Effect of Acute Static Stretch on Maximal Muscle Performance: A Systematic Review

ANTHONY D. KAY1,2 and ANTHONY J. BLAZEVICH2

1Sport Exercise & Life Sciences, The University of Northampton, Northampton, UNITED KINGDOM; and 2School of Exercise, Biomedical & Health Sciences, Edith Cowan University, Joondalup, Western Australia, AUSTRALIA

ABSTRACT

KAY, A. D., and A. J. BLAZEVICH. Effect of Acute Static Stretch on Maximal Muscle Performance: A Systematic Review. Med. Sci. Sports Exerc., Vol. 44, No. 1, pp. 154–164, 2012. Introduction: The benefits of preexercise muscle stretching have been recently questioned after reports of significant poststretch reductions in force and power production. However, methodological issues and equivocal findings have prevented a clear consensus being reached. As no detailed systematic review exists, the literature describing responses to acute static muscle stretch was comprehensively examined. Methods: MEDLINE, ScienceDirect, SPORTDiscus, and Zetoc were searched with recursive reference checking. Selection criteria included randomized or quasi-randomized controlled trials and intervention-based trials published in peer-reviewed scientific journals examining the effect of an acute static stretch intervention on maximal muscular performance. Results: Searches revealed 4559 possible articles; 106 met the inclusion criteria. Study design was often poor because 30% of studies failed to provide appropriate reliability statistics. Clear evidence exists indicating that short-duration acute static stretch (<30 s) has no detrimental effect (pooled estimate = −1.1%), with overwhelming evidence that stretch durations of 30–45 s also imparted no significant effect (pooled estimate = −1.9%). A sigmoidal dose–response effect was evident between stretch duration and both the likelihood and magnitude of significant decrements, with a significant reduction likely to occur with stretches ≥60 s. This strong evidence for a dose–response effect was independent of performance task, contraction mode, or muscle group. Studies have only examined changes in eccentric strength when the stretch durations were >60 s, with limited evidence for an effect on eccentric strength. Conclusions: The detrimental effects of static stretch are mainly limited to longer durations (≥60 s), which may not be typically used during preexercise routines in clinical, healthy, or athletic populations. Shorter durations of stretch (<60 s) can be performed in a preexercise routine without compromising maximal muscle performance. Key Words: MUSCLE STRENGTH, WARM-UP, FORCE REDUCTION, PREPERFORMANCE STRETCH

It is well documented that both physical performance and injury risk can be altered by the performance of a complete preexercise routine (a warm-up) before intense physical work (2,113). Static stretching increases range of motion (ROM) and can also decrease musculotendinous stiffness, even during short-duration (5–30 s) stretches (6,52). Furthermore, a recent review (70) has suggested that there is evidence that preperformance stretching can reduce the risk of acute muscle strain injuries. However, given that multi-intervention preexercise routines commonly include cardiovascular work, progressively intense muscular contractions and muscle stretching, the specific element or combination of elements responsible for improving performance and reducing injury risk is impossible to ascertain. This issue has been raised in several reviews of the literature, which report equivocal findings regarding the benefits of muscle stretching as a preventative tool for injury risk (70,99,112). Furthermore, numerous publications have reported that acute passive static muscle stretch can induce significant reductions in low-speed (strength), moderate-speed (power), and higher-speed (speed) force production (12,15,21,25,27,40,52,58,59,65,69,77,78,82,96,105,107,119). Accordingly, the inclusion of static stretching in a preexercise routine before the performance of maximal strength-, power-, and/or speed-dependent activities is thought to negatively affect our ability to maximally perform simple and complex movements (movement performance).

