Effects of High-Velocity Circuit Resistance and Treadmill Training on Cardiometabolic Risk, Blood Markers, and Quality of Life in Older Adults

Kirk B. Roberson, MS1, Melanie Potiaumpai, MS1, Kayla Widdowson, BS1, Ann-Marie Jaghab, BS1, Sean Chowdhari1, Catherine Armitage, BS1, Afton Seeley, MS1, Kevin A. Jacobs, PhD1, and Joseph F. Signorile, PhD1,2

1Laboratory of Neuromuscular Research & Active Aging-University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, FL

2University of Miami-Miller School of Medicine, Center on Aging

Corresponding Author: Dr. Joseph F. Signorile

Address: 1507 Levante Ave., Coral Gables, FL, 33146

Telephone: (305)-284-3105

Fax: (305)-284-4183

Email: j.signorile@miami.edu
Abstract

The presence of cardiometabolic syndrome (CMS) infers an increased risk for cardiovascular incidence and mortality, and is associated with reduced health-related quality of life (HRQoL). Although the effects of exercise on biomarkers, HRQoL, and future risk have been studied; no study has measured the effects on all three components. The present study compared the effects of steady-state, moderate-intensity treadmill training (TM) and high-velocity circuit resistance training (HVCRT) on biological markers, HRQoL, and overall CVD risk in adults with CMS and CVD risk factors. Thirty participants (22 F; 8 M) were randomly assigned to one of three groups: HVCRT, TM, or control. Participants in exercise groups attended training 3 days/wk for a total of 12 weeks. Of the thirty participants who began the study, twenty-four (19 F; 5 M) were included in the final analysis. Primary outcome measures included CMS criteria, hemodynamic measures, Framingham Risk Score (FRS), and HRQoL. All variables were measured pre- and post-intervention. CMS z score significantly decreased for HVCRT ($p=0.03$), with no significant changes for TM or control. FRS significantly decreased in HVCRT compared to TM ($p=0.03$) and control ($p=0.03$). Significant decreases in systolic ($p<0.01$) and diastolic blood pressures ($p<0.01$) for HVCRT accompanied significant increases from baseline in stroke volume ($p=0.03$) and end-diastolic volume ($p<0.01$). Systemic vascular resistance significantly decreased ($p=0.05$) for HVCRT compared to control. Emotional well-being significantly improved following HVCRT and TM compared to control ($p=0.04$; $p=0.03$). HVCRT represents a novel training modality that improved factors in each of the three components assessed.

Key Words: exercise; cardiometabolic syndrome; cardiovascular disease; hemodynamics; high-velocity circuit training
Introduction

The cardiometabolic syndrome (CMS) represents a cluster of physiological and metabolic abnormalities that confer increased risk for developing cardiovascular disease (CVD) and type 2 diabetes mellitus (Grundy et al. 2004). Despite decades of therapeutic advances, CVD remains the leading cause of death in the United States (Xu et al. 2016). Numerous studies have shown that both resistance training and aerobic endurance exercise can promote an increase in physical fitness and successfully impact many of the individual risk factors associated with CMS including blood pressure (BP) (Hagberg et al. 1989, Kelley and Kelley 2000), waist circumference (WC) (Slentz et al. 2004, Church et al. 2009), and blood lipid profile (Halverstadt, Phares et al. 2007, Paoli et al. 2013). Others have also considered the impact of exercise intervention strategies on measures of health-related quality of life (HRQoL) in older adults with and without CMS (Barnett et al. 2003, Oh et al. 2010); however, these results have been inconsistent. Recently, high-intensity circuit and interval training have been suggested to be more effective modalities for improving many dimensions of physical fitness and reducing risk factors compared to moderate-intensity interval training, low-intensity circuit training, and traditional aerobic endurance training in individuals at risk for CVD and those with lifestyle-induced cardiometabolic disease (Paoli et al. 2013, Weston et al. 2014). Furthermore, high-velocity resistance training, often referred to as power training, has been shown to elicit superior improvements in both physical performance and markers of independence in older adults compared to traditional resistance training (Miszko et al. 2003, Henwood and Taaffe 2005, Henwood et al. 2008, Izquierdo and Cadore 2014). Accordingly, the development and implementation of a program that synergistically combines both high-intensity circuit training and high-velocity resistance training would be particularly important and may provide the
greatest opportunity to significantly reduce risk factors associated with CMS and CVD and
attenuate the rapid decline in physical and functional performance that occurs with aging.

Therefore, the purpose of the present investigation was to compare the effects of steady-state,
moderate-intensity treadmill training (TM) and high-velocity circuit-resistance training
(HVCRT) on biomarkers, HRQoL, and future risk for developing CVD in older adults with
multiple CMS and CVD risk factors.

