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Summary

  Insulin resistance is a growing worldwide phenomenon, which progressively develops over years, and 
fi nally, if unchecked, predisposes to cardiovascular disease and diabetes mellitus type 2. Insulin re-
sistance is a generalized metabolic disorder characterized by ineffi cient insulin function in skeletal 
muscle, liver and adipocytes. There is growing evidence that an increased free fatty acid level, and 
more importantly, the relative amounts of saturated and unsaturated fatty acids, plays an important 
role in the development of insulin resistance. In turn, this is a refl ection of the composition of die-
tary fat. Ultimately both the dietary intake and plasma levels determine the fatty acid composition 
of cell membranes. Higher levels of membrane saturated fatty acids seem to greatly impair the ac-
tion of insulin, whereas the presence of polyunsaturated fatty acids, especially of the omega-3 and -
6 families, and in particular their relative ratio, in contrast, improves insulin sensitivity. In vitro stud-
ies, however, have not always corroborated the clinical evidence. Possible roles played by the various 
saturated and unsaturated fatty acids in the insulin-signaling pathway are discussed in light of re-
cent evidence. Fatty acids have also been shown to alter gene expression in cells, in particular the 
peroxisome proliferator-activated receptor-g2 gene, adding to this multifaceted connection.

  As man has moved over the centuries from a hunter-gatherer diet to greater intakes of saturat-
ed and trans-fatty acids, insulin resistance has appeared with its related pathology. Greater under-
standing of the role played by dietary fat and plasma fatty acids in pathogenesis of insulin resist-
ance, will allow for more timely prevention and improved treatment in the future.
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BACKGROUND

The condition of insulin resistance is tightly coupled with 
obesity and cardiovascular pathology, these conditions are 
collectively called ‘the metabolic syndrome’ or ‘syndrome X’. 
Incidence of the disease is increasing to epidemic propor-
tions, especially in previously rural societies that are under-
going urbanisation, and throughout the western world. The 
ability of body tissue to react to insulin becomes progressive-
ly more compromised as it moves, maybe for ten to twenty 
years, through the stages of insulin resistance. Triglyceride 
deposits in muscle tissue increase while increased levels of 
triglycerides and free fatty acids are hallmarks of the plasma 
composition [1]. During this stage, insulin secretion also be-
comes higher in an effort to correct the condition, until the 
beta cells of the pancreas are depleted and cease production, 
resulting in full-blown type 2 diabetes mellitus [2].

Insulin resistance is usually defi ned on a metabolic level as 
ineffi cient insulin function in skeletal muscle, liver and ad-
ipocytes. This hampers the normal role of insulin whereby 
it causes increased muscle cellular glucose uptake, glycogen 
synthesis, and cessation of hepatic glucose production [3]. In 
the adipocyte, especially in the visceral and omental region, 
the process of triglyceride synthesis is negatively affected, and 
lipolysis remains unchecked, resulting in even higher levels 
of circulating free fatty acids [4]. To achieve these metabol-
ic effects, the activity of many different role-players in the 
insulin-signalling pathway could be compromised: amongst 
others, phosphatidylinositol-3-K (PI-3-K), protein kinase B 
(PKB), protein kinase C (PKC) and also glucose transport-
er4 (GLUT4) activation could be affected. In addition, gene 
regulation of any of these transporters or enzymes may also 
be impacted on during insulin resistance.

This review focuses on the ever-increasing evidence that die-
tary fat and the resulting plasma and plasma membrane fat-
ty acid profi les are instrumental in the development of met-
abolic syndrome: the higher the saturated fatty acid content 
of the three abovementioned parameters, the more insulin 
action is impaired. Interestingly, in contrast, the higher the 
content of polyunsaturated fatty acids of a chain-length of 
20–22 carbons, more especially belonging to the omega-3 
fatty acid family, the more insulin action is improved [5–7]. 
The action of different fatty acids on the insulin signalling 
process will be summarised in an attempt to obtain more 
clarity on this multifaceted phenomenon.