A growing body of research has highlighted a detrimental effect of muscle stretching on maximal muscular performance, with some authors specifically examining stretch-induced force deficits in an attempt to identify the possible mechanical, physiological, and neurological mechanisms underpinning these changes in force (40,53,54). This has resulted in the publication of a position statement by the European College...
of Sport Sciences (63), which concluded that there was firm evidence that an acute bout of stretching could diminish performance in tests requiring maximal muscle efforts. This finding is in agreement with an earlier systematic review (94) examining acute and chronic responses of various stretch modalities on muscular performance. However, a subsequent review by Rubini et al. (89) revealed equivocal effects of static, ballistic, and proprioceptive neuromuscular facilitation stretching on maximal force production. The authors concluded that, although the majority of studies documented a deleterious effect on strength, the broad remit of their review (focusing on both acute and chronic effects, different stretch modalities, and various durations) resulted in equivocal findings. Simultaneously, Young (116) specifically addressed the use of acute static stretching in preexercise routines and concluded that there were equivocal results regarding the effects of acute stretch, possibly resulting from major issues in research design (including a lack of control or reliability analysis) and the long, practically irrelevant durations of the imposed stretches. A more recent review (70) examining the effects of various stretch modes on injury prevention and performance suggested that, although stretching may reduce the acute incidence of muscle strain injuries, there was an abundance of literature demonstrating a negative effect of stretch on performance. Although collectively these four articles report equivocal effects of stretch on maximal force and power production, there is a predominant theme that acute muscle stretch can significantly impair muscle performance and that it should be used with caution in a preexercise routine. A consequence of the detrimental reports in the literature was a recent change in the American College of Sports Medicine’s guidelines (3) to suggest the removal of static stretching as part of a warm-up routine and to only include cardiovascular work when strength or power was important to performance.

Closer examination of these reviews revealed that relatively few studies, which specifically address the effects of acute static stretch (n = 17 [63], n = 32 [70], n = 36 [89], n = 21 [94], n = 21 [116]), were cited. To date, although other generic reviews examining the effects of various muscle stretching modes on performance and injury risk exist, no systematic review has focused specifically on the acute effects of static stretching on maximal muscle efforts. Given that static muscle stretching is the most common form of preexercise stretching to be used in clinical, normal, and athletic populations, there are a considerable number of methodological issues reported in the literature (116). Also, given that numerous articles have been published since Rubini et al. (89) and Young (116) published their findings in 2007 (n = 64), the aim of the present review was to provide a detailed systematic examination of the acute effects of passive static stretch on performance in strength-, power-, and speed-dependent tasks. Furthermore, given the equivocal findings reported previously in the literature, the specific effects of static stretch duration, test contraction mode, and the muscle group tested were examined.

METHODS

Search strategy. The latest PRISMA guidelines for conducting a systematic review (73) were followed, including the four-step systematic approach of identification, screening, eligibility, and inclusion. We used a federated search tool (MetaLib) to search four databases concurrently (MEDLINE (1966–2011), ScienceDirect (1823–2011), SPORTDiscus (1985–2011), and Zetoc (1993–2011)) for articles using an acute static stretch–based intervention examining a maximal muscular performance outcome measure; we completed our last search on February 16, 2011. Search terms within the article title were “static stretch,” “acute stretch,” “stretch & effects,” “stretch & force,” “stretch & power,” and “stretch & speed.” Additional searches were conducted on eligible articles using the first author’s surname and the search term “stretch*” in the title, with recursive reference screening of eligible articles performed to identify other possibly relevant articles (*enables other “stretch” word derivatives, e.g., stretching, stretches, to be included).

Study selection and inclusion criteria. The review included original research articles examining the effects of an acute static stretch intervention on a maximal voluntary muscular performance outcome measure in strength-, power-, and speed-dependent tasks. Randomized and quasi-randomized control trials were included, which met the PEDro inclusion criteria: 1) the comparison of at least two interventions, 2) that interventions were currently part of physiotherapy practice, 3) that interventions were applied to human subjects, 4) there was randomization of interventions, and 5) the article was a full article published in a peer-reviewed journal. Intervention-based studies examining prestretch and poststretch data that did not meet the first criterion (comparison of at least two interventions) were also included. One reviewer excluded obviously irrelevant articles by screening the titles and abstracts, with a 5% sample of the excluded articles verified by a second reviewer. Abstracts of the remaining articles were assessed by one reviewer, with articles selected for exclusion being verified by a second reviewer. Full texts of the remaining articles were then obtained and independently assessed by two reviewers, with articles selected for exclusion agreed by both reviewers. Discrepancies were resolved by discussion.