MATERIAL AND METHODS

Participants

Twenty-two women (age: 69 ± 8 years; height: 161 ± 3 cm; body weight: 81.1 ± 12.5 kg)
and eight men (age: 73 ± 5 years; height: 178 ± 9 cm; body weight: 101.4 ± 5.8 kg) with multiple
CMS and CVD risk factors were recruited to this study. CMS risk factors include: WC ≥ 102 cm
in men and ≥ 88 cm in women, fasting glucose (FG) ≥ 100 mg/dL, triglyceride (TGL) ≥ 150
mg/dL or drug treatment for elevated TGL, high-density lipoprotein cholesterol (HDL-C) < 40
mg/dL in men and < 50 mg/dL in women or drug treatment for low HDL-C, and systolic blood
pressure (SBP) ≥ 130 or diastolic blood pressure (DBP) ≥ 85 mmHg or on anti-hypertensive
treatment with a history of hypertension. Separate CVD risk factors as defined by the American
College of Sports Medicine are: age (men ≥ 45, women ≥ 55 years), family history of CVD,
cigarette smoking, sedentary lifestyle, obesity (body mass index ≥ 30 kg/m²), and dyslipidemia
(low-density lipoprotein cholesterol (LDL-C) ≥ 130 mg/dL or total cholesterol > 200 mg/dL).
The Framingham Risk Score (FRS) used to calculate predicted future risk for developing heart
disease. CVD risk factors included in the FRS are cigarette smoking and total cholesterol. Risk
factors for CVD were assessed using the American College of Sports Medicine Risk
Stratification Screening Questionnaire. Participants were excluded if they had regularly participated in a structured physical activity program within the past three months, had any uncontrolled neuromuscular, orthopedic, or cardiovascular disease, were unable to read or speak English, or had significant cognitive impairment (Folstein mini-mental score < 23). Additionally, participants that were currently taking a beta-blocker were excluded from the study. Information regarding physical and mental health, as well as physical activity, was provided by each participant on the Physical Activity Readiness and Health History Questionnaire. Participants were instructed to refrain from any type of structured exercise for the duration of the experimental protocol. The study was approved by the University Institutional Review Board and all participants provided informed written consent.

Participant flow through the study from recruitment-to-analysis is illustrated in Figure 1. Of the 30 individuals recruited to participate in the study, three withdrew due to medical complications unrelated to the study and one voluntarily withdrew, leaving 26 individuals (twenty women; six men) who completed the study. Of the 26 who completed the study, two were excluded from the analysis due to poor protocol adherence, leaving a 24 participants who were included in the final analysis. Participant risk profiles are depicted in Table 1.

Experimental Protocol

To compare the effects of TM, HVCRT, and no exercise (control) on HRQoL, biomarkers, and overall risk for CVD, participants were randomly assigned following simple randomization procedures (computerized random numbers) to one of the three experimental groups. Participants in the training groups visited the laboratory on 42 separate occasions over the course of 14 weeks. Participants in the control group only visited the lab to complete pre-and post-testing measures during weeks one and 14. On day one they completed all necessary
consent forms and questionnaires. Additionally, anthropometric measurements, including body
weight and height, fat free mass, and WC were made. For the blood draw, participants reported
to the laboratory following a 12-hour fast. Participants returned 72 hours after their final training
session for a final blood draw. The RAND-36 Item Health Survey 1.0 (RAND) was used to
assess HRQoL and was administered on the first and final day of the study. FRS was calculated
with the Framingham equation using information obtained from the American College Of Sports
Medicine risk stratification along with relevant blood work. A CMS z score was also calculated
for each participant and serves as a continuous score of the five CMS variables. Hemodynamic
measures were obtained using impedance cardiography (ICG).

During weeks 2-13, participants in the TM and HVCRT groups underwent a 12-wk
supervised exercise program (3 d/wk). Participants were asked not to modify their diet and
instructed to maintain a dietary log accounting for caloric intake for 3 d/wk throughout the
course of the study. Successful adherence was defined as missing no more than six exercise
sessions. Control group participants were given identical dietary instructions and materials.

Primary outcome measures were the following: RAND, FRS, CMS-z score, WC,
triglycerides (TGL), HDL-C, SBP, DBP, and FG. Additionally, hemodynamic measures obtained
using an ICG device to include cardiac output, stroke volume, ejection fraction, end-diastolic
volume, and systemic vascular resistance. Secondary outcome measures included: body mass
index, LDL-C, Cholesterol/HDL-C ratio, body weight, fat free mass, very low-density
lipoprotein cholesterol, high sensitivity C-reactive protein (CRP), hemoglobin A1C (A1C), and
resting HR.

Body weight, fat-free mass, and body mass index were measured using a Tanita BC-418
bioelectrical impedance scale (Tanita, Corporation of America, Inc., Illinois, USA) and height
was measured using a stadiometer that was a component of a medical dual beam scale (Detecto Corp, Webb City, MO, USA). WC was measured with the participant standing, arms at sides, feet together, and abdomen relaxed. A horizontal measure was taken immediately above the iliac crest. Three measurements were taken and the average was recorded.

RAND

Items from the RAND were scored and used to assess eight health concepts: physical functioning, bodily pain, role limitations due to physical health problems, role limitations due to personal or emotional problems, emotional well-being, social functioning, energy/fatigue, and general health perceptions (Hays and Morales 2001). Participants were given identical instructions when completing the survey at the beginning and end of the study.

FRS

The FRS for coronary heart disease over 10 years was calculated for each participant using the Framingham equation (Wilson et al. 1998) which consists of a scoring scheme based on age, sex, total cholesterol, smoking, HDL-C, and SBP. A CMS \(z \) score was calculated using the equation described by Bateman et al., for each participant using the five defining criteria (Bateman et al. 2011).

