kDa subunit is enzymatically fully active and
exhibits a Ca21 sensitivity identical to the activated form
of calpain that is twofold higher than the one of nondis-
sociated calpain. It seems that the 30-kDa subunit has a
stabilizing rather than an activating effect on the 80-kDa
subunit, which contains the catalytic activity (565). Al-
though seven different large subunits (including an alter-
natively spliced form) have been found so far in verte-
brates, only one type of small subunit interacts in a
noncovalent manner with these large subunits. The two
ubiquitous forms m-calpain and m-calpain differ in their
Ca21 requirements, which are in the range of 1–100 mM
and 0.1–1 mM, respectively.

FIG. 12. Structure and activation of calpain at the biological membrane. According to a model proposed by Suzuki
et al. (508) activation occurs through membrane interaction, and activation by phospholipids followed by autolysis.
Activation can also occur through a dissociation of the small from the large subunit. The dissociated 80 K subunit is
enzymatically active (508). For further details of the individual steps, see Reference 508. Note that Ca21 is required for
all steps. PIP2, phosphatidylinositol 4,5-bisphosphate. (Figure kindly provided by Dr. Suzuki, Tokyo, Japan.)

July 2000 CALCIUM ION IN SKELETAL MUSCLE 1243



B) REGULATION BY INHIBITION. The activity of calpains is
believed to be regulated by the specific inhibitor calpasta-
tin, a protein with a molecular mass of 110 kDa. Ultra-
structural localization of calpastatin as well as biochem-
ical analysis have revealed that a good correlation in
calpain and calpastatin intracellular distribution exists
(375). Enzyme and inhibitor are found in the sarcolemma
with the adjacent cytoplasm, the myofibrils, the mito-
chondria, and the nuclei but not in lysosomes and the
intermyofibrillar cytoplasm. No clear muscle fiber type
specificity was found. m-Calpain was found at higher
concentration in slow-twitch muscle (masseter, com-
posed exclusively of oxidative fibers) and m-calpain at
higher concentration in a muscle containing a mixture of
fiber types (with 65% glycolytic fibers), whereas calpasta-
tin was found at similar levels in the two types of inves-
tigated porcine muscles (254).

The m- and m-calpains are localized within the Z disks
of skeletal muscle fibers (85). Immunofluorescence
showed that both calpains and calpastatin are approxi-
mately two times more abundant at the Z disk of myofi-
brils than in the I-band region. Denervation, fasting, and
refeeding increase the concentration of the enzyme and
the inhibitor but do not change their distribution (277).
Calpastatin affects conversion from inactive to active cal-
pain at the membrane, translocation of active and inactive
calpain, and the activity of calpain itself. However, the
exact physiological role of calpain inhibition by calpasta-
tin is not understood so far.

Calpain does not have a defined amino acid substrate
requirement. It seems that protein degradation is carried
out to a limited degree and on a regulatory level (only at
a limited range of targets) in contrast to digestive pro-
teases with broad target specificities. It has been shown
that calpain cleaves protein substrates in between rather
than within functional domains leading to alteration of
protein functions. Therefore, it has been concluded that
calpains play an important regulatory role in cellular func-
tions.

Some years ago, two novel tissue-specific calpain
species (n-calpains) have been discovered. One is skeletal
muscle specific and the other was found in the smooth
muscle (stomach) (484). The skeletal muscle specific iso-
form (p94) has a unique feature in that its half-life is
extremely short (25 min). Its message is found at ;10-fold
higher levels compared with the m- and m-forms. By ele-
gant mutagenesis work (reviewed in Ref. 484), it was
shown that a short sequence adjacent (NH2 terminal) to
the CaM-like domain of p94 (named IS2) is responsible for
the short half-life. This form is absent in all other calpain
forms. P94 exists in the cytosol, as the m- and m-forms,
but is more concentrated in the nucleus. It was suggested
that the function of p94 is to regulate MRF such as MyoD
and myogenin and thereby regulating growth and differ-
entiation of muscle cells. The nuclear localization signal

lies in the region (IS2), which is also responsible for fast
degradation. Interestingly, although the calpain small sub-
unit is known to be important for the regulation of cal-
pain, it was not found to be associated with p94 as ana-
lyzed by the two hybrid systems. So far, all tissue-specific
forms (unlike the ubiquitous forms) do not seem to dimer-
ize with the small subunit (reviewed in Suzuki et al., Ref.
508). However, connectin (titin), a giant muscle protein
which connects M and Z lines of muscle sarcomere, was
found to interact with p94 in the IS2 region, indicating
that p94 might be regulated by connectin (484).

Genetic and physical studies of LGMD2A, an autoso-
mal recessive form of limb girdle muscular dystrophy,
lead to the discovery that n-calpain p94 is the affected
gene in this disease (419) (see also sect. V). The mutations
destroy the proteolytic activity of p94, and the lack of
protease activity rather than an increase is the primary
cause of the disease. Calpain might also play a significant
role in myonephropathic metabolic syndrome (MNMS), a
serious muscle reperfusion injury associated with acute
renal failure, since administration of a calpain antagonist
prevented MNMS (523). Dystrophin-deficient mouse mus-
cles (mdx) contain higher calpain concentrations com-
pared with controls (487). m-Calpain had an increased
activity in mdx muscle due to autoproteolysis, which
returns to control levels during regeneration. Muscle ex-
ercise results in an increase of nonlysosomal Ca21 pro-
tease activity, possibly promoting exercise-induced mus-
cle damage or fatigue (23).