Assessment of study validity. Included studies were assessed for methodological quality using the PEDro scale, which comprises 11 criteria, of which the first determines external validity (eligibility criteria) and the remaining 10 measure internal validity (randomization, allocation concealment, homogeneity, subject, therapist and assessor blinded, ≤15% attrition of subjects, intention to treat, statistical comparison, and measures of variability; for a detailed description of the PEDro scale and criteria, see Maher et al. [64]). The methodological quality of each study was established by awarding one point for each criterion satisfied with a total score out of 10. Two reviewers independently assessed the quality of studies, with disagreements resolved by discussion.
Data extraction. One reviewer extracted data from studies that met the inclusion criteria, while a second reviewer verified the validity of these data. Data that summarized the following factors were extracted: stretch duration, muscle group stretched, maximal muscular performance outcome measures, whether significance was or was not reached in each variable measured (within a realistic poststretch time frame, ≤20 min), mean reduction in a performance variable, and whether appropriate control or reliability analyses were reported. Where multiple variables were reported within studies, each relevant finding was included in the analysis to remove any possible bias on our part and to ensure that reporting bias was not introduced to the review. Multiple analyses within studies were grouped according to stretch duration, performance variable, contraction mode, and muscle group. Where several significant or nonsignificant findings were reported within a specific grouping (e.g., concentric force at several velocities), only one of the significant or nonsignificant findings was tabulated for our synopsis, with the mean of the significant findings used for analysis. This was done to ensure we did not inflate the importance of such studies in relation to others and thus skew the analysis.

Data analysis. Two analyses are reported: 1) where all studies were included, to provide a holistic overview of the published literature; and 2) where studies without appropriate control or provision of reliability statistics were removed. This allowed us to determine whether the removal of studies based on experimental design influenced the findings of the review. Given the heterogeneity of intervention types (specifically differences in stretch duration and muscle group stretched), the diverse methods used to measure muscular performance (specifically isometric, concentric, eccentric or isokinetic muscle actions, drop-, countermovement-, or squat-jump techniques, sprint running over various distances, and free-weight or machine-based strength and power assessment) and that many studies failed to report specific statistical details of both their significant and nonsignificant findings, meta-analysis was deemed to be neither feasible nor appropriate (49). A systematic review of the literature was thus performed with studies pooled according to stretch duration by examining the total time the muscle was placed under stretch (<30 vs 30–45 s vs 1–2 vs >2 min) and examined for effects on performance in strength-, power-, or speed-dependent tasks. Further analyses were performed again examining duration-dependent effects by muscle contraction mode (e.g., isometric vs concentric vs eccentric) and by muscle group stretched (lower limb only; e.g., plantar flexors vs knee extensors vs knee flexors). The percentage of significant and nonsignificant findings and the magnitude of the changes in the performance variables were collated.

RESULTS

Search results. Our searches identified 4559 potentially relevant articles. By reviewing titles and abstracts, we identified 112 articles examining the effects of acute static stretch on a maximal muscular performance variable; reference screening of these articles revealed a further 11 articles, giving a total of 123 articles. After examining the full text, 17 articles were removed because they failed to meet our methodological inclusion criteria, which resulted in 106 articles being included for review (see Table, Supplemental Digital Content 1, http://links.lww.com/MSS/A106, which presents the major findings of the stretch-based studies included for review).

Methodological quality of included studies. Not all of the PEDro criteria could be satisfied, as the experimental crossover design implemented by the majority of studies resulted in subject and therapist blinding not being possible. Given that therapist and assessor roles were normally performed by the same individuals, assessor blinding was also highly limited. Despite this limitation, the methodological quality of studies was found to be moderate, ranging from 3 to 7 (mean = 5.4 ± 0.9). The present review examined the study designs implemented from 106 randomized and quasi-randomized control trials and intervention-based studies. Careful examination of the study design revealed that 11 studies failed to include a control group or any reliability analyses and a further 21 inappropriately used a control condition (see Table, Supplemental Digital Content 1, http://links.lww.com/MSS/A105) that failed to determine reliability, which is a serious concern for the quality of their study design and validity of their data.

