Original research
CrossFit and rhabdomyolysis: A case series of 11 patients presenting at a single academic institution

Benjamin S. Hopkins a,*, Daniel Li a, Mark Svet a, Kartik Kesavabhotla b, Nader S. Dahdaleh b
a Feinberg School of Medicine, Northwestern University, USA
b Department of Neurosurgery, Northwestern Memorial Hospital, Northwestern Medicine, USA

ARTICLE INFO
Article history:
Received 2 August 2018
Received in revised form 22 January 2019
Accepted 31 January 2019
Available online xxx

Keywords:
CrossFit
Rhabdomyolysis
Exercise induced injury
High-intensity workout

ABSTRACT
Objectives: CrossFit is an increasingly popular high intensity work out program geared towards high repetition and intensity done in short intervals. Recently, documented cases of rhabdomyolysis (muscle necrosis and extreme muscle breakdown) after CrossFit participation have become increasingly concerning to physicians and participants alike.
Design: Retrospective cohort study.
Methods: All patients who presented to the main hospital at a major academic center complaining of an injury sustained performing CrossFit between June 2010 and June 2016 were identified by the key phrases 'CrossFit', 'crossfit', 'Crossfit' or 'cross fit'.
Results: 523 patients incurred injuries associated with CrossFit activities. 11 patients presented to our institution ultimately received a diagnosis of rhabdomyolysis (2.1%). The average age of Rhabdomyolysis patient was 34.9 years, with 81.9% of patients being male. The average BMI was 24.2, and the average experience level was beginner (54.5%). The most common presenting symptom was dark urine (90.9%), followed by upper extremity pain (54.5%). Average symptom duration was 2.9 days with 81.8% of patients presenting initially to the ED. The average hospital stay was roughly 2.9 days, and patients had an average of 1.44 clinical follow up visits.
Conclusion: CrossFit participation poses significant risks to participants including exercise induced rhabdomyolysis. Further study is needed in order to raise awareness of this issue and further quantify risk factors that may promote injury during participation.

© 2019 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

1. Introduction
Exercise-related injuries (ERIs) are a common cause of non-fatal emergency room and hospital visits. In the United States alone, up to 7 million ERIs are treated annually, with over 4.3 million of these representing visits to the emergency room. Similarly, the number of new and creative exercise modalities continues to grow faster than ever before, with an industry wide revenue of roughly $24.2 billion yearly. As such, an appropriate understanding of ERI is complicated by the constant introduction of new, potentially high-impact, exercise modalities. Among the most popular and rapidly growing high intensity style workout routines is CrossFit. With an estimated 2–4 million participants worldwide, CrossFit has quickly developed a "cult-like" following and culture that takes special pride in the sport’s flirtation with near dangerous levels of physical exertion. The program involves heavy and rapid weight-lifting, gymnastics, pull-ups, and rope climbing combined into short, repetitive,

Abbreviations: ERI, exercise related injuries; ED, emergency department; BMI, body mass index; CK, creatine kinase; ALT, alanine amino transferase; AST, aspartate amino transferase.
* Corresponding author.
E-mail address: benjamin.hopkins@northwestern.edu (B.S. Hopkins).

https://doi.org/10.1016/j.jsams.2019.01.019
1440-2440/© 2019 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

high-intensity workouts.15,16 Since its commercial release in 2000, CrossFit has grown rapidly and been adopted by many military and civilian sport gyms worldwide with an estimated 13,000 affiliate gyms.13 CrossFit’s appeals such as fitness gains, decreased blood pressure, lower resting heart rates, increased aerobic capacity and associated weight loss, have led to widespread adoption of its program.16–22

While numerous health benefits have been documented, injury risks have also become a relevant concern.16,23–29 The intensity and high-impact nature of CrossFit has led to an injury rate reported as high as 20–73%16,24 ranging from injuries as minor as muscle tears to retinal detachment and carotid artery dissection.16,23–28 Retrospective studies have even suggested that as many as 7% of documented CrossFit injuries go on to require surgical intervention, with numerous others requiring emergency room visits and subsequent hospitalization.16,24

Recently, documented cases of rhabdomyolysis after CrossFit participation have become increasingly concerning to physicians and participants alike, with reported cases resulting from participation in as few as one CrossFit exercise session.30 Exertional rhabdomyolysis is a rare, yet dangerous condition with an estimated incidence of 29.9 per 100,000 patients.31 Muscle necrosis, breakdown, and large amounts of leakage of intracellular muscle enzymes cause complications ranging from dangerous electrolyte abnormalities to renal solute overload and Acute Kidney Injury (AKI).32 Patients most commonly present with myalgias and commonly with dark urine.32 In severe cases this condition can present with symptomology as severe as muscle ischemia, arrhythmia or even death.31