CMS \(z \) Score

Briefly, a modified \(z \) score was calculated for each variable using individual participant’s data, CMS criteria, and standard deviations (SD) from the entire sample. Due to differences in criteria for men and women, separate equations and separate standard deviations were calculated. The equations used to calculate the CMS \(z \) score were:

\[
\text{CMS } z = \left[\frac{40 - \text{HDL-C}}{SD} \right] + \left[\frac{\text{TGL} - 150}{SD} \right] + \left[\frac{\text{FG} - 100}{SD} \right] + \left[\frac{\text{WC} - 102}{SD} \right] + \left[\frac{\text{mean arterial pressure} - 100}{SD} \right] \]
\] for men.
and \[z\text{-score} = \frac{(50 - \text{HDL-C})}{\text{SD}} + \frac{(\text{TGL} - 150)}{\text{SD}} + \frac{(\text{FG} - 100)}{\text{SD}} + \frac{(\text{WC} - 88)}{\text{SD}} + \frac{(\text{mean arterial pressure} - 100)}{\text{SD}} \] for women. SDs based on the baseline data were used to calculate the initial CMS \(z \) scores while SDs from the post-intervention data were used to calculate the final \(z \) scores.

Blood Collection and Analysis

A fasting venous blood sample was collected before training began and 72 hours after the final training session. All samples were obtained in the morning (7:00 – 9:00 a.m.) in a seated position from an antecubital vein. Samples were subsequently analyzed for FG, A1C, a complete lipid profile, and CRP. Fasting serum glucose was measured photometrically on Roche/Hitachi Cobas C systems (Roche Diagnostics, Indianapolis, IN). A1C was evaluated using ion-exchange high-performance liquid chromatography. Total cholesterol, TGL and HDL-C were measured by enzymatic calorimetric methods and LDL-C was calculated using the equation presented by Friedewald et al. (Friedewald et al. 1972). CRP was measured with a turbidimetric enzymatic assay using an automated chemistry analyzer (Roche Diagnostics, Indianapolis, IN).

All testing was performed at the University Hospital & Clinical Pathology Laboratory.

Hemodynamics

An ICG device (PhysioFlow Enduro, Manatec, Macheren, France) was used to determine HR, and estimate stroke volume, ejection fraction, end-diastolic volume, and systemic vascular resistance for the participants at rest. Briefly, the PhysioFlow provides information on cardiac function by performing an analysis of trans-thoracic bio impedance recording in association with an ECG signal. It measures changes in impedance by injecting a high frequency alternating electrical current of low magnitude towards the thorax between two electrodes positioned on the
neck and another two on the xiphoid process. The remaining two electrodes are used to record an
ECG signal. A more detailed description of the PhysioFlow methodology has been described
elsewhere (Charloux et al. 2000). Participants were instructed to abstain from food, cigarette
smoking, and caffeine for two hours prior to testing. Participants were tested in a seated position
with back supported and both feet flat on the floor. After shaving, abrading, and cleaning the
skin with 70% isopropyl alcohol pads, six PF-50 electrodes were applied according to the
manufacturer’s guidelines. Software calibration was completed prior to each test. After 15
minutes of quiet sitting but prior to PhysioFlow testing, two separate BP measures were obtained
electronically (BP TRU, BPM-200, Coquitlam, BC, Canada). Following BP measurements,
cardiac parameters were measured continuously with the participant sitting calmly and quietly
for five minutes. An average value was calculated for each measure from the data acquired
during the final minute of recording.

Treadmill Training

All exercise training was conducted in a supervised laboratory setting with an instructor-
to-participant ratio of 1:1. Primary outcome variables from the blood analysis were tested by
assessors who were blinded to groups; however, other pre- and post-test assessments were
performed by the same assessors. Training sessions were conducted at the same time each day (±
1 hr) and participants were instructed not to consume any food, drinks or supplements containing
high amounts of caffeine or any other substances that may alter HR prior to each exercise
session. One familiarization day was provided prior to the start of the 12-week intervention.
Participants were allowed to ask questions regarding the equipment and procedures, and all
assessment outcomes were explained in detail. During this time, participants were instructed on
the use of the Borg 15-point rating of perceived exertion (RPE) scale to assess effort. All
treadmill exercise was performed three days per week on a motorized Cybex 790T treadmill (Cybex International, Inc., Medway, MA, USA). In accordance with American College Of Sports Medicine guidelines for moderate intensity exercise (Medicine 2013), training was conducted at 55% (± 2 bpm) of each participant’s heart rate reserve, as determined by the Karvonen formula using age predicted maximum heart rate values (Camard et al. 2008). HR was continuously monitored throughout training using a Polar portable sensor (H7 Heart Rate Sensor, Lake Success, NY, USA).

Weeks one through three comprised the conditioning phase in which participants steadily increased exercise duration until the target time of 35 min was achieved. Participants were instructed to perform a self-paced warm-up for the first three minutes of each exercise session. Exercise intensity was modulated by either increasing the speed or the percent grade of the treadmill. Participants were instructed to begin increasing the percent grade after they had achieved the fastest walking pace they could maintain for the duration of the workout. A cool-down was conducted at the end of each session, separate from the 35 min of training. During the cool-down, participants were instructed to decrease speed and grade until their HR reached a value of within 10% of resting. At the end of each session, an RPE, average speed, percent grade, and total time were recorded. During weeks 4-12, participants were encouraged to increase intensity once their exercising HR dropped > 2 bpm below their target (55% heart rate reserve).