EVIDENCE FROM DIETARY STUDIES

High fat feeding has been presumed to be a cause of obesity 
and insulin resistance for at least twenty years [8]. However, 
the concept that “oils ain’t oils” [9] slowly started emerging 
in the latter half of the eighties and it is now well established 
that the fatty acid profi le of a dietary fat has far-reaching dif-
ferential regulatory consequences in the human body. As 
seen clearly from the fatty acid atomic models presented 
in Figure 1, progressive desaturation of the fatty acid mol-
ecule leads to increased “kinkiness”. Striking differences in 
the molecular confi guration of oleic acid (MUFA), linoleic 
acid (omega-6 PUFA) and a-linolenic acid (omega-3 PUFA) 
make for different properties when built into a cell mem-
brane, as shown in Figure 2. High saturated fat content of 
the membrane makes for rigid, unresponsive membranes, 

whereas increased desaturation makes for improved mem-
brane fl uidity and responsiveness [10].

Membrane lipid profi les are determined by dietary fat 
intake

Diets containing tallow (predominantly saturated fat), ol-
ive oil (mainly mono-unsaturated), sunfl ower oil (largely 
omega-6) and fi sh oil (omega-3-rich) are commonly fed in 
animal studies investigating the effect of dietary fat on in-
sulin resistance and obesity. Cell membrane lipid compo-
sition is regulated by the fatty acid composition of dietary 
fat, as explained lucidly in a recent review by Hulbert and 
co-authors [11]: the membrane lipid profi le is especially 
sensitive to fatty acids of the omega-3 and omega-6 families 
of polyunsaturated fatty acids, actually preferring to build 
in more omega-3’s than omega-6’s. This is more true in 
the case of cerebral synaptosomes and myelin [12] (brain 
phospholipids contain about 40% omega-3’s) than in liv-
er [13] and cardiac membranes [14]. The membrane sat-
urated and mono-unsaturated fatty acid content, on the 
other hand, is not as dependent on the dietary fatty acid 
profi le [12–14]. Similar responses to intake of various die-
tary fatty acids was reported in skeletal muscle [15,16] and 
adipose tissue[17]. Quantitatively the latter two tissues are 
the most insulin-responsive and the most instrumental in 
maintenance of normal plasma glucose levels. It is impor-
tant to note that in obese individuals there is an increase 
by as much as 30–50% of total body glucose uptake in fat 
tissue [18]). Muscle and fat membrane PUFA content and 
omega-3/omega-6 ratio thus appears to be of prime impor-
tance in the aetiology of insulin resistance.

Dietary fats and insulin sensitivity

In animal studies an impressive body of evidence has estab-
lished the connection between dietary lipids, membrane 
lipid profi les and insulin resistance [5,6,9,19–21]. A pio-
neering study from the laboratory of Storlien and cowork-
ers in 1987 [9] showed that only the replacement of saf-
fl ower oil (omega(n)-6) with fi sh oil (n-3) in rats being fed 
a high percentage sucrose and fat diet, was able to attenu-
ate the development of insulin resistance. The hyperinsuli-
naemic, euglycaemic clamp technique, (HECT), is general-
ly used in studies on insulin sensitivity. Two venous catheters 
are inserted into antecubital veins (one for the infusion of 
glucose and insulin, the other for blood sampling) and an 
insulin infusion, resulting in hyperinsulinaemia, is given. 
Arterialised blood glucose is measured every fi ve min and 
then a dextrose infusion is started. The clamp is adjusted 
to keep the blood glucose levels euglycemic (5 mmole/L). 
The rate of whole body glucose uptake is calculated from 
the mean glucose infusion rate from 80–120 min, corrected 
for glucose space and normalised per kilogram of fat-free 
mass [22]. Subsequent research utilising the HECT tech-
nique together with the injection of radioactively labelled 
deoxyglucose to determine whole body insulin action, sup-
ported this theory: high saturated fat diets led to insulin re-
sistance, whereas diets high in n-3, with a low n-6/ n-3 ra-
tio, kept insulin action at normal levels [5].

