MYTHS AND THE MICROCIRCULATION

Before exploring recent findings, it is instructive to address some of the mythical dogmas, still prevalent in the literature, that obscure the understanding of structure-function relationships in the microcirculation.

Capillary geometry. Following the pioneering work of August Krogh in the early 20th century (26), it became convenient to consider capillaries as straight unbranched structures. However, examination of skeletal muscle microvascular corrosion casts by Ishikawa and colleagues (16); see also (10) and the elegant morphometric analyses of Mathieu-Costello, Weibel, and others (29) has revealed that capillaries display a complex three-dimensional geometry that is dependent principally upon muscle sarcomere length (Fig. 1, upper panel). Specifically, capillaries exhibit intercapillary connectivity (i.e., anastomoses) and a highly tortuous geometry at short physiological sarcomere lengths. As sarcomere length becomes greater, capillaries become straightened and stretched such that the narrowed lumens may impede red blood cell (RBC) flow (23,35).

Capillary recruitment during exercise. The opinion that many capillaries do not flow in resting muscle and are “recruited” during contractions, if true, would help explain the increased muscle O₂ diffusing capacity with exercise. However, there is solid experimental evidence in intact conscious animals (19) and multiple individual muscles examined by intravital microscopy (21–24,34) that the vast majority of capillaries support red blood cell (RBC) flux (i.e., flow) at rest. This raises the probability that the bulk of the increased capillary diffusing capacity in exercising muscle comes from combination of: A) a better utilization of capillary surface area along the length of individual capillaries, in part due to exercise-induced elevation of “tube” hematocrit (Hct) (and thus RBC-to-capillary surface contact) and also increasing the proximal-to-distal capillary length over which O₂ is exchanged; and B) intramyocyte effects related to the improved O₂ transport ability of deoxygenated versus oxygenated myoglobin (15).

Capillary Hct. The Hct within the capillary is certainly not the same as that found systemically. Rather, mean capillary Hct in resting muscle may be as low as 10–15% and becomes elevated towards systemic values (40–50%) during physiological or chemically induced hyperemia (8,22,24,25,43,44). Moreover, there is an enormous heterogeneity in Hct among capillaries with values ranging from 1 to 50% within the same muscle (22,44).

O₂ partial pressure (P(O₂)) profile within muscle. The notion that P(O₂) during exercise falls systematically with increasing distance from the RBC to the mitochondria is contradicted by the finding of a low (1–4 mm Hg) and fairly uniform intramyocyte P(O₂) (P(O₂) intra, (15,32,38)). Thus, P(O₂) falls precipitously in that short physical space (0.5–2 μm) from the RBC (where it may approach arterial values >90 mm Hg) to the immediately subsarcolemmal cytoplasmic space (Fig. 1, lower panel and Fig. 2). Two of the most striking consequences of this behavior are: A) the greatest resistance to tissue O₂ diffusion is found in close proximity to the RBC, which means that events within the capillary are a primary determinant of muscle O₂ diffusing capacity (supported by the modeling studies of Groebe and
Thews (14) and Federspiel and Popel (11) as well as the demonstrated dependence of tissue O2 diffusing capacity on capillary RBC density in frog skin (28); and B) the intramyocyte distance for O2 diffusion is immaterial for mitochondrial O2 delivery with there being little opportunity for anoxic loci in healthy muscle (15).

Site of O2 offloading. Under certain conditions, for example, in resting muscle of deeply anesthetized rodents, there is evidence that the capillaries may not constitute the sole or indeed the primary site of diffusive O2 delivery. Specifically, Swain and Pittman (46) demonstrated that about two thirds of the arteriolar-venular O2 loss occurred in the arterioles rather than the capillaries. Whereas this phenomenon is more likely to occur in very low flow conditions such as those present in noncontracting muscle in individuals suffering from hypotension, heart failure, or diabetes, its importance in contracting muscle remains to be determined.