High-Velocity Circuit Resistance Training

A total of 11 pneumatic resistance exercise machines (Keiser A420, Keiser Corporation, Fresno, CA, USA) were utilized during the study. A one-repetition maximum (1RM) was determined for each participant on all machines using guidelines established by the National Strength and Conditioning Association (Baechle et al. 2008). Following testing, the optimal
training load for the production of muscular power was calculated for each exercise, relative to each participant's 1RM. The percentages of each 1RM corresponding to the optimal load were previously identified by Potiaumpai et al. (Potiaumpai et al. 2016) in an age-matched population using identical resistance exercise machines.

For the circuit training protocol, 11 exercises were completed at the specified optimal load (%1RM) in the following order: chest press (50%), leg press (60%), latissimus dorsi pull-down (40%), hip adduction (70%), overhead press (60%), leg curl (60%), seated row (50%), hip abduction (70%), elbow extension (50%), plantar flexion (60%), and elbow flexion (50%). Each set consisted of 12 repetitions. For the concentric portion of the lift, the participant was asked to “move the load as forcefully and as quickly as possible.” The eccentric phase of the lift consisted of a two-second controlled motion. Rest intervals were self-directed; however, participants were instructed not to begin the next exercise until they were confident that they could complete all assigned repetitions without an intra-set rest period. The duration of each rest-period was measured using a digital stopwatch, and the average time for all rest-periods was calculated. Time began following the completion of the final repetition of one exercise and was stopped at the onset of the first repetition of the next exercise.

During the first three weeks of training, the volume of training increased gradually. For week one, participants completed only one full-rotation through the circuit. Week two consisted of two rotations, and weeks 3-12, three full-rotations. HR was obtained at the start and half-way point of each circuit. HR was measured by palpating the radial artery for 20 secs and multiplying the number of beats by three. An average HR for the entire exercise session was calculated from the six recorded values. The total time for the entire workout was also recorded each session.

Finally, an RPE was obtained following the completion of the last exercise of the session using
the Borg Category Ratio (Borg CR-10). Participants were asked to provide an RPE that reflected
the difficulty of the exercise session as a whole. The Borg CR-10, rather than the Borg 15-point
RPE scale was chosen for this protocol. Scores from the Borg 15-point RPE scale have been
shown to increase linearly with HR and oxygen consumption (Borg, 1998); thus, due to the
steady-state nature of the TM protocol, we believed this to be the appropriate choice. However,
during resistance training, particularly circuit resistance training, HR changes suddenly and
disproportionately with each set and rest period (Sweet et al., 2004). Therefore, the Borg CR-10
scale was deemed to be more appropriate for resistance training, and its use for this modality is
widely accepted. Nonetheless, corresponding values between the two scales are provided below.

Total time, average HR, average rest-period, and RPE values were only recorded for weeks 3-12
when three full circuits were completed. Keiser pneumatic resistance machines were interfaced
with a laboratory computer, which allowed the transfer and analysis of data including force,
velocity, and power. Progression of load was based on significant increases in power output from
the previous week: when there was a 5% increase in the average power output of a particular
exercise on at least two of the three sessions in a given week. When a significant increase in
power was observed, a 10% increase in load was applied for subsequent training sessions.

Dietary Records

Participants were instructed to report their food and drink items and corresponding
serving sizes for morning snacks, breakfast, lunch, afternoon snacks, dinner, and evening snacks.
Recalls were collected for two out of five weekdays (Monday – Friday) and one out of two
weekend days (Saturday – Sunday) for a total of three days. Participants were instructed not to
modify their eating or drinking habits going into the study or during the study. This was done to
minimize the impact of changes in diet on any of the physical or biomarkers assessed.
Participants were given a set of standardized reporting logs at the beginning of each week and logs from the previous week were collected. All nutrition logs were analyzed using Nutritionist Pro software (version 5.4.0, Axxya Systems-Nutritionist Pro, Stafford, TX).

Statistical Analysis

An analysis of covariance was used to examine between group differences. Pre-test values were used as covariates to improve precision and to control for possible imbalances during the randomization process and between baseline values. This is the preferred approach for analyzing randomized trials with baseline and follow-up measurements since it corrects for baseline values (Vickers and Altman, 2001). Paired t-tests were used to investigate within-group changes. All significance tests were two-tailed and a required significance level of $\alpha \leq 0.05$. In order to obtain a statistical power of 80% with an alpha value set at 0.05, 30 participants were needed. This sample size is based on a calculated effect size ($f = 0.55$) from a similar study comparing circuit resistance training to steady-state endurance training. Effects sizes for Cohen's d are listed as the absolute value and are interpreted as: 0.80 is considered large, 0.50 is considered medium, and 0.20 is considered small. When discussing the main effects, Cohen’s f was used to describe the effect size. For Cohen’s f, values are interpreted as: 0.40 is considered large, 0.25 is considered medium, and 0.10 is considered small. All statistical analyses were performed with SPSS, version 24 statistical package (IBM SPSS Statistics, Armonk, NY). Data are expressed as mean ± standard error (SE).

