The cloning of the obese (ob) gene from genetically derived mice has been found in normal weight, extremely underweight, and homozygous for the ob gene. Leptin administration has been shown to decrease appetite and increase energy expenditure, leading to a delay in leptin levels. The finding of leptin resistance is highly correlated to indices of body fatness. This relationship is very widely at a given body composition, but are approximately four times greater in obese (31.3 and 24.1 ng/mL) compared with normal weight (11.8 and 8.8 ng/mL) and extreme underweight (5.27 ± 0.3 ng/mL), respectively. Plasma insulin was lower 24 h Post- versus preexercise for the exercise-trained men (P < 0.05). Plasma leptin levels did not differ between time points for the MAX run, immediately after (P < 0.05), and 48 h after exercise (P < 0.05). Plasma insulin levels were lower 24 h Post exercise (3.1 ± 0.3 ng/mL) versus before, immediately after, and 24 h Post exercise (3.0 ± 0.3 ng/mL) compared with normal weight (5.27 ± 0.3 ng/mL). Plasma glucose levels did not change significantly during the endurance test. We found a delayed decrease in leptin 48 h after an extended exercise session, but it was not correlated to changes in leptin levels. We found an increased exercise level of 48 h after an extended exercise session, but it was not correlated to changes in leptin levels. This effect did not appear to be related to changes in insulin or glucose levels. Plasma glucose levels did not change significantly during the endurance test. We found a delayed decrease in leptin 48 h after an extended exercise session, but it was not correlated to changes in leptin levels. This effect did not appear to be related to changes in insulin or glucose levels. Plasma glucose levels did not change significantly during the endurance test. We found a delayed decrease in leptin 48 h after an extended exercise session, but it was not correlated to changes in leptin levels. This effect did not appear to be related to changes in insulin or glucose levels.
101-mile road race, leptin levels were 32% lower at 6 h postexercise compared with preexercise values. These decreases in leptin levels were maintained for 18–24 h after the road race. With the scarcity of data and conflicting results available on the effect of different exercise intensities on the delayed response of plasma leptin levels, we were interested in examining the effects of a short-term, maximal-intensity and a long-term, moderate-intensity exercise bout on plasma leptin levels. Secondly, we wanted to explore the possibility of acute changes in insulin and glucose levels during the two exercise bouts as possible factors contributing to the changes in leptin with exercise. We sought to examine the following hypotheses in this study: 1) a short-term maximal intensity test will not affect plasma leptin levels measured immediately postexercise, and 24 and 48 h postexercise; 2) a moderate-intensity bout of exercise will decrease plasma leptin levels in the 48 h after the exercise; and 3) plasma insulin and glucose levels will not be correlated to plasma leptin levels.

METHODS

Nine healthy male subjects (age range 22–33 y) were recruited to participate in the study based on current activity levels. Inclusion criteria for the study was participation in a minimum of 1 h of moderate intensity physical activity 5–7 days a week. Before exercise compared with preexercise values.

Participants were asked to maintain a 12-h fast before each blood draw. Blood samples were centrifuged (4°C at 1700 × g for 12 min) and plasma was collected and frozen at −20°C until blood assays were conducted. Hematocrit and hemoglobin levels were measured to allow for corrections in hemoconcentration differences that may occur due to the exercise session.

Plasma leptin and insulin concentrations were measured using radioimmunoassay kits from Linco Research (St. Charles, MO, USA) and ICN Biomedicals (Costa Mesa, CA, USA), respectively. All samples were analyzed within the same assay for the hormones. Glucose concentration was measured from plasma at each blood draw by the use of a glucose analyzer (YSI Model 2300 STAT PLUS, Yellow Springs Instrument Inc., Yellow Springs, OH, USA).

One-way repeated-measures analyses of variance (ANOVA) were used to examine changes in leptin, insulin, and glucose across the 48-h period for each exercise test (SPSS version 7.0, SPSS Inc., Chicago, IL, USA). The level of significance for all analyses was set at \(P \leq 0.05 \). Pairwise comparisons with a Bonferroni adjustment were conducted to reveal differences within the ANOVA. Pearson product moment correlations were calculated between leptin, insulin, and glucose to determine the relationship between leptin versus insulin and glucose for both exercise tests at similar times. Correlations were also conducted for the END run between leptin and total energy expenditure (kcal), fat used during the exercise session (g), and carbohydrate used during the exercise session (g). A paired samples \(t \) test found no difference between preexercise leptin concentrations for the two exercise bouts (\(P > 0.05 \)). Therefore, data for this time period were pooled and the values were correlated with BMI, percent body fat, body mass, total energy intake (kcal), fat intake (g), and carbohydrate intake (g).