PROFILE OF CAPILLARY RBC DYNAMICS AT EXERCISE ONSET IN HEALTH

At the onset of exercise, measurements of cardiac output or blood flow (Q) across the exercising limbs or muscle (Qm) reveal that QO2,m (Qm × arterial O2 content) increases extremely quickly. In fact, in almost all instances Qm dynamics are appreciably faster than VO2,m dynamics (7,13,24,45,49). Although this observation suggests that QO2,m dynamics per se are probably not limiting VO2,m kinetics, without knowing the spatial and temporal distribution of the increased QO2,m within muscle, one cannot be certain that the actively contracting myocytes that have increased their VO2 requirement, have access to that O2. To address this issue, Kindig and colleagues (24) used an optically gated intravital microscopy method to analyze capillary hemodynamics and RBC distribution patterns at the onset of electrically induced muscle contractions (1 Hz). The rat spinotrapezius was selected for its superb optical properties and its mixed fiber composition and oxidative capacity, which are similar to human locomotory muscles (rat (5); human (27)). As evident in Figure 3, capillary RBC velocity and flux (synonymous with Qm) increased without discernible delay (i.e., /H11021 500 ms) within the first contraction–relaxation cycle (1 s) and achieved an apparent steady state within 30 – 45 s. Moreover, there appears to be a biphasic pattern in the RBC flux profile that coheres both with bulk Qm measurements and also with the temporal sequence of putative mediators for the exercise hyperemia (6,24,47,48). Specifically, an essentially instantaneous increase in Qm (muscle pump or rapid vasodilation of unknown origin) occurs, and is followed by a less rapid further rise of Qm to the steady state (nitric oxide, propagated...
vasodilation, vasodilatory metabolites, etc.). What these measurements could not evaluate was whether, in this preparation, these \dot{Q}_m (and thus $\dot{Q}_O_2 m$) dynamics were indeed faster than those for $\dot{V}O_2 m$.

MUSCLE MICROVASCULAR PO$_2$ AND O$_2$ UTILIZATION/EXCHANGE AT EXERCISE ONSET

Muscle microvascular pressure of oxygen, PO$_2$ ($PO_{2,mv}$). One technique that can measure the instantaneous relationship between $\dot{Q}_O_2 m$ and $\dot{V}O_2 m$ is phosphorescence quenching, which was developed initially for providing rapid, high-fidelity measurements of PO$_2$ in biologic samples (42). Selection of an oxyphor (porphyrin compound that signals the oxygen-dependent quenching of phosphorescence) that can be restricted to the intravascular space enables $PO_{2,mv}$ measurements to be made at frequent intervals without the necessity for compromising muscle vascular function (33,36). Thus, $PO_{2,mv}$ evaluates $\dot{Q}_O_2 m$-to-$\dot{V}O_2 m$ matching as well as measuring the O$_2$ pressure head that drives blood–myocyte O$_2$ diffusion according to Fick’s law:

$$\dot{V}O_2 m = DO_2 m(PO_{2,mv} - PO_{2,intra})$$

where $DO_2 m$ is the muscle effective diffusing capacity and $PO_{2,mv}$ and $PO_{2,intra}$ are the PO$_2$’s within the microvasculature and myocyte, respectively (Fig. 4). Moreover, as contracting $PO_{2,intra}$ is very close to zero (15), $PO_{2,mv}$ represents the majority of the mean PO$_2$ diffusion gradient. Using this technique, Behnke et al. (4) tested the hypothesis that the capillary $\dot{Q}_O_2 m$ kinetics would be sufficiently rapid...
such that the \(PO_2^{mv} \) profile at exercise onset would not evidence an \(O_2 \) limitation (Fig. 5). These investigators considered that a \(PO_2^{mv} \) response that fell immediately and precipitously to values below those present in the steady state, would be indicative of a \(QO_2^{m} \) (and therefore an \(O_2 \)) limitation (Fig. 5, left panel). As demonstrated in Figure 6, at the onset of contractions, \(PO_2^{mv} \) remained constant for 10–20 s before falling exponentially to the steady-state value. There was absolutely no evidence of \(PO_2^{mv} \) falling below steady-state values as would be the expected consequence of \(QO_2^{m} \) being limited (relative to \(VO_2^{m} \)) across the transient (Fig. 5, left panel).

Muscle \(O_2 \) utilization (\(VO_2^{m} \)) at exercise onset.

One particularly exciting opportunity arising from these investigations by Behnke et al. (4) and Kindig et al. (24) was the ability to calculate \(VO_2^{m} \) at the site of \(O_2 \) transfer within the microcirculation. This is an important and contentious issue, in part, because the work of Grassi et al. (13) suggested that \(VO_2^{m} \) increases only after a delay of several seconds from the onset of contractions. However, the concentrations of phosphate-linked controllers of mitochondrial \(VO_2 \) change within the first contraction(s) (40,41,54). If there really is a mitochondrial quiescent period in the presence of intracellular perturbations thought crucial to increase mitochondrial ATP production (and therefore \(VO_2^{m} \)), current theories of metabolic control (1,31) would have to be drastically revised.

Assuming that \(PO_2^{mv} \) is qualitatively analogous to venous \(PO_2 \), Behnke et al. (3) combined these \(PO_2^{mv} \) measurements with capillary RBC flux at exercise onset to resolve an essentially instantaneous \(VO_2^{m} \) (Fig. 7).