In human subjects, reports in the early 90’s from Feskens 
and coworkers showed that glucose intolerance could be 
improved by the same strategy [23,24] as described above. 
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Figure 2.  The degree of desaturation in fatty acids present in cell 
membrane phospholipids determines membrane fl uidity. 
Saturated fatty acids, for example stearic acid (18:0, eighteen 
carbons, no double bonds) cause relatively solid domains 
in the membrane, oleic acid (18:1n-6), linoleic acid (18:2n-
6), alpha-linoleic acid (18;3n-3) occupy increasingly more 
space and result in higher membrane fl uidity. Adapted with 
permission from [10]: ©Medpharm Publications (Pty) Ltd.

Figure 3.  Relationship between the percentage of long-chain 
polyunsaturated fatty acids in the phospholipids of skeletal 
muscle (vastus lateralis) and whole-body insulin sensitivity 
determined by the hypeinsulinaemic, euglycaemic clamp 
technique. Reproduced with permission from [19]. ©1993 
Massachusetts Medical Society.

Subsequently, a clear relationship between the amount of 
long chain, highly unsaturated fatty acids (C20–C22) in mem-
brane phospholipids of vastus lateralis muscle and whole 
body insulin sensitivity (measured with HECT) could be 
demonstrated [19], as shown in Figure 3. This relationship 
was corroborated by studies on 70-year-old men in Sweden 
[25], in primarily Caucasian Australians and in indigenous 
American Pima Indians [26]. The obesity and Type 2 dia-
betes–prone Pima population proved to have 40% lower n-
3 levels in their muscle membrane lipids than Australians. 
A further alarming wake-up call is that fasting insulin levels 
of pregnant women, indicating the level of maternal insulin 
resistance, can programme the degree of PUFA incorpora-
tion into their children’s muscle membranes: the DHA con-
tent of baby boys’ muscle membranes is inversely correlated 
with their mothers’ fasting insulin levels. [27].

Very interestingly, regular physical exercise lowers levels 
of unsaturated (predominantly AA and DHA) fatty acids 
in skeletal muscle membranes, probably because these fat-
ty acids are preferentially used for the oxidative needs of 

muscle tissue. This progressively ‘saturates’ muscle mem-
brane composition and would have a negative prognosis 
for insulin sensitivity [28]. However, this is at variance with 
the benefi cial effects of exercise on muscle insulin sensitiv-
ity reported by Pereira et al. [29].

Increased intramyocellular lipid (ICML) stores are also in-
versely related to insulin action, both in animals [5] and hu-
mans [30]. Recent studies [31] have utilised the technique 
of 1H magnetic resonance spectroscopy (MRS) to distinguish 
between extra- and intramyocellular fat deposits, and the 
same tight relationship between ICML stores and insulin re-
sistance, measured with HECT method, was found. These 
results are shown in Figure 4. It is interesting that one of the 
more obese individuals (#1, BMI 32.8 kg/m2), was one of the 
most insulin-sensitive, but had a low ICML value. Conversely, 
Subject #2, with a BMI of only 18.9 kg/m2, proved to be high-
ly insulin-resistant but had an larger ICML pool [1].

It has been suggested that it is not the triglyceride stores 
themselves in muscle that interferes with the action of insu-
lin, but more likely fatty acid-derived entities, like long chain 
acyl-CoA’s, that impacts negatively on insulin-mediated glu-
cose uptake, by disrupting the insulin-signaling cascade [1]. 
The long chain acyl-CoA levels in a muscle cell are amongst 
others controlled by the malonyl CoA/carnitine palmitoyl-
transferase-1 partnership. In muscle, acetyl-CoA carboxy-
lase-2 appears to associate closely with carnitine palmitoyl-
transferase-1 on the outer mitochondrial membrane [32]. 
As muscle cells have very low levels of fatty acid synthase, 
malonyl CoA is thought to act as a “fuel sensor”, and thus 
a regulator of fatty acid oxidation [1]. Decreased capacity 
to oxidize fatty acids in muscle cells would result in an en-
larged long chain acyl-CoA and triglyceride pool, and thus 
diminished insulin-mediated glucose uptake. Human and 
animal studies support the concept that a lower than normal 
capacity to oxidize fatty acids might be a predictor and/or 
contributor to the development of IR [1].