While exercise-induced rhabdomyolysis has been documented in various other exercise populations,33–46 CrossFit’s unique culture and emphasis on high-intensity, repetitive exercise lends itself to an especially high risk profile.14 There remains a need to further quantify and assess the risks associated with CrossFit participation and associated rhabdomyolysis in order to better guide physician recommendations and educate participants of their own high-risk behavior. This current case series is the first to attempt to quantify the proportion of patients with CrossFit related injuries that end up needing admission due to rhabdomyolysis. This case series provides a starting point towards a goal of estimating the resulting prevalence of such injuries.

2. Materials and methods

All patients who presented to the main hospital at a major academic center complaining of an injury sustained performing CrossFit between June 2010 and June 2016 were identified using the Electronic Data Warehouse (EDW), which is a clinical data repository. Institutional Review Board approval was given for retrospective review, and a comprehensive query of all archived medical records containing the key phrases ‘CrossFit’, ‘crossfit’, ‘Crossfit’ or ‘cross fit’ was run. Initially, 955 unique patients were identified having 1926 associated medical records all containing one of the mentioned key phrases. Records were reviewed and all patients were selected that had sustained injuries associated with the mention of concurrent CrossFit participation. Reports were excluded that either had no chief complaint or had complaints unrelated to participation in CrossFit exercise. Patients with injuries known to have been sustained outside of CrossFit were further excluded. A total of 498 patients with 523 injuries sustained from CrossFit met the inclusion criteria of this study (Table 1). Patient charts were reviewed for relevant clinical laboratory test values, demographic information and treatment characteristics. Medically, rhabdomyolysis is defined by a breakdown of striated muscle causing a rise in Creatine Kinase (CK) to five times the upper limit of normal. Due to the retrospective nature of our study, however, distinguishing rhabdomyolysis patients from other patients was difficult. As such for the purposes of our study, rhabdomyolysis was instead defined by reviewing clinician notes for each admission and was considered positive when the main reason for admission was documented as rhabdomyolysis by the attending physician on staff at the time of admission. Patient demographics and CrossFit experience are summarized in Table 2. Clinical laboratory values at time of admission and time of last follow up are noted in Tables 3 and 4. Treatment characteristics are noted in Table 5.

Microsoft Excel 2011 (Microsoft, Redmond, WA, USA) was used to conduct all statistical analysis. Parametric data was given as mean ± standard deviation. T-tests were run to compare patients requiring surgical intervention to those not needing intervention. Variables run include age, sex, duration of symptoms and number of clinic visits. A value of p < 0.05 was considered statistically significant.

3. Results

523 patients incurred injuries associated with CrossFit activities. The most common presenting injuries were musculoskeletal (81.5%) (Table 1). Of those, spine, shoulder, and knee-
Table 3

Lab values.