Because this \(VO_2^{m} \) is determined at the level of the microcirculation and the time resolution of the microcirculation hemodynamics measurement is <500 ms and that of \(PO_2^{mv} \) no greater than 2 s, confounding effects of microvascular RBC heterogeneities, shunts, and transit times to the site of measurement are avoided. As demonstrated in Figure 7, \(VO_2^{m} \) increases without apparent delay from exercise onset. This conclusion arises also from the recent experiments of Kindig et al. (20) in the amphibian myocyte and Grassi et al. (12) in the dog gastrocnemius–plantaris complex. However, one point of contention here is that some of the single myocyte studies do show evidence of a delay in the fall of intramyocyte \(PO_2 \) at the onset of contractions, and this apparent discrepancy remains to be fully resolved (see the companion paper by Walsh et al. in this symposium’s proceedings).
EFFECTS OF DISEASE ON MICROVASCULAR FUNCTION AND O₂ EXCHANGE

Physiologists and clinicians who have examined exercise energetics in heart failure and diabetic populations are aware that these individuals experience extremely slow pulmonary VO₂ kinetics at exercise onset (17,51). One consequence of this sluggish VO₂ response is an enlarged O₂ deficit (53) that exacerbates the fall in creatine phosphate and other intracellular perturbations (e.g., ΔADP, ΔCr, ΔPi, ↑H⁺). Thus at any given exercise intensity, glycogenolysis is stimulated to a greater extent in such patients than in their healthy counterparts, and exercise tolerance is compromised. This is particularly tragic for patients suffering from heart failure or diabetes because exercise has great therapeutic benefits that will not be realized if the patient cannot, or through discomfort will not, be physically active.

Capillary RBC dynamics. Figure 8 compares the profile of capillary RBC dynamics in skeletal muscle in chronic heart failure (CHF) to those observed previously in healthy muscle (37). In these animals, heart failure was induced by surgical ligation of the left coronary artery. The resultant myocardial infarction increased left ventricular end-diastolic pressure to approximately 11 mm Hg (i.e., moderate CHF), and was estimated to have destroyed approximately 30% of the left ventricular wall. In resting muscle, the percentage of flowing capillaries was reduced from 80–90% to 50–60% (21) and those capillaries that did not support RBC flux at rest did not start flowing during contractions (37). Notice that the almost instantaneous increase in RBC flux found in healthy skeletal muscle at the onset of contractions (37) does not support RBC flux in CHF animals. From Richardson et al. (37), with permission.

In CHF patients during submaximal exercise, the venous effluent from exercising muscles or limbs usually contains less O₂ than that of healthy controls (18). For many years, this led scientists and clinicians to the presumption that the ability to extract O₂, that is, microcirculatory function, was not impaired in these patients. However, it is evident that if Qm is low and the percentage of capillaries supporting RBC flux is reduced, there must be impaired conductive and diffusive O₂ delivery. Figure 9 uses the elegant analysis developed by Wagner and colleagues (39,50) to demonstrate how a pathologically low muscle O₂ diffusing capacity (DO₂,m) given by the slope of the straight line projecting from the origin of Fig. 9, can coexist with reduced microvascular O₂ content in CHF. A major challenge facing scientists today is resolving the mechanistic bases for these...
impairments in muscle O2 conductive and diffusive O2 delivery and developing strategies for combating them. A detailed analysis of the key relevant derangements present in heart failure is beyond the scope of this review. However, it is worth listing some of the pathological sequelae that may impact mitochondrial O2 delivery in heart failure (17): reduced bulk Q˙m (conductive O2 delivery) (mechanisms: cardiac output, vessel stiffness, venous congestion, sympathetic tone, endothelial nitric oxide synthase, circulating angiotensin II), reduced O2 diffusive delivery (mechanisms: proportion of capillaries supporting RBC flux, total RBCs adjacent to contracting muscle fibers, QO2-to-VO2 mismatch).

Muscle microvascular PO2 (PO2mv). In healthy muscle, we explored the hypothesis posed above that, if muscle O2 delivery was indeed limiting VO2m kinetics, PO2mv would be expected to fall immediately and precipitously at the onset of contractions (Fig. 5, lefthand side). Further, the likelihood was recognized that PO2mv would fall transiently below steady-state levels before the increase of QO2m to levels appropriate to sustain the increased metabolic rate (i.e., VO2m). Whereas a QO2m limitation was not found to be present at exercise onset in healthy muscle, we hypothesized that the plethora of pathologically induced impediments to muscle O2 conduction and diffusion listed above would likely change the site of VO2m kinetics limitation. This hypothesis was addressed in experimental animals following induction of moderate CHF in which muscle oxidative enzyme activities (e.g., citrate synthase) are preserved and severe CHF where they are not (9). This latter distinction is important where the balance between QO2m and VO2m is being evaluated. Specifically, if QO2m dynamics are slowed in the absence of altered VO2m kinetics.