Figure 1.  Atomic models of the saturated 18 carbon (C) stearic acid 
(SA), mono-unsaturated 18 C oleic acid (OA), polyunsaturated 
20C omega-6 arachidonic acid (AA) and polyunsaturated 20C 
omega-3 eicosapentaenoic acid (EPA) [108].
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Figure 4.  Correlation between measurements of ICML by 1H MRS 
and the rate of insulin-stimulated glucose disposal (Rd) 
in normal glucose tolerance individuals who underwent 
a hyperinsulinemic-euglycemic clamp. Reproduced with 
permission from [1]. ©American Diabetes Association.

Lipid infusions and insulin sensitivity

In another avenue of clinical experimentation, plasma free 
fatty acids were artifi cially increased in normal individuals 
with lipid/heparin infusions. This strategy has also given rise 
to insulin resistance [33,34]. There is a lag period of about 5 
hrs following commencement of infusion before the effect 
can be measured with HECT. By that time, ICML (measured 
by 1H MRS) had risen by 61% in the tibialis anterior and 
by 22% in soleus muscles, and whole–body glucose uptake 
was reduced by 40–50% [35]. Using the same technique, 
Homko and coworkers [36] have shown that, even at insulin 
and free fatty acid levels in the average postprandial range, 
both healthy men and women are prone to periods of mus-
cle and hepatic insulin resistance following meals.

In conclusion, free fatty acids are not only detrimental but also 
essential for insulin secretion, but chronic exposure of the b-
cell to high free fatty acid levels can become toxic [1,37]. This 
could, at least partly, explain the progression of metabolic syn-
drome from the stage of insulin resistance with characteristical-
ly high insulin levels to pancreatic b-cell dysfunction and ulti-
mately depletion, resulting in frank diabetes mellitus type 2.

Fatty acids and glucose uptake

In an excellent study Fickova et al. [17] has shown that PUFAs 
modulate insulin sensitive glucose uptake (ISGU) in isolat-
ed adipocytes: increased ISGU was more apparent in rats fed 
omega-6 rich diets (sunfl ower oil) than in rats fed omega-3 
(fi sh oil) for one week. Unfortunately, data on saturated fat 
effects were not included in this paper. Ryan and coworkers 
[38] also presented evidence that feeding human subjects 
oleic acid for 2 months could improve ISGU in their isolat-
ed adipocytes. In contrast, a data from an older study by the 
group of Nagy and coworkers [39] had shown that feeding 
rats DHA (omega-3) and saffl ower oil (omega-6 rich) diets for 
three weeks had impaired their adipocyte ISGU. Reasons for 
these changes in ISGU may be found in the mechanisms of 
glucose transport: Insulin-stimulated glucose uptake (ISGU) 
is achieved with the glucose transporter GLUT4. During ba-

sal conditions GLUT4 is stored in vesicles that are transport-
ed to the cell membrane when stimulated by insulin. Defects 
in the GLUT-4 traffi cking process after high fat (55% of to-
tal calories, of which 30% were saturated) feeding have been 
reported in murine muscle [40]. This trend was also seen in 
rat adipocytes [41]. Even during overexpression of GLUT4 
in transgenic mice, severe insulin resistance has been found 
[42] after feeding the same high fat diet mentioned above. 
This would suggest that defective GLUT4 transport and not 
synthesis is at the root of the problem.

In vitro work, that is, exposing 3T3-L1 fat cell cultures or 
freshly isolated adipocytes to different fatty acids, has added 
a confl icting plethora of results to our knowledge. Already 
in 1981, Grunfeld and coworkers showed that the saturated 
palmitic acid could decrease ISGU [43] in 3T3-L1 cultures 
after a short exposure (<30 min). In contrast, when fresh 
rat adipocytes were directly exposed to fatty acids, Joost and 
Steinfelder [44] reported that palmitic, lauric, caprylic and 
caproic acids could all increase ISGU. Later studies report-
ed that ISGU had not been affected by short-term expo-
sure to fatty acids [45,46]. Moving to longer exposure times, 
Nugent and coworkers from the laboratory of O’Rahilly [47] 
have shown that 4–8 hrs of exposure to AA resulted in in-
creased ISGU and GLUT4 content of plasma membranes. 
The use of mixed conjugated linoleic acid (CLA) isomers 
in glucose uptake studies in this type of experiment has not 
led to congruent data [48]. A recent paper from the same 
group, however, concluded that specifi cally the trans-10, cis-
12 CLA isomer could decrease ISGU [49].