Overview—effects on maximal muscular performance. Analysis of the 106 articles revealed that 55% had reported a significant reduction in performances in strength-, power-, or speed-dependent tasks after acute static stretch, whereas 69% had reported no significant reduction in task performances. This apparent conflict in percentages can be explained by numerous studies reporting the effects of acute static stretch on several variables within the same study, including different muscle groups (11), muscle lengths (77), contraction modes (68), contraction velocities (78), durations of stretch (52,58,82,96,119), and performance tasks (91). In addition to equivocal data existing across studies, equivocal data also existed within 25 studies where significant and nonsignificant results were reported concurrently. By examining the findings within the studies rather than collating which studies report significant findings, we were able to remove the possibility of introducing reporting bias on our part. This approach yielded 149 findings from the 106 articles with only 44% of the findings indicating significant reductions in maximal strength-, power-, or speed-dependent performance (pooled estimate of reductions = −3.7% ± 4.9%). When the studies without sufficient control or reliability were removed from the analysis, 74 studies reporting 104 findings remained. The percentage reporting significant reductions increased only slightly, to 50%, as a similar proportion of the studies removed reported significant and nonsignificant findings (pooled estimate of reductions = −4.5% ± 5.2%). Thus, their removal did not markedly influence the results.
TABLE 1. Duration-dependent effects of acute static stretch on performance in strength-, power-, and speed-dependent tasks, across contraction modes and muscle groups (lower limb).

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Measure</th>
<th>Stretch Duration</th>
<th>No. of Findings</th>
<th>Percentage Reporting Significant Reduction (%)</th>
<th>Mean ± SD Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>All measures</td>
<td><30 s</td>
<td>7</td>
<td>14</td>
<td>−1.1 ± 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30–45 s</td>
<td>23</td>
<td>22</td>
<td>−1.9 ± 3.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60–120 s</td>
<td>36</td>
<td>61</td>
<td>−4.2 ± 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>120 s</td>
<td>38</td>
<td>63</td>
<td>−7.0 ± 5.7</td>
</tr>
<tr>
<td></td>
<td>All durations</td>
<td>104</td>
<td>50</td>
<td>45</td>
<td>−4.5 ± 5.2</td>
</tr>
<tr>
<td>Task type</td>
<td>Speed or power</td>
<td><30 s</td>
<td>4</td>
<td>25</td>
<td>−0.2 ± 1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30–45 s</td>
<td>15</td>
<td>7</td>
<td>−0.6 ± 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60–120 s</td>
<td>23</td>
<td>48</td>
<td>−2.7 ± 4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>120 s</td>
<td>2</td>
<td>50</td>
<td>−4.5 ± 6.4</td>
</tr>
<tr>
<td></td>
<td>All durations</td>
<td>44</td>
<td>32</td>
<td>1.8 ± 4.1</td>
<td></td>
</tr>
<tr>
<td>Strength</td>
<td>Concentric</td>
<td><30 s</td>
<td>3</td>
<td>0</td>
<td>−2.3 ± 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30–45 s</td>
<td>8</td>
<td>50</td>
<td>−4.2 ± 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60–120 s</td>
<td>13</td>
<td>77</td>
<td>−7.0 ± 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>120 s</td>
<td>36</td>
<td>64</td>
<td>−7.1 ± 5.7</td>
</tr>
<tr>
<td></td>
<td>All durations</td>
<td>60</td>
<td>62</td>
<td>−6.5 ± 5.1</td>
<td></td>
</tr>
<tr>
<td>Contraction mode</td>
<td>Isometric</td>
<td><30 s</td>
<td>5</td>
<td>40</td>
<td>−2.7 ± 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥60 s</td>
<td>24</td>
<td>67</td>
<td>−5.2 ± 3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All durations</td>
<td>29</td>
<td>62</td>
<td>−4.8 ± 3.6</td>
</tr>
<tr>
<td></td>
<td>Eccentric</td>
<td>≤45 s</td>
<td>0</td>
<td>NA</td>
<td>−5.2 ± 3.6</td>
</tr>
<tr>
<td>Muscle group</td>
<td>Knee extensors</td>
<td>≤45 s</td>
<td>4</td>
<td>25</td>
<td>−2.0 ± 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥60 s</td>
<td>25</td>
<td>64</td>
<td>−6.7 ± 4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All durations</td>
<td>29</td>
<td>59</td>
<td>−6.0 ± 4.6</td>
</tr>
<tr>
<td></td>
<td>Knee flexors</td>
<td>≤45 s</td>
<td>2</td>
<td>50</td>
<td>−4.2 ± 3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥60 s</td>
<td>11</td>
<td>82</td>
<td>−7.4 ± 3.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All durations</td>
<td>13</td>
<td>77</td>
<td>−6.9 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Plantar flexors</td>
<td>≤45 s</td>
<td>1</td>
<td>0</td>
<td>−3.7 ± 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥60 s</td>
<td>13</td>
<td>62</td>
<td>−7.5 ± 7.8</td>
</tr>
<tr>
<td></td>
<td>All durations</td>
<td>14</td>
<td>57</td>
<td>−7.2 ± 7.6</td>
<td></td>
</tr>
</tbody>
</table>