C) REGULATION OF EXPRESSION AND INVOLVEMENT IN PKC SIG-
NALING. Sequence similarities in the 59-flanking regions of
the genes for the m-calpain large subunit and the small
subunit indicate a similar regulation. It has been shown
on the one hand that phorbol esters stimulate the expres-
sion of m-calpain, suggesting that calpain could be regu-
lated by PKC. In addition, 12-O-tetradecanoylphorbol-13-
acetate (TPA) causes translocation of PKC as well as
m-calpain. Downregulation of the PKC in the membrane
fraction on the other hand has been shown to be blocked
by calpastatin (205). It has been shown that m-calpain and
p94 rather than m-calpain, which seems to have rather
housekeeping functions, downregulate the level of PKC
and transcription factors (200, 485).

The second messenger NO has been proposed to play
a role in relaxation of fast-twitch muscle fibers (266). NO
inactivates m-calpain at neutral pH (348). In contrast,
m-calpain activity was affected by NO only if the pH was
shifted to acidic values, a condition which does not allow
inhibition of m-calpain by NO. Therefore, it might be
speculated that NO may selectively affect calpain iso-
forms depending on the hydrogen ion concentration in
contracting muscles under physiological and pathological
conditions. Interestingly, the NO synthase present in high-
est abundance in the muscle is the Ca21/CaM-dependent
type (42). Therefore, calpain activity might be regulated
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by Ca21 through CaM/NO synthase (for CaM targets, see
sect. IIIA and Table 2).

D) EFFECTS ON MUSCLE PROTEINS. Several studies have
shown that calpains initiate turnover of myofibrillar
proteins by specifically cleaving them and releasing
large polypeptide fragments from the myofibrils (re-
viewed in Ref. 161). This process seems to be required
for muscle growth. In addition, calpain-mediated cleav-
age of cytoskeletal proteins such as filamin might be
important for myogenic differentiation (279). m-Cal-
pain concentration and activity increase during early
myogenic differentiation, whereas the level of calpasta-
tin remains similar during this period and m-calpain was
not detected, indicating that m-calpain is responsible
for Ca21-dependent proteolytic activity during muscle
cell differentiation in culture (75). A regulatory activity
of calpain on DHPR function has also been proposed.
m-Calpain specifically cleaves a 37-kDa fragment con-
taining the major cAMP-dependent phosphorylation
site from the COOH terminus of the a1-subunit of the
L-type Ca21 channel and therefore may regulate the
cAMP dependency of DHPR (86).

m-Calpain cleaves the RyR either when purified or in
the triad membrane, resulting in peptides of 160 and 410
kDa which are then further cleaved by the same enzyme
finally leading to polypeptides of 70, 140, and 200 kDa.
RyR cleavage is inhibited by CaM. Because the RyR con-
tains PEDST (proline, glutamic acid, aspartic acid, serine,
threonine-rich) protease cleavage sequences, it was sug-
gested that RyR is a PEDST-type calpain substrate. These
substrates are usually cleaved near CaM binding sites, and
therefore, CaM protection of cleavage can be expected
(40). Some years ago, on the basis of measurements of
Ca21 dependence and specific inhibitors, it was suggested
that m-calpain associates with the junctional SR and
cleaves the RyR into two fragments (375 and 150 kDa) at
a PEDST site (471). Similarly, as found in other studies,
this cleavage stimulates Ca21 efflux but had no effect on
other features of the RyR.

Calpains also seem to specifically affect the troponin
protein complex (98). m-Calpain was at least 10 times
more effective than m-calpain in degrading TnI and TnT in
vitro and in situ, whereas TnC was resistant to both
forms. PKA phosphorylation reduced the sensitivity of
TnI toward m-calpain degradation. On the other hand,
PKC phosphorylation of TnI increased the proteolytic
degradation of TnI.

2. Sorcin

Sorcin has been identified as a calpain-like protein
of 22 kDa in cells selected for drug resistance (re-
viewed in Refs. 345, 530). It has been reported to be
abundant in skeletal, heart, and smooth muscle but
occurs also in nonmuscle cells. In the presence of Ca21

during protein isolation, sorcin was found in the insol-
uble fraction, whereas in the absence of Ca21, sorcin
was soluble, indicating Ca21-dependent translocation
(346). This protein has 2 EF-hands (at least one with
high Ca21 affinity) and two atypical Ca21-binding do-
mains as well as phosphorylation sites for PKC and
CaM kinase (530). Sorcin has been found to be associ-
ated with the RyR, suggesting a role in intracellular
Ca21 release (347). A function of sorcin in Ca21 flux
through the SR is also suggested by the observation
that transfection of sorcin into fibroblasts elicits a
musclelike, caffeine-stimulated release of Ca21 from
intracellular stores (345).

3. Annexins

Annexins are a diverse family of Ca21-dependent
phospholipid binding proteins with a wide distribution
and are most likely involved in many different cellular
activities, e.g., cellular vesicle traffic and exocytosis (for
reviews, see Refs. 54, 55, 76). The common feature of
annexins is a conserved domain that is repeated four or
eight times and that is responsible for phospholipid-de-
pendent Ca21 binding that varies over the low and high
micromolar range. A potential role in muscle physiology
has been ascribed to annexins VI and VII (113, 114, 491),
which both have voltage-dependent Ca21 channel activity
(92). Annexin VI has been shown to be associated with
intracellular organelles, especially those involved in se-
questering or release of Ca21 (105, 184). This protein was
shown to modify, in a Ca21-dependent manner, the be-
havior of the SR Ca21 release channel in an artificial
bilayer by increasing both open probability and mean
open time (97). By an overlay technique it was demon-
strated that annexin VI interacts with PKC-b in the skel-
etal muscle, and it was concluded that annexin VI plays a
role in regulating the activity of the Ca21-dependent
PKC-b (457). Annexin VII also known as synexin has been
found at the plasma membrane and the t-tubule system in
skeletal muscle (467), and it was suggested that annexin
VII may be involved in EC coupling in the skeletal muscle.
Patients with muscular dystrophy and the mdx mouse
showed redistribution of annexin VII into the cytoplasm
most likely due to disintegration of the membrane-linked
cytoskeleton. In addition, because of membrane lesions,
this protein can also be found in the extracellular space
(466).