RESULTS

Mean body composition for the participants was 10.8% ± 1.5% fat (mean ± standard error of mean), ranging between 4.5% and 19.4%. Body mass was 74.5 ± 1.9 kg, ranging between 66.8 and 86.1 kg. BMI was 24.2 ± 0.7, ranging between 20.9 and 27.2. Maximal oxygen consumption was 57.8 ± 2.1 mL·kg⁻¹·min⁻¹, ranging between 50.3 and 69.2 mL·kg⁻¹·min⁻¹. Average daily dietary intake and exercise energy expenditure during the exercise sessions are found in Table I. We observed that total energy and macronutrient dietary intake were similar for participants across the individual recording days (data not shown), therefore for simplicity each individual’s mean energy and macronutrient intake across the recording days were determined and only these results are presented. Approximately 60% of the calories came from carbohydrate and 25% from fat. Exercise logs indicated that par-
Participants maintained their normal exercise routines with little variation from day to day throughout the duration of the testing period (data not shown).

Energy expenditure was four and a half times greater during the END test compared with MAX. Relative exercise intensity during the endurance test was 69% ± 2% of maximum oxygen consumption with a mean respiratory exchange ratio 0.91. Based on this value, calculated energy usage during the END run was 614 kcal from carbohydrates and 257 kcal from fat.

Separate one-way repeated-measures ANOVAs were conducted for plasma leptin, insulin, and glucose concentrations across the blood collection times (preexercise, immediately postexercise, 24 h postexercise, and 48 h postexercise) for MAX and END (Table II). Leptin values were not significantly different across the four times for the MAX run. However, significant differences were found across time for the END run ($F(3,18) = 10.21, P \leq 0.05$). Post hoc analyses indicated that the preexercise and postexercise leptin values were significantly greater than 48 h postexercise. There was a trend ($P = 0.10$) for the preexercise leptin values to be greater than those measured at 24 h postexercise. There was no significant difference between leptin measurements taken preexercise and immediately postexercise.

For insulin, significant differences were found across the four time periods for both the MAX and END runs ($F(3,21) = 9.94, P < 0.05$, $F(3,24) = 4.76, P < 0.05$, respectively). Pairwise comparisons for the MAX test data indicated that there was a delayed decrease in insulin levels from the exercise session, and this difference became significant by 48 h postexercise, as insulin levels were significantly lower after the second day of exercise compared with either the pre- or immediately postexercise measurement. There was a trend for immediately postexercise levels to be greater than those at 24 h postexercise, but this difference failed to reach statistical significance ($P = 0.08$). A similar trend was also apparent for the END test with a delay in response observed. A significant decrease in insulin was observed at 24 h postexercise (but not 48 h postexercise) as compared with preexercise values.

Analyses showed that both the MAX and END exercise tests produced significant changes in blood glucose levels across the experiment ($F(3,24) = 26.53, P < 0.00$, $F(3,24) = 3.86, P < 0.05$, respectively). Post hoc analyses revealed that for MAX, glucose increased significantly during the exercise bout, but returned to preexercise values by 24 h and 48 h postexercise. Although the omnibus test was significant, post hoc comparisons did not reveal any significant differences between individual means for glucose during the endura
tance test.

Pearson product moment correlations were conducted between immediate postexercise, 24-h postexercise, and 48-h postexercise leptin values and total energy expenditure for both MAX and END tests, along with carbohydrates and fats used for the endurance test. Total energy expenditure for the END run was negatively correlated to leptin concentration at 24 h ($r = -0.746, P = 0.021$) and 48 h postexercise ($r = -0.824, P = 0.006$). No other correlations for either MAX or END exercise sessions were significant. In addition, correlational analyses of leptin with insulin and glucose were performed for both MAX and END tests. There were no statistically significant correlations for similar times for either leptin and insulin or leptin and glucose.