An interesting aspect that emerges from these studies is the 
fact that short-term fatty acid exposure can increase basal, 
thus insulin-independent, glucose uptake (BSU). Palmitic, 
lauric, caprylic and caproic acids [44], palmitic acid, lino-
leic and oleic acids [45,50] and according to Hunnicut [46] 
and coworkers only palmitic acid, but not linoleic, elaidic 
and oleic acids could all increase BSU. More recent stud-
ies have shown an important role specifi cally for arachidon-
ic acid in stimulation of BSU after 4–8 hours of exposure 
[47,51,52]. What this means in terms of glucose homeosta-
sis remains to be determined.

Dietary fats and energy balance

The intake of dietary fat, irrespective of its composition, has 
popularly been associated with weight gain. However, sever-
al studies in animals have shown that the intake of unsatu-
rated fats (both of the omega-6 and omega-3 variety) does 
not lead to the same weight gain as an isocaloric saturated 
fat diet would have done. [16,53–56]. The same results have 
been found in humans, [57–59] in which the intake of satu-
rated fat has also been linked to an increased central fat de-
posit as refl ected in waistline measurements [60].

A number of mechanisms may explain the infl uence of indi-
vidual fatty acids on fat accumulation. Leyton and coworkers 
had already shown in 1987 [61] that unsaturated fatty acids 
are more easily oxidised than their saturated counterparts 
in a study where labelled CO2 was measured after ingestion 
of equal amounts of differently labelled saturated and un-
saturated fatty acids. In addition, lipolytic stimuli liberated 
unsaturated fatty acids from triglyceride depots more easily 
than saturated fatty acids [62]. In addition, increasing the 
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degree of desaturation for a given fatty acid chain length 
increased the ease of liberation by lipolysis [63].

Furthermore, the intake of saturated fats can also decrease 
the basal metabolic rate [64,65]. The membrane sodium 
pump (Na+, K+-ATPase) accounts for a large fraction of the 
energy consumed under basal conditions [11] and, very in-
terestingly, the molecular activity of Na+, K+-ATPase can also 
be positively correlated with membrane polyunsaturates as 
refl ected in DHA (omega-3) content [66]. Citing another 
interesting enzyme system impacting on energy metabolism, 
Kopecký and coworkers have shown that impairment of the 
mitochondrial uncoupling protein (UCP) system can lead 
to obesity and thus insulin resistance. Synthesis of UCP’s is 
regulated by the peroxisome proliferator-activated recep-
tor-g (PPAR) transcription factor family, which, in turn, can 
be regulated by fatty acids [67].

Another scenario that has to be considered in the develop-
ment of obesity is the regulation of food intake. The classic 
feeding and satiety centres respectively located in the ven-
tromedial and dorsolateral hypothalamic areas can also be 
infl uenced by the dietary fatty acid profi le: intake of satu-
rated fats by mice increased neuronal activity in the feed-
ing centre, whereas PUFA feeding increased satiety centre 
activity [68]. Furthermore, leptin is an adipocyte hormone 
that acts on the arcuate nucleus to block secretion of the 
obesogenic neuropeptide Y, thus increasing satiety. Cha and 
Jones have shown in 1998 [69] that increasing diet PUFA 
levels could lead to increased plasma leptin levels when 
compared with a diet rich in saturated fats, thus further 
supporting the line of evidence in favour of the anti-adi-
posity role of PUFAs.

FATTY ACID ACTION: POSSIBLE MECHANISMS

Insulin resistance can be due to dysfunction of one or more 
of the intermediates of the insulin signaling cascade shown 
in Figure 5. Understanding the mechanisms involved in in-
sulin resistance is imperative for the development of pre-
ventative or pharmaceutical strategies.