4. S100 proteins

S100 proteins are small Ca21-binding proteins con-
taining two EF-hand Ca21 domains. So far more than a
dozen different genes for this protein family have been
found, all exhibiting unique spatial and temporal ex-
pression patterns. These proteins have been implied to
play a role in many different biological activities such
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as cell cycle progression, cell differentiation, tumori-
genesis, cytoskeletal reorganization, metabolism, neu-
rotransmission, and many other functions (reviewed in
Refs. 100, 448, 449, 572). S100A1 is especially interest-
ing with respect to muscle physiology, since it has been
shown to be present at high concentration in slow-
twitch muscle fibers (574). It colocalizes with the SR
(575) in skeletal muscle, whereas in the heart, localiza-
tion was found in the sarcolemma, the SR, the myofi-
brils, and the nuclei (101, 177). S100A1 was localized in
the mouse soleus muscle at polysomes, the SR, the
plasma membrane and in pellicle around lipid droplets,
the outer membrane of mitochondria, and thin and
thick filaments by electron microscopy (176, 571). Re-
cently, it was shown that S100A1 activates [3H]ryanod-
ine binding activity to the RyR at nanomolar Ca21

concentrations and at physiological S100 protein levels
(521). In addition, it was found that S100A1 activates
the open probability of this Ca21 channel severalfold,
and direct interaction between S100 and the RyR was
demonstrated by the optical sensor BIAcore. Interest-
ingly, S100A1 was found to bind and specifically acti-
vate the protein kinase twitchin in a Ca21-dependent
manner in vitro (186). Twitchin is a giant myosin-asso-
ciated protein. Because protein kinase activity is en-
hanced by S100A1 up to 1,000-fold, it was suggested
that this Ca21-binding protein may be the physiological
activator of twitchin. In addition, glycogen phosphory-
lase exhibits S100A1 specific regulation (reviewed in
Ref. 573).

5. Myosin light chains

In sarcomeric myosin (myosin II), four light-chain
molecules are bound noncovalently to two heavy chains.
Two subfamilies of myosin light chains with molecular
mass of 16–22 kDa exist: essential light chains (ELC)
(reviewed in Ref. 450) and regulatory light chains (RLC)
(reviewed in Ref. 451). There exists considerable tissue
and muscle fiber type specificity of isoform expression.
ELC and RLC contain four putative EF-hand domains and
belong to the CaM superfamily. All four EF hands of the
ELC have lost their Ca21-binding activity during evolution
and therefore are not relevant for further discussion in the
context of Ca21 regulation. RLC have maintained one
active Ca21 domain. In vertebrates, CaM-dependent re-
versible phosphorylation of RLC regulates smooth muscle
and nonmuscle cell contraction (2, 73), whereas RLC have
no role in directly triggering striated muscle contraction
but rather act in modulation of contractile activity. The
Ca21/Mg21 site of RLC has an apparent affinity for Ca21 in
the range of dissociation constant 1025 M in the presence
of millimolar Mg21 concentration (543). Therefore, this
site is not involved in muscle contraction and thought to
be Mg21 filled during contraction. It may be occupied by

Ca21 during prolonged Ca21 elevation, for exapmle, dur-
ing tetanus.

6. a-Actinin

a-Actinin is an EF-hand protein belonging to the
F-actin binding proteins such as spectrin and dystrophin.
It is associated at the actin filament system of the muscle
but is also present in nonmuscle cells as a component of
the cytoskeleton (373). a-Actinin is present in the Z disks
and thought to connect the ends of the parallel and anti-
parallel arrays of actin filaments (344). Binding of Ca21 to
EF-hands regulates the activity of nonmuscle a-actinin,
whereas the EF-hands in the muscle a-actinin are incom-
plete and a-actinin cross-linking is Ca21 independent (re-
viewed in Ref. 373).

7. Calcineurin

Calcineurin is a Ca21/CaM-dependent phosphatase
consisting of a catalytic subunit and a regulatory subunit
that is a CaM-like protein (171, 255). Because of its nar-
row substrate specificity, calcineurin is a candidate for an
important signal transmission molecule. Calcineurin
binds to and is inactivated by the immunosuppressant
drugs cyclosporin and FK506 (308), which themselves
bind to cyclophillin and FK506 binding protein, respec-
tively. It was shown that RyR and IP3 receptor bind to the
FK506 binding protein and that the immunosuppressant
drug FK506 disrupts this association (Fig. 4). On the other
hand, FK506 stimulates the binding of FK506 binding
protein to calcineurin. FK506 binding to the Ca21 release
channel proteins alters their Ca21 transport properties
(61, 518). In the absence of the FK506 binding proteins,
the Ca21 channels become “leaky” and therefore net ac-
cumulation of Ca21 into RyR- or IP3R-gated stores is
diminished. By anchoring calcineurin to the IP3 Ca21

channel through the FK506 binding protein, the phosphor-
ylation state of the IP3 channel is altered and thereby
Ca21 flux activity is modulated (60) (for a discussion on
RyR regulation, see also sect. IIIA).

Calcineurin is known to be directly involved in cyto-
kine gene expression in B and T cells in a Ca21/CaM-
dependent manner (413). Dephosphorylation of nuclear
factor activated T cells (NFAT) by calcineurin enables the
transcription factor to translocate from the cytoplasm to
the nucleus where it activates a variety of genes.