RESULTS

Participant data were included in the data analyses only if criteria for adherence were met. Study adherence was defined as attending 30 of 36 required exercise sessions (83%) and all
pretest and post-test sessions. Based on these criteria, data for 24 (19 F; 5 M) participants were included in the analysis. Descriptive data for the 24 participants are summarized in Table 2.

There were no significant differences in baseline characteristics between groups and body weight, fat-free mass, and body mass index did not significantly change from baseline in any group. No differences were observed in total caloric intake during the intervention for the TM, HVCRT, or control groups (Table 3).

RPE was assessed using the Borg CR-10 for HVCRT and the Borg 15-point RPE scale for TM. Average RPE for HVCRT was 6.0 ± 0.2, which corresponds to a work effort that lies between “Hard” and “Very Hard”, while the average RPE for TM was 10.9 ± 0.5, which corresponds to a “Light” level of perceived exertion. The difference in average HR between HVCRT (107 ± 4 bpm) and TM (114 ± 3 bpm) was not statistically significant. The average rest interval time for all participants in the HVCRT group for weeks 3-12 of training was 31.7 ± 3.4 s. Total exercise session time for the TM group was 33 min ± 2 min for weeks 3-12, which was dictated by the protocol. For the HVCRT group, average total exercise session time for weeks 3-12 was 30 min ± 2 min.

Primary Outcome Measures

Within and between-group data for all primary outcome measures are presented in Table 4. Figure 2 depicts the mean change for each group for all CMS criteria, as well as the CMS z score. Hemodynamic measures are depicted in Figure 3. A significant decrease from baseline to 12 weeks was observed in SBP (MD=-19.56, SE=2.33, \(p<0.01 \), \(d=2.80 \)) and DBP (MD=-9.44, SE=1.68, \(p<0.01 \), \(d=1.87 \)) for the HVCRT group only (Table 4). Post-hoc analysis revealed that SBP significantly decreased in the HVCRT group when compared to both the TM (MD=-10.01, SE=3.70, \(p=0.04 \), \(d=0.36 \)) and control (MD=-15.69, SE=3.58, \(p=0.01 \), \(d=0.42 \)) (Table 4).
Additionally, DBP was significantly reduced in the HVCRT group when compared to control (MD=-10.27, SE=2.84, \(p < 0.01, d=0.39\)) (Table 4). Mean arterial pressure significantly decreased from baseline for the HVCRT group (MD=-9.92, SE=3.92, \(p=.04, d=1.17\)), while no differences were detected for TM or control (Figure 2). A significant difference in FG was observed in the HVCRT group (MD=-9.00, SE=3.96, \(p=0.05, d=0.76\)) while no change was observed in the TM of control groups (Table 4). HDL-C significantly increased from baseline for the TM group (MD=4.38, SE=1.76, \(p=0.04, d=0.88\)) (Table 4). Significant within-group differences were detected for CMS \(z\) score, showing a decrease from baseline for the HVCRT group (MD=-3.22, SE=0.36, \(p < .001, d=1.58\)) and TM (MD=-1.81, SE=0.73, \(p=0.04, d=0.52\)). Post-hoc analysis revealed a significant difference in CMS \(z\) score between the HVCRT group and control (MD=-2.77, SE=0.87, \(p=.02, d=0.29\)) (Table 4). Data revealed a significant decrease in systemic vascular resistance for the HVCRT group when compared to the control group (MD=-161.80, SE=62.82, \(p=0.05, d=1.74\)) (Figure 3). There was a significant main effect for stroke volume (\(p=0.03, f=0.61\)) and systemic vascular resistance (\(p=0.03, f=0.61\)) but not for end-diastolic volume or ejection fraction (Figure 3). Significant within-group differences were detected in the HVCRT group for stroke volume (MD=11.87, SE=4.63, \(p=0.03, d=2.89\)), end-diastolic volume (MD=32.31, SE=10.39, \(p=0.01, d=4.33\)), and ejection fraction (MD=-4.42, SE=5.23, \(p=0.04, d=1.48\)); however, no differences were observed for the TM or control groups (Figure 3). Data for FRS for each group are depicted in Table 4. After accounting for sex, age, total cholesterol, smoking, HDL-C and SBP, a significant decrease in the FRS was observed in the HVCRT group (MD=-4.44, SE=2.46, \(p < 0.01, d=1.00\)). Post-hoc analysis revealed a significant decrease in FRS for the HVCRT group when compared to the TM group (MD=-2.99, SE=1.06, \(p=0.03, d=0.00\)) and the control group (MD=-3.31, SE=1.18, \(p=0.03, d=0.18\)).
within-group significant differences were detected for any individual components of the RAND for HVCRT, TM, or control groups. Post-hoc analysis revealed a significant increase in the Emotional Well-Being component for HVCRT when compared to control (MD=16.72, SE=6.10, \(p=0.04 \), \(d=1.77 \)) and for TM when compared to control (MD=18.00, SE=6.25, \(p=0.03 \), \(d=1.27 \)).