Eicosanoid production

Certain polyunsaturated fatty acids, but not saturated fatty 
acids, can be converted to eicosanoids by cyclooxygenase: 
for example, AA (omega-6) can be changed to the highly 
infl ammatory prostaglandins of the -2 series, whereas EPA 
(omega-3) can be changed to anti-infl ammatory prostaglan-
dins of the -3 series. DHA (omega-3) cannot be converted to 
a prostaglandin, but retroconversion to EPA, and thence for-
mation of series -3 prostaglandins, is possible [70]. Further 
downstream, omega-3 fatty acids are also precursors of the 
anti-infl ammatory resolvins and docosatrienes as described 
by Serhan et al [71]. Different authors have implicated ei-
cosanoids in regulation of GLUT4 traffi cking and thus insu-
lin-stimulated glucose transport [72,73]. In contrast, Nugent 
et al. [47] have reported a cyclooxygenase- independent 
stimulatory effect of AA on glucose uptake.

Protein Kinase C modulation

Fatty acids can modulate the action of protein kinase C 
(PKC) [74,75] Involvement of this enzyme in the signalling 

pathway has been well established, and changes in its activity 
possibly contribute to IR [76-78]. A widely accepted mecha-
nism of fatty acid action has been proposed by Shulman in 
2000 [79]. Activation of muscle PKC by fatty acid infusions 
can lead to increased serine/threonine phosphorylation of 
the insulin receptor substrate (IRS, as seen in Figure 1). This 
conformational change leads to decreased tyrosine phospho-
rylation of the IRS, thus impairing the whole downstream 
insulin signaling pathway and causing insulin resistance. 
The action of fatty acids on PKC seems to be isoform- and 
also organ-specifi c: muscle (beta II and delta [80], epsilon 
[81], theta [82]), and in adipocytes zeta [83,84] isoforms of 
PKC have been implicated in this mechanism. Interestingly, 
PKC is also implicated in the action of fatty acids on basal 
glucose transport via activation, and also synthesis, of insu-
lin independent GLUT1 [51,52] thus suggesting PKC ef-
fects directly on glucose transporter activity.

Effects on phosphatidylinositol-3 kinase and protein 
kinase B

Activation of phosphatidylinositol-3 kinase (PI-3-K) is one of 
the important steps in insulin signaling downstream of IRS; 
indeed, the selective PI-3-K inhibitor wortmannin is able to 
abolish the translocation of GLUT4 to the cell membrane 
in response to the insulin signal [85,86]. Fatty acids have a 
profound effect on its activity; indeed, fatty acid infusions 
have caused total inhibition of the PI-3-K response to insu-
lin [87]. Whether fatty acids act on PI-3-K directly, or wheth-
er their effect is exerted via PKC with subsequent inhibition 
of the insulin signal downstream of IRS as discussed above 
[80], is still unclear. Focussing on another intermediate in 
the insulin signalling pathway, protein kinase B activity may 
be reduced, and thus impair glycogen synthesis [88,89] or 
may not be affected [90] by saturated fats.

Fatty acids and gene expression

The modulation of gene expression by fatty acids is an area 
of great current interest and is widely believed to be the most 
important long term fatty acid action mechanism. In 1994, 
studies on 3T3-L1 cells had shown that glucose uptake via 
GLUT4 could be downregulated already after 4-8 hours of 
exposure to AA [91]. Indeed, after 48 hrs of AA exposure, 
GLUT4 mRNA was decreased by 90%. [92]. This study also 
provided evidence that the non-metabolizable analog of AA, 
eicosatetraenoic acid, could activate the PPAR g transcrip-
tion factor, a well-known modulator of adipocyte gene ex-
pression, under the same conditions. Mutation-related im-
pairment of PPAR g function can result in insulin resistance 
and diabetes mellitus type 2 [93,94], whereas stimulation of 
the PPAR-a form inhibits lipid accumulation and improves 
insulin signalling [95]. Recent studies have supported the 
concept that polyunsaturated fatty acids [9,47,93], can act as 
ligands of PPAR g or modulate its expression, thus increas-
ing GLUT4 transcription [96,97] and synthesis, and thus 
also improving insulin resistance. An increased perinatal 
dietary n-6/n-3 fatty acid ratio can programme mean body 
weight and fasting insulin levels to increase during later life 
in male rats specifi cally, acting on the mechanism of gene 
expression, as recently shown by Korotkova et al. [98] and 
reviewed by Das [99]. In a ground-breaking study, micro-
array technology data from the laboratory of Berger et al. 
[100] has shown that dietary supplementation of either ara-
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chidonate-rich fungal oil or fi sh oil in mice can infl uence 
the expression of different sets of genes of major eukaryo-
tic lipid metabolism transcription factors.