FIGURE 10.—Effect of moderate (upper panel) and severe (lower panel) chronic heart failure (CHF) on the microvascular PO2 (PO2mv) profile at the onset of contractions (time 0) in rat spinotrapezius muscles. Profiles are also given for healthy control (dashed curves) and CHF (solid curves) rats. Left ventricular end-diastolic pressures in the control, moderate CHF, and severe CHF were 3, 9, and 27 mm Hg, respectively (all P < 0.05). Note the substantial lowering of PO2mv across the transient in both CHF populations. Also note that in the severe CHF condition PO2mv remains substantially below control even in the “steady state,” whereas for moderate CHF PO2mv in the steady state is not different from healthy control. Data from Diederich et al. (9).

FIGURE 11.—Upper panel: Theoretical construct that explains the effect of altered muscle (myocyte) O2 delivery on VO2m kinetics. Within healthy muscle, VO2m kinetics are independent of O2 delivery (right side of graph). However, chronic heart failure (CHF) reduces both conductive and diffusive O2 transport such that VO2m kinetics (denoted by the time constant, τ) become slowed (left side of graph). Lower panel depicts these slowed VO2m kinetics present in CHF. Note the substantial increase in the O2 deficit that is approximated as that area below a horizontal line projected from the asymptote (of the healthy response) back to the abscissa.
(moderate CHF), one of the \(\text{PO}_2 \text{mv} \) profiles shown in the lefthand side of Figure 5 is expected. However, if both \(\text{QO}_2 \text{mv} \) and \(\text{VO}_2 \text{mv} \) are slowed (severe CHF), the \(\text{PO}_2 \text{mv} \) profile may simply demonstrate slow kinetics that resolve to very low \(\text{PO}_2 \text{mv} \) values (9). Figure 10 demonstrates the results of these experiments and provides evidence that heart failure results in a lowered microvascular \(\text{O}_2 \) pressure head (i.e., \(\text{PO}_2 \text{mv} \)) across the transition to contractions that is subsequently resolved (i.e., \(\text{PO}_2 \text{mv} \) increases to steady-state contracting values not different from control) in CHF of a moderate but not severe nature. In both situations, however, \(\text{VO}_2 \text{mv} \) kinetics are expected to be slowed and the \(\text{O}_2 \) deficit increased because of the reduction in \(\text{PO}_2 \text{mv} \) across the transition to contractions in accordance with Fick’s law (Fig. 11). Collectively, these results support the notion that \(\text{QO}_2 \) kinetics are not limiting \(\text{VO}_2 \) kinetics in healthy muscle but may do so in diseases such as heart failure where \(\text{QO}_2 \) kinetics are so slow that \(\text{PO}_2 \text{mv} \) is reduced below that found in healthy skeletal muscle.

CONCLUSIONS

Resolution of \(\text{O}_2 \) exchange at the muscle microvascular level is a challenging undertaking that, at present, necessitates use of selective animal models and muscles. By their very nature, these experiments must be conducted using electrically induced muscle contractions in anesthetized animals. Notwithstanding these considerations, combination of intravital microscopy and phosphorescence quenching techniques have opened a unique and informative window into vascular function and muscle energetics during contractions. In healthy muscle, capillary RBC flux and \(\text{QO}_2 \text{mv} \) increase within the first contraction cycle, and this is matched by an essentially immediate and proportional increase in \(\text{VO}_2 \text{mv} \) such that \(\text{PO}_2 \text{mv} \) (and thus the driving pressure for blood–myocyte \(\text{O}_2 \) diffusion) is sustained across the first few seconds of the transition. Subsequently, \(\text{VO}_2 \text{mv} \) increases at a greater rate than \(\text{QO}_2 \text{mv} \), and \(\text{PO}_2 \text{mv} \) falls exponentially to the steady-state level. In diseases such as chronic heart failure, \(\text{PO}_2 \text{mv} \) falls rapidly below healthy control values indicative of \(\text{QO}_2 \)-to-\(\text{VO}_2 \text{mv} \) mismatching. According to Fick’s law, this is expected to reduce blood–myocyte \(\text{O}_2 \) transfer and slow \(\text{VO}_2 \text{mv} \) kinetics. One consequence of slowed \(\text{VO}_2 \text{mv} \) (and thus pulmonary \(\text{VO}_2 \)) kinetics is the generation of an increased \(\text{O}_2 \) deficit and a greater degree of intracellular perturbation that accelerates the fatigue process. Animal models of heart failure and other diseases present the invaluable opportunity to investigate the mechanistic bases for such muscle dysfunction at a level not possible in humans and without the confounding effects of altered activity patterns and therapeutic treatments.

REFERENCES

37. Richardson, T. E., C. A. Kindig, T. I. Musch, and D. C. Poole. Effects of chronic heart failure on skeletal muscle capillary he-