Secondary Outcome Measures

For secondary outcomes, a significant decrease was detected for cholesterol/HDL ratio (MD=-0.48, SE=0.14, \(p=0.01 \), \(d=1.24 \)) in the TM group. A significant decrease from baseline for A1C was observed in the HVCRT group (MD=-0.30, SE=0.03, \(p<0.001 \), \(d=1.38 \)) and TM (MD=-0.06, SE=0.03, \(p=0.02 \), \(d=3.58 \)). In contrast, a significant increase in A1C was observed in the control group (MD=0.10, SE=0.04, \(p=0.03 \), \(d=0.36 \)). Post-hoc analysis revealed a significant decrease in A1C in the HVCRT group when compared to the control group (MD=-0.40, SE=0.12, \(p=0.01 \), \(d=0.77 \)) but the TM group. No significant differences were detected in any groups for resting HR, total cholesterol, very low-density lipoprotein cholesterol, or CRP.

DISCUSSION

The present investigation compared the effects of steady-state, moderate-intensity treadmill training and high-velocity circuit-resistance training on biological markers, HRQoL, and overall risk for developing CVD in older adults with multiple CMS and CVD risk factors. Our results indicate that HVCRT provides a greater benefit in improving FG and A1C. HVCRT also significantly reduced CMS \(z \) scores when compared to control, significantly reduced FRS compared to TM and control, and significantly improved HRQoL compared to control. Moreover, hemodynamic parameters including SBP, and DBP were significantly reduced from
baseline and stroke volume and end-diastolic volume were significantly increased following HVCRT, but not TM or control.

The effects of continuous aerobic and traditional resistance exercise on BP have been well documented (Cornelissen and Smart 2013) with both eliciting positive adaptations in SBP and DBP; likely through different mechanisms. Additionally, Bateman et al. (2011) reported that a combined training model consisting of alternating aerobic and resistance training sessions significantly reduced DBP. When examining the effects of interval training compared to moderate-intensity continuous treadmill training Molmen-Hansen et al. (2012) reported that aerobic interval training was more effective than continuous treadmill training at reducing SBP, although both resulted in significant reductions. In a study similar to ours, Paoli et al. (2013) indicated that high-intensity circuit training was more effective in improving BP than either low-intensity circuit training or moderate-intensity endurance training. While their results for circuit resistance training are consistent with the findings from our study, repetitions per set, work-recovery intervals, and total number of exercises completed differed. Although our findings with regard to BP reflect those generally accepted, participants in the HVCRT group saw markedly greater reductions in SBP (~19 mmHg) when compared to the high-intensity circuit training group in the study by Paoli et al. (2013) (~7 mmHg) and the interval training group in the study by Molman-Hansen et al. (2012) (12 mmHg). The significant reductions in SBP may be explained in part by the reduction, albeit not significant, in systemic vascular resistance seen in the HVCRT group. In contrast, increases in systemic vascular resistance, which did not reach statistical significance, were observed in the TM and control groups. Several studies have reported reductions in systemic vascular resistance following training in both healthy and diseased older adults (Jennings et al. 1986, Hambrecht et al. 2000, Molmen-Hansen et al. 2012).
In agreement with our findings, reductions in SBP, reported by Molman-Hanset et al. (2012) occurred concomitantly with reductions in systemic vascular resistance. Jennings et al. (1986) related the effects of exercise on systemic vascular resistance to potential increases in the cross-sectional area of the vascular beds, particularly those affecting skeletal muscle, and alterations in sympathetic activity and circulating hormones.

Our findings that stroke volume and end-diastolic volume at rest increase with a corresponding decrease in systemic vascular resistance in the HVCRT group are supported by the work of Hambrecht et al. (2000), who reported that systemic vascular resistance and stroke volume at rest were inversely correlated ($r=-0.76; p < 0.001$) and that changes in systemic vascular resistance at rest were also significantly related to changes in end-diastolic volume ($r=0.45, p < 0.001$). These findings are similar to those obtained by Molmen-Hansen et al. (2012); however, these researchers employed high-intensity treadmill interval training, rather than resistance training. Although the two forms of exercise are different, the intensity pattern is arguably similar.

HVCRT employs intervals of maximal effort using high-velocity repetitions, followed by short rest intervals similar to those utilized in their aerobic interval training protocol. Generally, with both training approaches the relative increase in HR and the duration of time that HR is elevated is similar. Thus, we hypothesize that while skeletal muscle adaptations may differ as a result of treadmill vs circuit resistance training, cardiac adaptations may be similar, resulting in similar increases in left-ventricular compliance and end-diastolic volume, and subsequent increases in stroke volume as described by the Frank-Starling mechanism. Our findings for ejection fraction are, however, in contrast to those of other exercise studies (Hambrecht et al. 2000, Molmen-Hansen et al. 2012). Although Molmen-Hansen et al. (2012) saw increases in stroke volume and end-diastolic volume in the interval training group, they also saw a significant increase in
ejection fraction. Similar findings for ejection fraction were reported by Hambrecht et al (2000); however, their results were obtained from patients with chronic heart failure. Ejection fraction is defined as stroke volume divided by end-diastolic volume; therefore, the larger improvements in end-diastolic volume compared to stroke volume in our HVCRT group may provide an explanation for a decreased ejection fraction. Similar results were observed for our TM group; however, changes did not reach significance.