For seven studies where nonsignificant results were found but no data were provided, a nominal value of “0” was given for the mean reduction.

Dose–response relationship. To determine whether a dose–response effect of stretch was evident across the studies, we separated the research into groups where the total stretch duration imposed was either <30 or 30–45 s or either 1–2 or >2 min (Table 1). Surprisingly, only 10 studies reporting 11 findings, which examined the effects of stretch where duration was <30 s, were found. Nine studies did not reveal any significant reduction: five reported no change in power- or speed-dependent tasks including 20-m sprint time (8), vertical jump (19,50,76), and medicine ball throw (71); and two studies reported significant increases in five-step jump distance (2.5% [71]) and peak cycling power (5% [81]), although the last study failed to demonstrate appropriate control. In direct conflict with these findings, nine studies reported no significant reduction in vertical jump performance (18,31,32,42,57,62,86,103,120), with one study reporting a significant increase in jump performance (2.3% [75]). Furthermore, no significant effect was detected for 10- (62), 20- (97), or 30-m (18) sprint time, with a significant improvement in 20-m rolling sprint time reported (1.7% [62]), which reinforces the previous suggestion that short-duration stretch does not clearly influence maximal running performance. Also, no significant reductions were reported for throwing velocity (44), bench press and overhead throws (101), or leg extension power (114). Collectively, these data demonstrate no clear detrimental effect on performance in speed- and power-dependent tasks where stretch duration is 30–45 s (pooled estimate = −0.6% ± 3.1%; Fig. 1). This finding is especially important because the duration of stretch is reflective of normal preexercise routine practices (2,98) and the performance tasks examined are highly applicable to both clinical and athletic subjects.

Eleven studies examined the effects of 30–45 s of stretch on maximal strength, with equivocal findings being reported. Significant reductions were reported in handgrip strength (−7.8% [58], −6.7% [102]), concentric knee flexor MVC (−6.3% [109], and isometric and concentric knee extensor MVC (−6.6% [95]). In contrast, three studies reported no significant effect on concentric knee extensor strength (9,121,122) following similar durations of stretch. Furthermore, no significant reductions were found in concentric plantar flexor MVC (1), chest press strength (9,74),
Thus, while some studies have reported significant performance decrements in lower limb muscle groups, this is not a common finding. Overall, the majority of the findings suggest that no detrimental effect on strength is likely when stretch duration is 30–45 s (pooled estimate = $4.2\% \pm 2.7\%$; Fig. 1).

When stretch durations were greater, the percentage of significant losses reported increased sharply after 60 s of stretch (61%) and then reached a plateau when stretch duration increased above 2 min, indicating a sigmoidal relationship (Fig. 2). This finding is congruent with previous dose–response studies ($52,58,82,95,119$). Clearly, the duration of stretch at which significant reductions are likely is approximately 60 s; however, longer durations (>2 min) did not further increase the likelihood of significant reductions. A linear relationship was evident in the average magnitude of reductions as the average reductions continued to increase with longer durations of stretch (Table 1).