Recently, it has been proposed that calcineurin could
play a similar role in the muscle as a mediator of the
Ca21-dependent signal transmission process determining
fiber type gene expression (66). It is known that tonic
motor nerve activity is needed for slow muscle specific
gene expression, whereas brief bursts of neural activity
with long periods of quiescence determines the fast mus-
cle specific phenotype. Slow muscle fibers are character-
ized by a relatively high Ca21 concentration, whereas
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Ca21 levels in fast muscles are low. In T cells, it could be
shown that activation of the calcineurin-dependent signal-
ing process needs sustained Ca21 elevation as found in
the slow muscle, and short transient Ca21 elevations as
found in fast muscles are not sufficient to activate this
system (99, 519).

Skeletal muscle hypertrophy and a switch to gly-
colytic metabolism of differentiated myotubes induced
by growth factors such as insulin-like growth factor or
insulin is mediated by calcineurin in a Ca21/CaM-de-
pendent fashion (468). During muscle hypertrophy, cal-
cineurin induces the expression of the transcription
factor GATA-2, which associates with calcineurin and a
specific isoform of the transcription factor NFATc1
(366). Cyclosporin prevents muscle hypertrophy and
muscle fiber type conversion associated with functional
overload in vivo, indicating that postsurgical muscle
wasting and weakness is due to the administration of
the immunosuppressant cyclosporin (111). Calcineurin
activity has been shown to selectively upregulate slow
fiber specific gene promoters, and inhibition of cal-
cineurin leads to a slow-to-fast fiber transformation
(66). The transcriptional activation of slow type spe-
cific genes is mediated by the NFAT and MEF2 tran-
scription factors. On the basis of these findings, it was
speculated that calcineurin could become clinically rel-

evant since modification of its activity could be used to
transform fast into slow muscle, the latter being less
affected in dystrophy. This is a good example of how
the Ca21 signaling system may directly specify fiber
type-specific gene expression and thereby determine
the phenotype of a muscle fiber.

8. Summary

In summary, many proteins found in muscle cells
have the ability to bind Ca21 with high or moderate
affinity and therefore affect and/or modify the primary
Ca21 cycle, finally leading to altered muscle performance.
Most of the proteins discussed (sorcin, annexins, S100
proteins) have no clear functional role in muscle physiol-
ogy, and therefore, in most cases a list of known features
is presented. However, much is known about the ubiqui-
tous Ca21 receptor CaM (discussed in sect. IIIA in the
context of RyR regulation) and about the Ca21-dependent
protease calpain. The latter protein selectively degrades
several key proteins in the calcium cycle and is involved
in several muscle diseases. Most remarkable, mutations in
a gene for a newly discovered calpain isoform (p94) are
responsible for one form of limb girdle muscular dystro-
phy (LGMD2A).

FIG. 13. Presumed pathomechanism of dystrophinopathies and related diseases. Schematic drawing of a part of a
muscle fiber (longitudinal section) with sarcolemma, sarcoplasmic reticulum, nucleus, and mitochondrion. In normal
muscle, dystrophin connects the cytoskeleton (F-actin) via a complex of glycoproteins, dystroglycans (DG), sarcogly-
cans (SG), and sarcospan (white rectangle) to laminin in the extracellular matrix. Additional proteins, syntrophins and
dystrobrevin, are bound to the COOH terminus of dystrophin. Deficiency of dystrophin in Duchenne muscular dystrophy
(DMD, 1) and the X-linked muscular dystrophy of the mouse (mdx, 1) leads to a loss of connection of the muscle fibers
and the extracellular matrix. The same defect, loss of connection between cytoskeleton and extracellular matrix, occurs
by deficiency of sarcoglycans (a, b, g, d) that cause several forms of limb girdle muscular dystrophy (LGMD, 2).
Mutations in the laminin a2-gene can cause congenital muscular dystrophy (CMD, 3). At least in dystrophinopathies the
sarcolemma is characterized by leakiness, allowing the exchange of macromolecules between the extracellular fluid and
the cytoplasm. The lesions also allow an excess of Ca21 influx. The overactivity of plasma membrane Ca21 channels may
aggravate Ca21 influx. A compensatory Ca21 uptake into the SR and the mitochondria follows until, finally, toxic Ca21

overload causes a variety of pathological changes including necrosis and apoptosis (see Fig. 14).
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V. ALTERATION IN CALCIUM HANDLING

IN DYSTROPHINOPATHIES AND

RELATED DISEASES

Muscular dystrophies are a group of hereditary dis-
eases characterized by muscle fiber necrosis and progres-
sive muscle wasting and weakness. The genetic defects
underlying these muscle diseases are not directly related
to proteins of the calcium cycle (Table 2), but excessive
calcium influx into muscle fibers or disturbed intracellu-
lar calcium signaling are presumably involved in the
pathomechanisms of muscle dystrophies. As shown in
earlier sections of this review, Ca21 levels in the cytosol
and the SR play important roles in the regulation of Ca21

cycle molecules. Therefore, Ca21 handling in muscle dys-
trophy is discussed in some detail. The question of
whether pathological alterations of Ca21 handling are an
early or a late step in the disease mechanism has to be
clarified for the different muscle dystrophies. In addition
to the fact of a better understanding of skeletal muscle
calcium control, these results can also have important
consequences for therapeutic approaches.