Because the paired samples t test showed no significant difference between the preexercise leptin values for MAX and END ($t[8] = -0.138, P > 0.05$), leptin values were pooled and the mean preexercise leptin concentration, 3.47 ng/mL (SEM = 0.51), was used for correlation analyses of body fat, body mass, BMI, and dietary intake. A significant correlation was observed between preexercise leptin and percent body fat ($r = 0.900, P = 0.001$) and weight ($r = 0.68, P = 0.044$). There were no significant correlations between preexercise leptin levels and dietary variables, including total energy intake, carbohydrate intake, and fat intake.

DISCUSSION

As hypothesized, this research study provides evidence that a 1-h duration, moderate intensity exercise bout that expends ~900 kcal decreases plasma concentrations of leptin over a 48-h period. In contrast, a short-duration, maximal test that expends ~200 kcal had no apparent effect on plasma leptin. Although changes in plasma levels of insulin and glucose were also apparent from the exercise sessions, there were no correlations between these variables with plasma leptin levels. At 24 and 48 h after the END run, plasma leptin levels were lowered by 18% and 40%, respectively. This study did not examine whether these changes continue past the current day.
48 h. Our results are in agreement with Essig et al.21 and van Aggel Leijssen et al.,22 who also observed significant decreases in plasma leptin 48 h after an exercise session. Essig and colleagues found a significant decrease in leptin at 48 h postexercise during the 1500- and 800-kcal exercise bouts. In addition, we evaluated a short-term strenuous exercise bout in which subjects expended approximately 200 kcal, to determine if a shorter-duration, high-intensity exercise would affect plasma leptin levels. Our study is unique in that a comparison was done investigating leptin responses to short-duration, high-intensity exercise and moderate intensity exercise for extended periods postexercise. These results suggest that the MAX test was not of sufficient energy expenditure or duration to alter leptin levels.

Our findings are consistent with other studies in which no significant changes in leptin levels were found during either a short-duration exercise (10–12 min)17,20 or a relative low-intensity exercise period (<50% of VO\textsubscript{max}).19,20 However, these studies investigated this response only immediately postexercise.17,19 4 h after exercise.20 By extending the follow-up period to 48 h postexercise, we have demonstrated that there is no delayed response in leptin levels with this type of exercise bout as observed with the longer duration exercise. A possible explanation for our findings is that high levels (≥800 kcal) of energy expenditure may be needed to elicit changes in leptin levels. It could be postulated that this level of energy expenditure may be necessary to elicit an, as of yet, unidentified neural or hormonal signal that depresses leptin synthesis. Alternatively, mobilization of non-esterified fatty acids from adipose tissue for use as an energy substrate may be a controlling factor in leptin levels, consistent with results from van Aggel-Leijssen and colleagues.22 Additional research would help determine the level of energy expenditure or metabolic response from the exercise that alters plasma leptin. This information could be valuable in understanding mechanisms underlying its control and consequential effects on energy balance in the body.

The delayed decrease in plasma leptin observed with the END run has been confirmed by others.21,22 Furthermore, the observation that plasma leptin levels were not affected immediately after exercise is consistent with many other studies.16–20 However, an extended exercise bout, consisting of a 36-h, 101-mile run, was shown to decrease plasma leptin values by 33% immediately postexercise.18 In that study, leptin was still 16% lower from baseline values at 18–24 h after the race. Similarly, in our study leptin values were 18% lower 24 h after the endurance exercise in comparison with preexercise values, although the difference was not statistically significant. No other studies have replicated these rapid responses observed by Landt et al.;18 nor has any other study had participants exercise at this level.