Another major finding in this study was that HVCRT and TM resulted significant improvements in the CMS z score, which is reflective of a significant reduction in overall CMS and CVD risk. Johnson et al. (2007) were the first to describe and use a CMS z score (described as a MS z score in their work). In a subsequent publication from the Studies of a Targeted Risk Reduction Intervention through Defined Exercise initiative, Bateman et al. (2011) reported no significant changes in CMS z score due to their aerobic training intervention; however, a slight increase was seen in their resistance training group. These findings vary from those of our study, likely due to their use of a more traditional approach that employed 3 sets of 8-12 controlled repetitions three days per week. Our HVCRT group provided an overload distinct from traditional resistance training, where participants maintained an elevated HR and breathing rate, and recovery-periods were kept relatively short, similar to patterns used during aerobic interval training, but using both movement speed and submaximal loading to increase intensity.

There were no significant changes in blood lipid profile as a result of HVCRT. This finding is not surprising as a review by Durstine et al. (2002) indicates the need for dietary modifications and body weight loss as important factor for reducing LDL-C and total cholesterol through training. These observations are also supported by Bouchonville et al. (2014) who found superior improvements in cardiometabolic risk factors in an exercise and diet group when
compared to an exercise-only group. Durstine et al. (2002) also suggest that increases in HDL-C occur as a result of exercise prescriptions that elicit sufficiently high caloric expenditure. While we did not measure caloric expenditure for the TM or HVCRT groups, the greater mean exercising HR and longer total exercise time for each session may have been resulted in an increased total energy expenditure for the TM group. Significant increases in HDL-C in the TM group coupled with no changes in total cholesterol provide an explanation for the significant reduction in the cholesterol/HDL ratio observed. The results for our HVCRT group are in contrast to those reported by Paoli et al. (2013); however, they are supported by similar findings in studies employing participants of a similar age (Marques et al. 2009) and participants with CMS (Bateman et al. 2011). Our findings demonstrating significant reductions in A1C for HVCRT and TM are consistent with previously reported results (Williams et al. 2007, Yavari et al. 2012); however, data for individuals without type-2 diabetes mellitus are sparse, making our findings unique to this population. Our findings showing a significant reduction in FG following HVCRT are novel, in that no other study, to our knowledge, has reported a similar impact following circuit resistance training or high-velocity exercise. This finding in conjunction with a significant reduction in A1C over control provides a strong argument for the use of HVCRT in lieu of TM.

Given the argument that FRS with has greater predictive value for identifying future risk for CVD and type-2 diabetes mellitus than CMS alone (Stern et al. 2004, Wannamethee et al. 2005), we included it as a separate component when assessing cardiometabolic risk. Our findings for FRS mirror those of the CMS z score with respect to within-group changes from baseline for HVCRT, showing a significant reduction in score. This finding was once again unique to the HVCRT group. Moreover, the reduction in FRS for the HVCRT group was significant when
compared to both the TM and control groups, a finding which was not present when evaluating
the CMS z score alone. The Framingham equation takes into account separate variables that are
not defining criteria for CMS; but nonetheless can significantly contribute to CVD risk.

Significant reductions in FRS for the HVCRT group may be explained, in part, by the significant
decrease in SBP. This decrease was not observed in the TM or control groups. Although the FRS
appears to be a better predictor of CVD risk, Wannamethee et al. (2005) suggest that the
presence of CMS may be a better predictor for type-2 diabetes mellitus. Therefore, the use of
both assessment tools may provide a more comprehensive and well-rounded assessment of
morbidity risk when multiple cardiometabolic risk factors are present.

The negative impact of CMS risk factors on HRQoL has been well-documented,
particularly their effects on emotional and psychological well-being (Sullivan et al. 2007, Oh et
al. 2010, Boylan and Ryff 2015). The RAND is a common tool used to assess HRQoL and can
also be utilized to detect changes in several dimensions of health and well-being as a result of an
exercise intervention. Our findings that both exercise protocols resulted in significant
improvements in Emotional-Well Being when compared to control are consistent with those
reported by Oh et al. (2010) and present another perspective on how meaningfully CMS and
CVD risk factors are to the predicted health of at-risk individuals. We believe that the relatively
short length of the intervention may not have been sufficient to alter some of the psychological
components assessed by the RAND, as Oh et al. (2010) conducted a six-month intervention
study and reported significant findings in many other components. Based on these and other’s
findings, we believe that it is critical to continue to assess individual perception of overall health
and to include HRQoL due to the known connection between CMS risk and its associated
impact. Future studies should be conducted using similar interventions, but over a longer period
of time and should attempt to determine any relationships that may exist between improvements in physiological parameters and HRQoL.

Limitations

Possible limitations include a lack of blinded pretest and post-test assessments, with the exception of the blood markers. We understand that this introduces the potential for tester bias. Another limitation was the failure to use an intention-to-treat analysis. This was due to an inability to have those that withdrew from the study, return for post-testing. A lack of evenly distributed men and women in each group was another limitation in our study.