Many of the dystrophies, but not all, are diseases of
the dystrophin-glycoprotein complex and are today clas-
sified as dystrophinopathies. The human Duchenne mus-
cular dystrophy (DMD) is the best known since it is one of
the most frequent genetic human diseases (;1:3,500 male
births; Ref. 202). The primary defect in DMD is the lack of
dystrophin, a 427-kDa subsarcolemmal cytoskeletal pro-
tein. In normal muscle it links the cytoskeleton (actin) via
a complex of membrane proteins (dystrophin-associated
glycoproteins, e.g., dystroglycans and sarcoglycans) to
laminin in the extracellular matrix (Fig. 13) (62). The lack
of dystrophin is due to mutations in the dystrophin gene
which is extraordinarily large (.2,300 kB) and localized
on the X chromosome at Xp21 (Table 2). More than 1,500
deletion breakpoints have been detected in the human
dystrophin gene only in European populations (83). Sev-
eral animal models of muscular dystrophy exist including
the X-linked dystrophy of the mouse, mdx (49, 202). To-
day it seems clear that all DMD patients lack dystrophin
independent of the underlying mutation, and it is believed
that the lack of dystrophin causes the phenotype of dys-
trophy.

1. Clinical course of DMD

In DMD, the first clinical symptoms are usually ob-
served before the age of three in affected boys who show
a delay in reaching developmental milestones such as
running and climbing. Before age 6 their gait becomes
unsafe and waddling, and in the same period of time
hypertrophy and pseudohypertrophy of calf, gluteal,
quadriceps, and other muscles develops. Between 6 and
11 years of age muscle strength declines steadily, leaving

boys wheelchair bound from about age 11. Death occurs
before age 30 by respiratory failure (as a consequence of
weakness of respiratory muscles) often in combination
with respiratory infection or by cardiac failure (117). The
histological analysis of DMD muscle characteristically
reveals eosinophilic hypercontracted muscle fibers, ne-
crotic fibers, ongoing muscle regeneration, and the pro-
liferation of fibroblasts within muscle tissue. The replace-
ment of muscle tissue by connective tissue (fibrosis) is
the major cause of muscle weakness. Degeneration and
regeneration of muscle fibers does also occur in mdx
muscle, but fibrosis is seen to a much smaller extent and
has a late onset (202).

2. Early steps in the pathomechanism

Although the primary defect in DMD has been known
for more than 10 years (201), neither the function of
dystrophin nor the pathogenic mechanism of muscle dys-
trophy is sufficiently clarified. Two different, not neces-
sarily exclusive, hypotheses have been put forward to
explain the pathological changes caused by dystrophin
deficiency, i.e., the “calcium hypothesis” and the “leaky
membrane hypothesis” (155, 202, 330, 500).

3. The calcium hypothesis

This hypothesis is based on early reports of Ca21

accumulation in DMD muscle fibers. An alizarin red stain,
a histochemical stain for Ca21 deposits, showed in-
creased numbers of positive fibers in DMD muscle com-
pared with controls. Necrotic as well as nonnecrotic fi-
bers were alizarin positive (34). The total Ca21 content of
DMD muscle biopsies was found to be elevated compared
with controls by a factor of 2.4 (228). A similar Ca21

increase was found in adult mdx muscle at all tested
stages (157). The mechanism of Ca21 entry and its con-
nection to dystrophin deficiency are still controversially
discussed. An increased activity of plasma membrane
Ca21 channels in myotubes of DMD and mdx origin has
been reported (138, 207). Elevated resting levels of intra-
cellular free Ca21, detected with fluorescent indicators,
were observed in DMD myotubes (355) and mdx muscle
fibers (525). These data suggested a direct or indirect
involvement of dystrophin in the muscular Ca21 ho-
meostasis and a close correlation between the lack of
dystrophin and increased Ca21 influx. In later studies,
these findings could not be confirmed. Several groups
showed unchanged free Ca21 resting levels and Ca21

transients in cultured myotubes of DMD and mdx origin
(407, 428) and in mdx muscle fibers (146, 185, 407). Inter-
estingly, hyposmotic stress, a means to mimic mechanical
stress, induced Ca21 transients in myotubes (407), and
they were more pronounced in mdx myotubes (298). Con-
tracting but not resting DMD myotubes, cocultured with
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spinal cord tissue, were more sensitive to hyposmotic
shock than the controls (223).

Recently, the question of increased membrane Ca21

permeability of dystrophin-deficient muscle was reinves-
tigated with the “manganese quench technique.” Bath ap-
plication of Mn21, an ion known to quench fura 2 fluores-
cence, caused a faster progressive quench of intracellular
fura 2 in mdx myotubes (207) and in adult mdx fibers
(526) compared with controls. The effect could be inhib-
ited by Gd31, other unspecific ion channel blockers, and
amiloride. These observations indicate an increased Ca21

flux through ion channels into mdx fibers. This influx is
probably fairly well compensated by effective cellular
Ca21 transport systems, because resting Ca21 levels were
nearly unchanged. According to present knowledge, in-
tact dystrophin-deficient muscle fibers can have normal
free levels both at rest and after contractile activity. How-
ever, aggravated mechanical activity or mechanical stress
can cause abnormally high and persistently increased
Ca21 levels in DMD and mdx muscle (Figs. 13 and 14).

4. The leaky membrane hypothesis

According to the leaky membrane hypothesis, the
sarcolemma of dystrophin-deficient muscle fibers is more
susceptible to lesions. This hypothesis was developed on
the observation that increased concentrations of muscle-
specific cytoplasmic proteins are present in the serum of
DMD patients (117, 133, 568) and mdx mice (157, 331)
even before the onset of muscle fiber degeneration. Cre-
atine kinase (CK) activity can be 100-fold higher in serum
of DMD patients compared with controls (568). In addi-