<table>
<thead>
<tr>
<th>Patient #</th>
<th>CK<sup>a</sup></th>
<th>CK-MB</th>
<th>Creatinine</th>
<th>ALT</th>
<th>AST</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>BUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ED</td>
<td>DC</td>
<td>Follow up</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>Patient 1</td>
<td>111,100</td>
<td>39,200</td>
<td>5916</td>
<td>n/a</td>
<td>n/a</td>
<td>1.77</td>
<td>1.66</td>
<td>576</td>
<td>426</td>
</tr>
<tr>
<td>Patient 2</td>
<td>>20,000</td>
<td>15,976</td>
<td>3530</td>
<td>n/a</td>
<td>n/a</td>
<td>1.21</td>
<td>0.81</td>
<td>576</td>
<td>426</td>
</tr>
<tr>
<td>Patient 3</td>
<td>>20,000</td>
<td>>20,000</td>
<td>1915</td>
<td>n/a</td>
<td>n/a</td>
<td>0.87</td>
<td>0.73</td>
<td>209</td>
<td>298</td>
</tr>
<tr>
<td>Patient 4</td>
<td>>20,000</td>
<td>12,024</td>
<td>n/a</td>
<td>22.8</td>
<td>10.5</td>
<td>0.69</td>
<td>0.55</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Patient 5</td>
<td>>20,000</td>
<td>6300</td>
<td>n/a</td>
<td>n/a</td>
<td>1.14</td>
<td>0.98</td>
<td>192</td>
<td>105</td>
<td>592</td>
</tr>
<tr>
<td>Patient 6</td>
<td>4953</td>
<td>1794</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>1.1</td>
<td>0.82</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>Patient 7</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>22.8</td>
<td>10.5</td>
<td>0.69</td>
<td>0.55</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Patient 8</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>22.8</td>
<td>10.5</td>
<td>0.69</td>
<td>0.55</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Patient 9</td>
<td>8110</td>
<td>n/a</td>
<td>n/a</td>
<td>15</td>
<td>15</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Patient 10</td>
<td>>20,000</td>
<td>>20,000</td>
<td>n/a</td>
<td>22.8</td>
<td>10.5</td>
<td>0.69</td>
<td>0.55</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Patient 11</td>
<td>>20,000</td>
<td>4380</td>
<td>870</td>
<td>80</td>
<td>120</td>
<td>15</td>
<td>15</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Average</td>
<td>39,195<sup>a</sup></td>
<td>12,024<sup>a</sup></td>
<td>1915<sup>a</sup></td>
<td>22.8</td>
<td>10.5</td>
<td>1.05 ± 0.32</td>
<td>0.883 ± 0.31</td>
<td>207 ± 186</td>
<td>245 ± 152</td>
</tr>
</tbody>
</table>

^a CK values were analyzed using different laboratories over the years included in the study. As such, some of the CK lab values had upper limits preset at 20,000 and therefore registered 20,000 as the highest possible recorded CK. Median values instead of averages are reported for CK only due to these discrepancies.

Table 5

Treatment and characteristics.

<table>
<thead>
<tr>
<th>CK<sup>a</sup></th>
<th>CK-MB</th>
<th>Creatinine</th>
<th>ALT</th>
<th>AST</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>BUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow up</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>CK<sup>a</sup></td>
<td>CK-MB</td>
<td>Creatinine</td>
<td>ALT</td>
<td>AST</td>
<td>P</td>
<td>K</td>
<td>Ca</td>
<td>BUN</td>
</tr>
<tr>
<td>Follow up</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
</tr>
</tbody>
</table>

^a CK values were analyzed using different laboratories over the years included in the study. As such, some of the CK lab values had upper limits preset at 20,000 and therefore registered 20,000 as the highest possible recorded CK. Median values instead of averages are reported for CK only due to these discrepancies.
the end of their hospital stay. Other lab abnormalities associated with cell injury or renal injury, namely potassium, were generally on the higher end of normal with an average of 4.28 mmol/L (range 3.1–5.2 mmol/L). All patients were treated with fluids (100%) with only 1 patient requiring bicarbonate. The average hospital stay was roughly 2.87 ± 2.1 days, and patients had an average of 1.44 ± 0.73 clinical follow up visits (Table 4).

4. Discussion

To this date only a handful of cases have been documented of rhabdomyolysis after CrossFit. To the best of our knowledge, our study is the first to document a case series of patients presenting with rhabdomyolysis after CrossFit workouts. Of all presenting CrossFit related injuries at our institution, 11 (2.1%) presented with rhabdomyolysis. Rhabdomyolysis is a condition constituted by the breakdown of striated muscle tissue, and the subsequent release of intracellular contents into circulation. It is defined by a rise in CK five times the upper limit of normal, ranging from 1500 to over 100,000 IU/L. Although not included in diagnostic criteria, many patients, including those that participate in CrossFit, also experience myoglobinuria as demonstrated by dark urine.47-49

This condition is typically treated without complications. Factors associated with this condition include high intensity, little exercise experience, eccentric muscle contraction, hot environment, history of electrolyte imbalances, male sex, low protein diets, statin use, alcohol and creatine supplementation.50 However, serious complication such as acute renal failure, compartment syndrome, hyperkalemia, and disseminated intravascular coagulation can occur.45-48 The most common clinical manifestations of rhabdomyolysis are extremity pain and dark urine. Acute kidney injury remains the most prevalent organ system complication, thought to be caused by the accumulation of myoglobin with dehydration as a precipitating factor.52 Dehydration is also a notable factor in rhabdomyolysis as is commonly associated with rhabdomyolysis and is commonly observed in CrossFit.50