Effect of contraction mode. Although most findings from studies using shorter static stretch durations indicated no significant effect, equivocal findings were reported in studies using longer durations (≥ 60 s). Accordingly, we examined whether stretch duration influenced results when studies were organized by muscle contraction mode (Table 1). Given that this reduced the sample size substantially, the four dose–response groups were merged into two (≤ 45 and ≥ 60 s). A similar proportion of studies reported significant reductions after ≥ 60 s stretch in concentric and isometric strength (67% and 76%, respectively); however, the size of the reductions was greater for isometric than for concentric (-8.9% and -5.2%, respectively; Table 1). The most interesting finding from this analysis was that only 6 of the 68 findings reported in studies examining the effect of contraction mode assessed changes in maximal eccentric strength ($15,26,28,69,93,111$) and all of these used stretch durations >60 s. Two studies reported significant force losses ($-4.3\% [15]$ and $-9.7\% [93]$), whereas no change was reported in the remaining four studies that used much longer stretch durations (3–9 min).

Muscle group–specific effects. A final analysis was conducted to determine whether the equivocal reports could be explained further by separating the studies by muscle or isometric knee flexor MVC (82). Thus, while some studies have reported significant performance decrements in lower limb muscle groups, this is not a common finding. Overall, the majority of the findings suggest that no detrimental effect on strength is likely when stretch duration is 30–45 s (pooled estimate = $-4.2\% \pm 2.7\%$; Fig. 1).

When stretch durations were greater, the percentage of significant losses reported increased sharply after 60 s of stretch (61%) and then reached a plateau when stretch duration increased above 2 min, indicating a sigmoidal relationship (Fig. 2). This finding is congruent with previous dose–response studies ($52,58,82,95,119$). Clearly, the duration of stretch at which significant reductions are likely is approximately 60 s; however, longer durations (>2 min) did not further increase the likelihood of significant reductions. A linear relationship was evident in the average magnitude of reductions as the average reductions continued to increase with longer durations of stretch (Table 1).
group. Most studies focused on lower limb strength, with few studies examining upper body strength; accordingly, studies measuring knee flexor, knee extensor, and plantar flexor strength were examined, and again, the dose–response groups were merged into two groups (≤45 and ≥60 s). Although similar findings were revealed across muscle groups for magnitude of loss (Table 1), the knee flexors (82%) seemed to be more regularly influenced by stretch compared with the knee extensors (64%) and plantar flexors (62%). This finding, in conjunction with the finding that the muscle contraction mode of the test exercise influenced the results, may partly explain the equivocal findings reported across the literature for longer-duration (≥60 s) stretches. However, although there is some evidence for a contraction mode– and muscle-specific effect, the lack of data does not allow firm conclusions to be drawn, and we cannot fully explain the equivocal findings reported for longer-duration stretches.

DISCUSSION

When all relevant studies are examined in toto, the results of the present review seem to largely agree with previous suggestions that acute static stretch can reduce maximal muscle performance (63,70,89,116). Forty-four percent of all variables included in our analyses (144 findings) from 106 studies showed significant reductions in maximal strength-, power-, or speed-dependent performance. However, a more detailed examination reveals clear evidence that no performance decrements in strength-, power-, or speed-dependent tasks occur when total stretch durations are <45 s. Furthermore, there is only a moderate effect of stretch for durations ≥60 s. We found there to be only minor differences in the effect across muscle contraction modes or muscle groups and no substantial effect of movement velocity.

Potential bias. We used a systematic review methodology to remove potential sources of bias as far as possible, although this procedure does not guarantee the absence of bias. Analyses such as those performed in the present review may be influenced by publication bias (100) because studies, reporting nonsignificant effects of stretch, may have been less likely to be accepted for publication. However, the potential inclusion of these studies would not have changed the main conclusion that shorter-duration (≤45 s) stretching has no effect on force production. Examination of the methodological quality of the literature revealed that experimental study design was often poor, where 30% of the studies reported no control group or reliability analyses. This supports the contention of Young (116), who previously highlighted this problem. Many studies did not include, or did not clearly report, a test reliability analysis, which is a major concern because it reduces the validity of the findings. Data presented in many of the included studies were collected during both control (rest) and experimental (stretch) conditions, and statistical analyses were then performed on the data sets to determine the level of significance between conditions. One problem, however, is that statistics for reliability were rarely presented, so the potential exists for the magnitude of between-condition differences to have been within the limits of data variability, resulting from learning, motivation variability, fatigue, or some other external influence, and were not solely influenced by the stretch intervention. Nonetheless, several statistical methods to eliminate this problem, including comparison of mean tests (e.g., t-tests, ANOVA), intraclass correlation coefficients, and coefficients of variation (CV) to establish reliability from repeated testing during control conditions, were appropriately used by several researchers (39,106,121) and should provide an exemplar for future research. Regardless, and importantly, our analysis revealed that the removal of studies with the poorer design did not markedly affect the conclusions drawn from the review because a similar proportion of these studies reported significant versus nonsignificant results.