tion to CK, many other muscle-specific cytoplasmic pro-
teins as pyruvate kinase, myoglobin (133), and PV (235)
are found in the serum when skeletal muscle is dystrophin
deficient. The release of cytoplasmic enzymes from dys-
trophin-deficient muscle (Fig. 13) has been reproduced
with isolated muscle fibers (341) and cultured mdx and
DMD muscle (342). Not only efflux, but also influx of
molecules into dystrophin-deficient muscle fibers has
been shown in vitro and in vivo. Preparations of isolated
mdx diaphragm exposed to eccentric contractions
showed much higher intake of procion orange than con-
trol muscle (394). This result was later confirmed with
extensor digitorum longus muscle from 40-day-old but not
from 2-wk-old mdx mice (331). Matsuda et al. (329) dem-
onstrated that uptake of molecules into mdx muscle fibers
does occur in vivo. Intravenous injection of Evan’s blue
resulted in staining of mdx muscle fibers, indicating the
uptake of the dye, which is in plasma bound to albumin,
into dystrophin-deficient muscle fibers (329, 499, 500).
Evans blue does not cross into skeletal muscle fibers in
normal mice (500). Taken together, a bidirectional flow of
molecules between the cytoplasmic and the extracellular
space seems to be characteristic for dystrophin-deficient
muscle in vitro and in vivo. This exchange of molecules
occurs during normal mechanical muscle activity and is
aggravated by mechanical stress.

5. Insights from the diseases related

to dystrophin-associated proteins

Recent findings about the roles of laminin, a component
of the extracellular matrix of skeletal muscle, and the dys-
trophin-associated glycoproteins (DAG), a- and b-dystrogly-
can and a-, b-, g-, and d-sarcoglycan (499) gave new insights
in dystrophin function. Mutations in the mentioned proteins
can also cause muscle dystrophy (Table 2). An autosomal
recessive form of muscular dystrophy (severe childhood
autosomal recessive muscular dystrophy, SCARMD) is asso-
ciated with mutations in the a-sarcoglycan (former name:
adhalin) gene (429, 499). The genes coding for b-, g- and
d-sarcoglycan (Fig. 13) cause several forms of limb-girdle
muscular dystrophy (LGMD) when affected by mutation
[LGMD2C, g-sarcoglycan (374); LGMD2E, b-sarcoglycan
(35); LGMD2F, d-sarcoglycan (372)]. Congenital muscular
dystrophy (CMD) is a clinically heterogeneous group of
muscular dystrophies often with early onset. In one form
mutations in the LAMA2 gene, coding for the laminin a2
chain (Fig. 13), the natural extracellular ligand of a-dystro-
glycan, are responsible for this form of muscular dystrophy
in humans (Table 2; Ref. 192). The homologous murine
models are the dystrophia muscularis (dy/dy) and the milder
allelic variant, the dy2J/dy2J mouse (505). Compared with
controls, muscle fibers of dy animals showed on average a
two- to fourfold increase of their free cytoplasmic Ca21

concentration as determined with the fluorescent indicator

FIG. 14. Sequence of pathological changes in dystrophin-deficient
muscle fibers.
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fura 2 (549). Obviously, also laminin defects can cause im-
pairment of muscular Ca21 homeostasis. However, the
pathomechanisms leading to intracellular Ca21 increase and
to muscle dystrophy of laminin-deficient animals seem to be
different from those of mdx mice, because only the latter
showed staining of muscle fibers after intravenous injection
of dyes (500). From these observations it follows that the
sarcolemma of dy and dy2J muscle fibers is fairly imperme-
able for macromolecules and that mechanisms other than
membrane leakage are responsible for the Ca21 increase in
dy muscle fibers. This is a remarkable difference between
dy and mdx fibers, because dystrophin and laminin a2 chain
are both associated with the same protein complex.

Recently, the gene defect underlying LGMD2B has
been discovered (21). The gene shows no homology to
any known mammalian gene. Thus localization and func-
tion of the protein product, called dysferlin, remain un-
clear today.

It can be concluded that the function of the dystro-
phin-glycoprotein complex is to anchor the muscle fibers
in the extracellular matrix. A loss of function of any of the
proteins involved in this anchor system (dystrophin, DAG,
and laminin) can cause muscle dystrophy. In addition,
dystrophin itself, by forming a subsarcolemmal mem-
brane-associated network of filaments, mechanically sta-
bilizes the muscle fiber membrane (341, 342, 389).

6. The mechanical hypothesis: an integrated view

If we return to the pathophysiology of dystrophin-
deficient muscle, the above-mentioned calcium hypothe-
sis and the leaky membrane hypothesis may be integrated
to a “mechanical hypothesis.” A higher fragility of the
plasma membrane during mechanical activity seems to be
the direct physiological consequence of the lack of dys-
trophin. This increased fragility results in short-lived
membrane lesions of limited size, which allow the efflux
of cytoplasmic molecules from the cell and also the influx
of molecules into the sarcoplasm. The efflux of cytoplas-
mic components is probably an indicator of muscle mem-
brane damage rather than of great pathophysiological
importance. Among the molecules that enter the muscle
fibers, Ca21 are thought to be those with the greatest
pathogenic consequences (155). Increased influx of Ca21

into the subsarcolemmal space can lead to the activation
of degradative enzymes and overload and dysfunction of
Ca21 cycle and storage systems. This results in damage of
the sarcolemma from interior, impairment of mitochon-
drial function, and modulation of intracellular signaling
pathways (Figs. 13 and 14).

7. Calcium as a pathogenic factor in DMD

Because membrane lesions are of limited size in the
beginning of the necrotic process and Ca21 is quickly

bound by target proteins, the early consequences of Ca21

influx will probably be restricted to the subsarcolemmal
space of the muscle fibers. A key factor may be an in-
creased calpain activity (see sect. IVE, calpains). Possible
substrates of calpains are the membrane cytoskeleton,
the Ca21-ATPase of the plasma membrane, and ion chan-
nel proteins. The Ca21 pump located in the plasma mem-
brane is a preferred substrate of calpain in erythrocytes
(439), and if attacked in dystrophin-deficient muscle, this
calpain action would, in addition to provoking an excess
of Ca21 influx, disturb an important extrusion pathway.
Another pathway of Ca21 influx, in addition to that medi-
ated by membrane lesions, was pointed out by Turner et
al. (524). They demonstrated that proteolytic cleavage of
plasma membrane Ca21 channels can lead to increased
openings of these channels (524). This could mean a loop
of positive feedback of Ca21 influx, Ca21-dependent pro-
teolysis, and increased Ca21 influx (Fig. 14). Thus dystro-
phinopathies are primarily diseases of the sarcolemma.