Interestingly, the trans-10, cis-12 isomer of conjugated lino-
leic acid has antiobesogenic metabolic effects [49] but, sur-
prisingly, downregulates PPARg action in adipocytes, lead-
ing to negative effects on insulin sensitivity. The differential 
interaction of individual fatty acids with PPARg is a highly 
complex phenomenon and currently under intense investi-
gation. Contradicting evidence may be ascribed to differing 
experimental models, and, at least partly, to polymorphism 
of the PPARg-1 and -2 genes [101]. Finally, in addition to 
GLUT4, fatty acids can also impact on the transcription of 
the mitochondrial UCPs via PPAR [67,102] thus infl uenc-
ing obesity, and, indirectly, insulin sensitivity.

CONCLUSIONS

The interaction between lipid and carbohydrate metabo-
lism has long been an area of great interest and research. 
The classical theory forwarded by Randle and coworkers in 
1963 [103] stated that increased fatty acid breakdown could 
lead to decreased glucose oxidation via the effects of acetyl-
CoA on pyruvate dehydrogenase. This concept has been 
superseded by in vivo studies [33,34] that have shown that 
increasing free fatty acid concentrations by infusion can in-
hibit the fi rst step leading to glucose oxidation, that is, in-
sulin-stimulated cellular glucose uptake.

Similar to the effects of free fatty acids, the dietary fatty acid 
profi le also impacts on insulin sensitivity [5,9]. Multiple 
mechanisms may be involved in these effects: amongst the 
most exiting new possibilities are the polymorphisms noted 
in the PPARg-2 gene that could explain genetic predisposi-
tion to metabolic syndrome [101] and also the possible link-
ing of the immune system to fat-induced insulin resistance 
via IkB kinase/nuclear factor-kappa B pathway [104].

Extreme caution is advised when following or exploiting mod-
ern fast food dietary trends: the increased use of saturated and 
especially trans- fatty acids in food processing is rapidly leading 
to an avalanche of insulin resistance coupled with type 2 diabe-
tes mellitus in western countries and those adopting a western 
lifestyle. This has been well illustrated by a recent study in India 
[105] where increased consumption of vanaspati, a fat rich in 
trans-fatty acids, is of concern: feeding rats vanaspati leads to 
adipocyte membrane changes and insulin resistance.

The importance of a balanced ratio of omega-6 to omega-3 
intake, as in the ancient Paleolithic diet, was recently test-
ed in the Lyon Heart Study [106]. This study was a prospec-
tive, randomized, single-blinded secondary prevention trial, 
which compared the effects of a modifi ed Crete diet, en-
riched with ALA (ratio of omega-6/3, 4:1), low in saturated 
fat, very low in trans fat and high in vitamin C and E, to that 
of a Step I American Heart Association Diet in the second-
ary prevention of coronary events and death. The American 
Heart Association does not distinguish between omega-6 and 
omega-3 fatty acids, and ignores the detrimental effects of 
trans fatty acids, while proposing a prudent diet low in fat 
and high in carbohydrates. The modifi ed Crete diet clearly 
illustrated reduced risk for coronary heart disease and can-
cer. Western diets have over the years become depleted in 
omega-3 fatty acids, while the widespread use of inexpen-
sive vegetable oils, rich in omega-6’s, have resulted in very 
unfavourable ratios of omega-6: omega-3 of 20:1 and high-
er. It may well be wise for us to return to the hunter-gath-
erer diet of our ancestors or the suggested Mediterranean 
(Crete) type diet [106,107] that contains less saturated and 
trans-fatty acids, and more polyunsaturated fatty acids with 
a much improved omega-6/omega-3 ratio [107].
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