Acute effects of short-duration static stretch. The present systematic review revealed clear evidence that the widely reported negative effects of stretch on maximal strength performance are not apparent after stretch durations (≤30 s) (52,58,95) that are commonly performed in a pre-exercise routine (2,98), although there are a limited number of studies imposing this stretch duration. Nonetheless, equivocal results were found when durations increased to 30–45 s in knee extensor (9,95,121,122) and knee flexor MVC tests (82,109). Significant reductions were found in handgrip strength (58,102), but no change was found in plantar flexor MVC (1) or chest press one-repetition maximum (9,74). Examination of the literature revealed that, while some studies have reported significant losses in lower limb muscle groups, others did not. Overall, 50% of the findings indicated that no detrimental effect on strength was likely when stretch duration was 30–45 s, with the pooled estimate of the changes (~4.2% ± 2.7%) well within the normal variability for maximum voluntary performance.

There was also clear evidence that stretch did not affect higher-speed force production when stretch durations were ≤45 s. Only two studies reported significant decreases in vertical jump height (39,51), with the latter failing to use an appropriate control. In direct conflict were 13 studies using similar durations of stretch that reported no significant reduction in jump performance (18,19,31,32,42,50,57,62,75, 76,86,103,120). Similar patterns were evident in sprint performance, where again only one study reported a significant reduction (38), whereas four studies reported no significant reduction (8,18,62,97), and Little and Williams (62) reported an increase in sprint performance. Interestingly, Fletcher and Jones (38) did not use a control condition but determined reliability with intraclass correlation coefficient and CV calculations. The CV was calculated at 1.7%, which was greater than the significant difference reported; SEM was also similar in size to the reduction reported, and the effect size calculated from the reduction was small. Although the study design and the implementation of statistics were correct, the interpretation of their data and the practical
importance of their findings are debatable. Only 2 studies that demonstrated appropriate control or reliability reported a significant reduction in performance, as opposed to 15 studies that reported no difference in the same tasks and a further 5 studies reporting no difference in performance in other speed or power tests (44,71,81,101,114). Collectively, these data overwhelmingly indicate that there is no detrimental effect of short-duration static muscle stretch on speed- or power-dependent performance, with the pooled estimate of the change calculated at $-0.5\% \pm 2.8\%$.

Dose–response effects of stretch. The lack of consensus regarding the negative effects of static stretching is likely to be partly attributable to differences in the durations of stretch imposed across studies. Short-duration stretching tends not to result in significant impairments, whereas longer stretch duration more likely does, with the percentage of significant findings increasing concurrently with stretch duration ($<30\ s = 14\%$; $30-45\ s = 22\%$; $1-2\ min = 61\%$; $>2\ min = 63\%$). This is in agreement with several recent studies (52,58,82,90,95,119) that specifically examined the dose–response effect of static muscle stretch on active force production. For example, Ogura et al. (82) reported that $30\ s$ of stretch did not reduce isometric knee flexor strength but that $60\ s$ of stretch induced significant impairment, and Knudson and Noffal (58) found that repeated 10-s stretches did not reduce handgrip strength compared with control until $40\ s$ of total stretch was accumulated. Similarly, 5, 15, and $20\ s$ of static stretch did not significantly reduce isometric plantar flexor force, whereas $60\ s$ of stretch did (52); the size of the force impairment was also significantly correlated with the stretch duration, clearly highlighting the importance of stretch duration in the magnitude of force loss. Those studies, and other evidence reported in the present review, indicate that a clear dose–response effect exists, with decrements becoming more likely for stretch durations $\geq 60\ s$ but not continuing to increase beyond $2\ min$. Thus, the dose–response relationship seems to be sigmoidal, with turning points at approximately $60\ s$ and $2\ min$ (Fig. 2).