A weakened sarcolemma can in the long range not
prevent Ca21 from entering the interior of mdx muscle
fibers. This can have severe consequences for muscle
function and structural integrity. Experimentally induced
short-term elevation of intracellular Ca21 into the micro-
molar concentration range was shown to inhibit or even
abolish excitation-contraction coupling in toad and rat
muscle fibers (280). This effect does not require structural
damage and could contribute to muscle weakness in var-
ious dystrophies before fiber damage occurs. For DMD
muscle fibers, weakness has been quantified on the cell
physiological level. The maximum tension development
ability was found in ,20% of type IIA DMD fibers com-
pared with control (128). Further consequences of dys-
trophin deficiency are the following: increased protein
degradation, mitochondrial damage (313), myofibrillar
damage, dysfunction of the Ca21-ATPase of the SR (240),
necrosis, and the activation of apoptotic pathways (444,
517). These processes are introducing the final steps of
cell damage and cell death of DMD and mdx muscle fibers
(Fig. 14).

Increased protein degradation was found in mdx
muscle (525), and it was argued that increased degrada-
tion results from the elevated Ca21 levels found in dys-
trophic muscle. MacLennan and Edwards (322) showed
that increased protein degradation is compensated by an
increased protein synthesis. Furthermore, they found el-
evated protein turnover in mdx muscle without a net loss
of functional protein. This finding is consistent with the
observation that mdx mice, as young DMD patients, show
muscle hypertrophy (181, 202) and increased muscle
strength at most stages. It is also in agreement with the
finding that mdx mice are more sensitive to fasting than
wild-type mice (194), i.e., a lack of amino acids is more
severe in combination with a higher protein turnover. The
following potential mediators of hypertrophy of dystro-
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phin-deficient muscle have been discussed: an elevated
basal level of adenylate cyclase activity and elevated cy-
toplasmic Ca21 levels. Ca21 signaling via CaM (15) or
calcineurin (468) is a good candidate for a signal trans-
duction pathway into the nucleus. Furthermore, an in-
crease of c-myc expression has been suggested. In this
context also, an increased synthesis and secretion of
insulin like growth factors (IGF-I and IGF-II) and follow-
ing autocrine and paracrine stimulation of muscle fibers
has been discussed (181) . Recently, it was indeed shown
that IGF-I induces skeletal myocyte hypertrophy through
calcineurin in association with transcription factors
GATA-2 and NFATc1 (366).

The increase in protein degradation in mdx muscle is
probably due to the higher activity of calpains, Ca21-
binding neutral proteases (78) (see also sect. IVE, cal-
pains), in dystrophic muscle (487), but it is not clear how
a general increase in protein turnover can initiate the
dystrophic process. Using immunohistochemical staining,
Kumamoto et al. (278) showed an increase in calpain
especially in the myofibrillar area (Z disks) in atrophic
DMD muscle fibers but not in morphologically intact fi-
bers. This indicates that an increased calpain content of
dystrophin-deficient muscle fibers is probably not an early
event in the dystrophic process.

An alternative pathway of cell damage involving mi-
tochondrial dysfunction has been suggested for dystro-
phin-deficient muscle (313, 553). Mitochondrial mRNA
have been found to be downregulated in mdx muscle
(148), and a lack of calmitine, a Ca21-binding protein
present in mitochondria, was shown in DMD muscle (see
sect. IVD). However, it is not clear whether mitochondrial
dysfunction and energy depletion are critical and early
steps in the dystrophic process.

8. Different sensitivity of the muscle fiber types

Some interesting data with regard to the patho-
mechanism of dystrophy have been obtained from com-
parisons of the fiber type specificity of muscle damage. In
the human DMD, the fast-twitch glycolytic type IIB (IIX)
muscle fibers were found to be preferentially affected
(128, 546). The authors suggested that the burstlike stim-
ulation pattern and the high force production of type IIB
(IIX) fibers are less compatible with dystrophin defi-
ciency. A similar result was found in mdx muscle. Here,
the authors described that small-caliber fibers better tol-
erate dystrophin deficiency than the bigger IIB (IIX) fibers
(241). The observation that extraocular muscles are not
affected in DMD (252) is in agreement with the discussed
observations. The fibers of extraocular muscles are char-
acterized by small diameters and very fast reuptake into
the SR after activation.

The effect of reduced electrical activation of mdx
muscle was tested in vivo by breeding a double-mouse

mutant, the gad-mdx mouse. This mutant showed that a
peripheral neuropathy leading to muscle fiber atrophy
(gad mutation) has a positive influence on muscle fiber
integrity of dystrophin-deficient (mdx) muscle (504).
From these data it was concluded that a generally re-
duced stimulation of muscle and the lack of high-fre-
quency discharges are beneficial for dystrophin-deficient
muscle. The opposite approach however, the breeding of
a double mutant with dystrophin deficiency and increased
electrical and mechanical muscle activity due to Cl2

channel deficiency (adr mutation; Fig. 3), did not lead to
the expected opposite result. The muscle fibers of the
adr-mdx mice, although exposed to myotonic discharges,
appeared to be more resistant to dystrophin deficiency
than those of mdx mice. In was suggested that the ob-
served fiber type transformation to an oxidative pheno-
type, which is characteristic for myotonic mouse muscle
(see sect. IID), has a protective effect on dystrophin-
deficient muscle (189, 270).