Wisse et al.15 provided evidence that leptin may be closely regulated to glucose utilization by the adipocytes. Although it is recognized that exercise more closely reflects glucose use by muscle cells, it could be argued that exercise shifts glucose utilization by the adipose tissue to the muscle cells. Thereby exercise may indirectly affect glucose metabolism in adipocytes. Although we did not look at glucose use by either adipose or muscle tissue in this study, it was of interest to determine if changes in glycemia are related to the decrease in leptin after exercise. We did find that neither plasma glucose nor insulin changes were correlated with plasma leptin levels. It has been documented that acute rises in glucose or insulin in women have no significant correlation with serum leptin levels.23 Thus, it is not surprising that the acute changes with insulin and glucose during the exercise had no significant relationship with plasma leptin levels, even though the genders differ between our study and that of Ryan and Elahi.24 The continued decrease in leptin at 48 h postexercise after the 60-min, moderate-intensity run further suggests that factors other than insulin might influence leptin levels, because changes in insulin levels were not apparent at this later time point. These other mechanisms may include total or rate of energy expenditure, other hormones, or energy substrates. Consistent with this hypothesis, van Aggel-Leijssen and colleagues22 observed that changes in leptin levels 24 h postexercise, fasting, and overfeeding were most highly correlated with non-esterified fatty acid levels and glucose, but not insulin.

Alternatively, it could be argued that the leptin response following the END run may be due to changes in the body’s energy balance. Van Aggel-Leijssen and colleagues22 found a significant decrease in leptin levels with exercise in subjects only when they were maintained in energy balance, with no change in leptin when subjects were in negative energy balance. Based on these findings, it may be suggested that the decrease in leptin is not likely the result of a negative energy balance created by exercise, but may be related to other exercise-induced changes. We did not examine energy balance in this study. However, further studies that control for energy balance may be warranted. Furthermore, it was also found that exercising with a positive energy balance condition over 24 h caused an increase in the amplitude of the 24-h plasma leptin curve, thereby thwarting the decrease in leptin caused by exercise.22

Leptin levels at 24 and 48 h postexercise were negatively correlated to exercise energy, with higher energy expenditure associated with lower leptin levels. The lack of correlation between the amount of fat used and plasma leptin level indicates that fat metabolism due to the exercise test is not related to postexercise decreases in leptin. Subjects oxidized an average of 28 g of fat during the endurance test.

These findings are significant because they address how different exercise intensities affect leptin response. Obese individuals have been shown to have high levels of plasma leptin.6 Although this study did not measure leptin response to exercise in obese individuals, it could be extrapolated that exercise could be an important component in decreasing leptin levels in individuals who are obese. Additionally, many obese individuals are resistant to leptin’s actions, which is hypothesized to result from an insensitivity of receptors to leptin because of hyperleptinemia, similar to non-insulin-dependent diabetics who are insensitive to insulin. Exercise could potentially be beneficial in treating this problem. The decrease in leptin concentration that is caused by an exercise bout could increase the effectiveness of these receptors, thus allowing the leptin to function in a typical manner. Thus, with a better understanding of the impact of exercise on leptin concentration, we have a more precise idea about the prevention and treatment of obesity.

Several limitations exist in this study. The small sample size introduces low power into the analyses. All subjects were healthy, active men, thus, the findings cannot be generalized to other populations. This study did not consist of a control group nor did it control for factors such as differences in diet or exercise between individuals. Lastly, it is not clear from this study if the exercise bout in itself caused the changes in plasma leptin levels or if it was a result of changes in energy balance. This area needs to be researched more to define the type of exercise, the intensity, the effect of energy balance, and how long the decrease in leptin occurs.

In summary, the findings from this study indicate that the type of exercise affects the leptin response. A long-duration, moderate-intensity bout of exercise expending 900 kcal causes a decrease in plasma leptin concentration for up to 2 d postexercise, whereas a short-duration, maximal-intensity exercise bout (~200 kcal) shows no effect. The lack of a correlation with plasma insulin suggests that this hormone does not play a role in the leptin changes after exercise. These findings and those of van Aggel-Leijssen and colleagues22 give some indication that the exercise bout may have a significant effect on plasma leptin levels independent of the effects of exercise on energy balance; however, more research needs to be conducted in this area.
CONCLUSION

Long-duration, moderate-intensity exercise decreases plasma leptin concentration with a delayed response (48 h postexercise), whereas a short-duration, maximal-intensity exercise bout (~200 kcal) had no effect on leptin levels. No correlation was found between leptin and insulin or glucose, indicating that they are not involved in the regulation of leptin at these time points in lean, healthy men.

ACKNOWLEDGMENTS

The authors acknowledge Dr. Allan Goldfarb, PhD, and Donna Gronewoller, BS.

REFERENCES

(For an additional perspective, see Editorial Opinions)