Interestingly, comparable dose–response trends were evident across tasks involving largely strength-, power-, or speed-dependent movements, which suggest that the effects of stretch duration are task independent. However, the number (percentage) of significant findings and the magnitude of the performance decrement were larger for strength-based than power- and speed-based tasks. Given that power- and speed-dependent tasks are more typically performed in activities of daily living or athletic pursuits than the laboratory-based slow-speed strength tests, these findings perhaps have more practical relevance. Regardless, the finding that short-duration stretches ($\leq 45\ s$) did not seem to impair muscle force production is of even greater practical importance. This important finding suggests that static muscle stretching can be safely used in a preexercise routine without compromising physical performance, whereas longer durations ($\geq 60\ s$) are more likely to be problematic.

Although most short-duration studies ($\leq 45\ s$) revealed no significant change, significant improvements were reported in jumping (71,75), cycling (81), and sprinting (62) performances, which suggest that improvements are possible in some tasks. Furthermore, significant improvements in ROM and reduced musculotendinous stiffness after short-duration stretches ($5-30\ s$) have also been reported (6,52), which may reduce muscle strain injury risk. Thus, the inclusion of short-duration preperformance stretching may be deemed useful by some practitioners, although more research is needed to clarify the effects of short-duration static stretching.

Although a similar influence was seen across muscle groups (lower limb) and contraction modes, no studies exist detailing the effects of moderate-duration stretches ($\leq 45\ s$) on eccentric strength. This is important not only for its physical performance implications but also for its effect on injury risk. Muscle strength has been cited as a major influencing factor within the etiology of muscle strain injury (83), and with most muscle strain injuries suggested to occur within normal ROM during eccentric loading, the ability of the muscle to withstand eccentric loading may be crucial to injury risk. Given the equivocal data reported from much longer durations of stretch (e.g., $>60\ s$) on eccentric strength and that there are presently no data describing the effects of shorter, more practically relevant, stretch durations ($\leq 45\ s$), a clear research focus is needed to fully explore the influence of stretch on the muscle’s ability to withstand eccentric loading.

CONCLUSIONS

Static muscle stretches totaling $<45\ s$ can be used in preexercise routines without risk of significant decreases in strength-, power-, or speed-dependent task performances. Longer stretch durations (e.g., $\geq 60\ s$) are more likely to cause a small or moderate reduction in performance. Interestingly, the effect of stretch on performances across a range of muscle contraction modes, muscle groups, and movement speeds was similar. Importantly, no studies exist detailing the effects of moderate-duration stretches ($\leq 45\ s$) on eccentric strength, and there is little evidence for an effect after longer periods of stretch. This is important because of the purported influence of eccentric strength on both movement performance and injury risk. Several avenues of further research exist, including an examination of the effects of stretch on upper body musculature and on eccentric movement performance, and more data are required to determine the effect of short-duration stretches ($\leq 30\ s$) to more clearly delineate the magnitude of effect. A comprehensive review of the existing literature examining the influence of other forms of muscle stretching (dynamic, proprioceptive neuromuscular facilitation, and ballistic) should also be performed because the effects of different stretching modalities are likely to be different. Finally, no attempt was made in the present review to determine whether the number of stretches...
performed, in addition to the total duration of stretch, is a factor influencing the effects of stretch, so future reviews are required to clarify whether it is a factor influencing the stretch-induced loss of force.

A.D.K. performed the literature search, selected articles for exclusion and inclusion, assessed the risk of bias, extracted the data, and performed the analysis. A.J.B. verified a percentage of articles selected for exclusion, verified all articles selected for inclusion, verified the extracted data, and assessed the risk of bias. Both authors were involved in the study design, contributed to the writing and revision of the manuscript, and are able to take responsibility for its accuracy. No funding was received for this work.

The results of the present study do not constitute endorsement by the American College of Sports Medicine.

REFERENCES

34. Egän ADK, performed the literature search, selected articles for exclusion, verified all articles selected for inclusion, verified the extracted data, and assessed the risk of bias. Both authors were involved in the study design, contributed to the writing and revision of the manuscript, and are able to take responsibility for its accuracy. No funding was received for this work.

The results of the present study do not constitute endorsement by the American College of Sports Medicine.
74. Molacek ZD, Conley DS, Evetovich TK, Hinnerichs KR. Effects of low- and high-volume stretching on bench press performance