9. Summary

We conclude that the dystrophinopathies are disor-
ders of mechanical stability of the sarcolemma. The influx
of Ca21 through mechanically induced membrane lesions
is most likely an important pathogenic step in the process
of muscle dystrophy. The excess of cytoplasmic Ca21

inevitably disturbs the flow of Ca21 within the calcium
cycle (see sect. IIIA) and also disturbs, modulating the
function of other Ca21-binding proteins, important signal-
ing pathways of the muscle fiber (see sect. IVE). Finally,
the combination of diverse cellular dysfunctions causes
fiber degeneration and muscle dystrophy.

VI. CONCLUDING REMARKS

As shown in this review, Ca21 has many important
and essential functions for skeletal muscle performance.
Therefore, any alteration in Ca21 handling can disturb
muscular function. It is evident that Ca21 not only directly
triggers muscle contraction but is also involved in relax-
ation after the twitch, regulation of energy metabolism,
and maintenance of structural integrity of the muscle
fiber. Additionally, this ion has long-term effects in that it
regulates the transcription of several genes in the nucleus,
which obviously has implications in development and
differentiation. Because of its complexity, it is largely
unknown how all the Ca21 actions in a single muscle fiber
are orchestrated. However, during the recent years, many
important structural and functional insights have been
gained, and these new developments allowed mechanistic
predictions to be made in several instances.

It is evident that a large muscle fiber type diversity
and plasticity has evolved. Interestingly, the genetic pro-
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gram of a given muscle can be influenced largely by
external factors such as neuronal or hormonal activity,
exercise, injury, and many other factors, allowing very
fine adaptation to special needs and tasks of specialized
muscles. Much is known also about the molecular diver-
sity of individual muscle proteins. It seems that specific
functions of muscle proteins can be achieved through the
following mechanisms: 1) protein isoforms encoded by
different genes and combinations thereof; 2) differential
transcriptional and posttranscriptional regulation to yield
different levels of gene products; and 3) alternative splic-
ing to yield an additional repertoire in diversity.

Although knowledge of this structural diversity is
continuously being accumulated, the functional signifi-
cance of the protein variants is in many cases far from
being elucidated. In addition, the signal transduction
mechanisms leading to diversity and enabling adaptation
depending on external factors are largely unknown. Es-
pecially the factors governing fiber type specificity and
isoform expression as a result of neuronal or hormonal
activity have not been identified so far. The “general”
transcription factors such as MyoD, myogenin, and MRF4
or the negative transcription factor Id-1 might be players
in a complex regulatory network.

The recent progress in elucidation of genetic dis-
eases by the powerful “reverse genetics” approaches has
in several instances directly led to the discovery of im-
portant sequences in muscular proteins and given clues to
their functions. Prominent examples commented in this
review article are, for example, mutations in the RyR,
SERCA, and ion channels. In addition to benefits for the
progress of muscle physiology, this also gives hope for
patients suffering from muscle diseases. For several mus-
cle diseases new diagnostic and therapeutic possibilities
have emerged due to the molecular biological findings of
the recent years.
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121. ESBJÖRNSSON M, HELLSTEN-WESTING Y, BALSOM PD, SJÖDIN
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144. FÜCHTBAUER EM, ROWLERSON AM, GÖTZ K, FRIEDRICH G,
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229. JANSSON E, ESBJÖRNSSON M, HOLM I, AND JACOBS I. Increase
in the proportion of fast-twitch muscle fibres by sprint training in
males. Acta Physiol Scand 140: 359–363, 1990.

230. JANSSON E AND KAIJSER L. Muscle adaptation to extreme endur-
ance training in man. Acta Physiol Scand 100: 315–324, 1977.
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267. KÖLTGEN D, BRINKMEIER H, AND JOCKUSCH H. Myotonia and
neuromuscular transmission in the mouse. Muscle Nerve 14: 775–
780, 1991.

268. KORFAGE JA AND VAN EIJDEN TM. Regional differences in fibre
type composition in the human temporalis muscle. J Anat 194:
355–362, 1999.

269. KOYABU S, IMANAKA-YOSHIDA K, IOSHII SO, NAKANO T, AND

YOSHIDA T. Switching of the dominant calcium sequestering pro-
tein during skeletal muscle differentiation. Cell Motil Cytoskeleton

29: 259–270, 1994.
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Muskeln von Säugetieren und des Menschen. Acta Anat 40: 186–
210, 1960.
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295. LEHMANN-HORN F AND RÜDEL R. Hereditary nondystrophic myo-
tonias and periodic paralyses. Curr Opin Neurol 8: 402–410, 1995.
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362. MÜNTENER M, ROWLERSON AM, BERCHTOLD MW, AND HEIZ-
MANN CW. Changes in the concentration of the calcium-binding
parvalbumin in cross-reinnervated rat muscles. Comparison of bio-
chemical with physiological and histochemical parameters. J Biol

Chem 262: 465–469, 1987.
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rouges et des muscles blancs chez les lapins et chez les raies. C R

Acad Sci Paris 77: 1030–1034, 1873.
413. RAO A, LUO C, AND HOGAN PG. Transcription factors of the NFAT

family: regulation and function. Annu Rev Immunol 15: 707–747, 1997.
414. REBELLO T AND WATTS DC. Gastrocnemius muscle lipids in rela-

tion to diet in two mouse mutants, 129Re-dy and A2G-adr, with
abnormal muscle function. J Neurochem 45: 257–267, 1985.

415. REDDY LG, JONES LR, PACE RC, AND STOKES DL. Purified,
reconstituted cardiac Ca21-ATPase is regulated by phospholamban
but not by direct phosphorylation with Ca21/calmodulin-dependent
protein kinase. J Biol Chem 271: 14964–14970, 1996.
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