Creatine kinase (CK) is an enzyme which has peak activity in striated muscle, cardiac tissue, and the brain. Therefore, testing the levels of this enzyme is an integral tool in examining damage to any of the related organ systems.46 Upon laboratory testing in rhabdomyolysis cases, creatine kinase levels are typically elevated. Although there are no set guidelines in the diagnosis of rhabdomyolysis, a common clinical feature is CK levels greater than five times the upper limit of normal values.51 72% of patients who presented to the ED with CrossFit related Rhabdomyolysis had a CK level of >20,000 IU/L, as seen in Table 3. The median CK level in admitted patients, 39,195 IU/L, is roughly 1200 times the upper limit of normal CK levels (the normal range of CK values is from 45 to 260 IU/L). While CK levels are typically elevated after any intense exercise, it is important to always consider such values in appropriate context.47 A strong positive correlation has been observed between peak CK levels, and length of hospital stay.53

The dangers of CrossFit and exercise related injuries are extremely relevant, as the popularity and prevalence of CrossFit has grown immensely in the past decade. CrossFit currently has an estimated 2–4 million participants globally.13,14 With an average injury rate of about 19%, and an unofficial mascot designated as “Uncle Rhabdo”,50 roughly 380,000–760,000 CrossFit participants are at risk for injury.48 This is very problematic, given that many CrossFit participants are beginners, and have not been thoroughly trained in the proper techniques and exercises involved in a CrossFit workout. The majority (54%) of patients who presented to the ED with CrossFit induced rhabdomyolysis had a beginner level of training, as seen in Table 2.

The result of this growth has been an increased incidence of CrossFit induced rhabdomyolysis and injuries overall. The most common injuries associated with CrossFit are sprains and strains that led to pain and inflammation.54 The risk of CrossFit induced rhabdomyolysis is more worrisome than other common injuries, due to the possibility of life-threatening complications, such as organ failure. Although a small portion (2.1%) of patients presenting to the clinic with CrossFit associated injuries were diagnosed with rhabdomyolysis, the overall prevalence of the sport makes this finding worrisome.

CrossFit participants should be aware of the common symptoms associated with rhabdomyolysis and be informed of the warning signs and symptoms so he or she may receive timely care. If one experiences soreness or pain that is beyond what is reasonably expected after an intense workout, they should consider going to the hospital. This is especially true if observed in conjunction with dark urine, which itself is a worrisome symptom that may require medical attention. Although the clinical presentation of rhabdomyolysis varies between individuals, the common symptoms are characteristic of the majority of CrossFit induced rhabdomyolysis cases. Participants of CrossFit should make sure to receive proper training before participating in CrossFit. Beginners should physically prepare for high intensity workouts with exercise and should increase exercise intensity in a stepwise fashion to avoid injury. Participating in warm-up activities each workout is also an important step in avoiding injury.47-49

Currently, there are no set guidelines in the treatment of rhabdomyolysis.50 Because acute kidney injury is the most common complication, immediate intravenous fluid administration is a very important treatment modality associated with better outcomes, as well as effectively preserving renal function.47,52 Statin and other lipid lowering agents are known risk factors in rhabdomyolysis.50,52 If clinical suspicion for this diagnosis exists, these agents should be immediately discontinued.

Our study has several limitations. Due to its retrospective nature, this study is subject to bias. As there is no control group in our study, our study was descriptive, and cannot identify predictors of injury. Furthermore, the specific mechanism of injury is a relevant but absent variable that would enhance our understanding of the problem. Loss to follow up was also high, with specific relevant variables often absent in follow up medical records. This made it difficult to determine return to participation time, whether patients were compliant with recommended treatment or even whether participants continued to participate in CrossFit after injury. Next steps may include case-control series that can identify risk factors, including specific workout routines and baseline physical conditioning that are specifically associated with the development of injuries.

5. Conclusion

CrossFit participation poses significant risks to participants including exercise induced rhabdomyolysis. Further study is needed in order to raise awareness of this issue and further quantify risk factors that may promote injury during participation.

Acknowledgments

We would like to acknowledge the Northwestern EDW for their ongoing technical support and help in data collection for the above manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jsams.2019.01.019.
References

4. García T. Boutique fitness studios are leading growth in the health club industry, MarketWatch. 2015.

19. Gilmore KE, Heirich KM. CrossFit & heart health: effects of crossfit participation on resting blood pressure and heart rate; 1020 block #336 June 1; 0: 00 PM–3: 00 PM. Med Sci Sports Exerc 2016; 5(Suppl. 1):293.