However, concerning CVD risk, the FRS accounts for sex differences when determining future risk. Sex-related differences in autonomic control of HR and BP have been previously noted, indicating that BP in some cases may be higher in post-menopausal women (Reckelhoff, 2004) and that regulation of SVR and HR may differ as well (Evans et al. 2001). However, by performing an ANCOVA, we have accounted for any baseline differences that may have been due to differences related to sex. The large number of outcome variables and the chosen statistical approach does increase the probability of Type 1 errors. This potentially could have been addressed by using a multivariate analysis of variance (MANOVA); however, this approach would not allow the level of precision when correcting for baseline values provide by our ANCOVA. ANCOVA is the preferred approach for analyzing randomized trials with baseline and follow-up measurements (Vickers and Altman, 2001).

HVCRT represents a novel training modality that successfully improved several CMS and CVD risk factors and reduced the predicted overall risk for CVD and type-2 diabetes mellitus in a population of older men and women. Furthermore, emotional well-being significantly improved in those that exercised compared to their non-exercising counterparts. For
individuals with multiple risk factors for CMS and CVD, it is important not only to assess
physiological parameters such as blood markers and cardiovascular function, but also a
composite CMS score, FRS, and an overall perception of health. While these factors alone can
provide valuable prognostic information, assessing each of the three components should allow
for a more thorough evaluation of any physical activity and/or pharmacological intervention.

ACKNOWLEDGEMENTS

We would like to thank all the loyal study participants of the Laboratory for Neuromuscular
Research and Active Aging and our undergraduate students for their continued dedication and
help.

DISCLOSURES

Partial funding for the study was provided by the University’s School of Education and Human
Development. The authors have no conflict of interest to disclose. The authors declare that the
results of the study are presented clearly, honestly, and without fabrication, falsification, or
inappropriate data manipulation.
508 REFERENCES

509 American College of Sports Medicine. 2013. ACSM’s guidelines for exercise testing and
510 prescription: Lippincott Williams & Wilkins; p. 162-67.

512 Essentials of strength training and conditioning. 3rd ed. Human Kinetics, Champaign, IL,
513 pp. 641.

515 group exercise improves balance and reduces falls in at-risk older people: A randomized

518 Comparison of aerobic versus resistance exercise training effects on metabolic syndrome
519 (from the studies of a targeted risk reduction intervention through defined exercise

521 Bouchonville, M., Armamento-Villareal, R., Shah, K., Napoli, N., Sinacore, D.R., Qualls, C., et
522 al. 2014. Weight loss, exercise or both and cardiometabolic risk factors in obese older

528 2008. Comparison of maximal heart rate using the prediction equations proposed by

530 Charloux, A., Lonsdorfer-Wolf, E., Richard, R., Lampert, E., Oswald-Mammosser, M., Mettauer

Table 1. Presence of Risk Factors among Participants

<table>
<thead>
<tr>
<th>Percentage of Participants Meeting Risk Factor Criteria (%)</th>
<th>TM (n=8)</th>
<th>HVCRT (n=9)</th>
<th>CONT (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>BMI</td>
<td>63</td>
<td>89</td>
<td>43</td>
</tr>
<tr>
<td>WC</td>
<td>100</td>
<td>100</td>
<td>86</td>
</tr>
<tr>
<td>BP</td>
<td>25</td>
<td>78</td>
<td>43</td>
</tr>
<tr>
<td>FG</td>
<td>38</td>
<td>33</td>
<td>29</td>
</tr>
<tr>
<td>HA1C</td>
<td>38</td>
<td>78</td>
<td>71</td>
</tr>
<tr>
<td>TC</td>
<td>56</td>
<td>75</td>
<td>57</td>
</tr>
<tr>
<td>HDL-C</td>
<td>25</td>
<td>22</td>
<td>43</td>
</tr>
<tr>
<td>LDL-C</td>
<td>63</td>
<td>67</td>
<td>57</td>
</tr>
<tr>
<td>TGL</td>
<td>50</td>
<td>11</td>
<td>29</td>
</tr>
<tr>
<td>Smoker</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Sedentary</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

BMI = body mass index; BP = blood pressure; FG = fasting blood glucose; HA1C = glycosylated hemoglobin A1C; HDL-C = high-density lipoprotein cholesterol; LDL-C = low-density lipoprotein cholesterol; TC = total cholesterol; TGL = triglyceride; WC = waist circumference.
Table 2. Baseline Participant Characteristics

<table>
<thead>
<tr>
<th></th>
<th>TM (n=8)</th>
<th>HVCRT (n=9)</th>
<th>CONT (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>68 ± 3</td>
<td>72 ± 3</td>
<td>70 ± 3</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>165 ± 3</td>
<td>167 ± 3</td>
<td>158 ± 3</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>85.6 ± 5.3</td>
<td>91.5 ± 3.0</td>
<td>78.3 ± 7.0</td>
</tr>
<tr>
<td>BMI</td>
<td>31.4 ± 1.5</td>
<td>33.0 ± 1.0</td>
<td>31.1 ± 2.4</td>
</tr>
</tbody>
</table>

Values ± SE; BMI = body mass index; CONT = control; HVCRT = high-velocity circuit resistance training; TM = moderate-intensity treadmill training. No significant differences were detected between groups.
Table 3. Energy Intake in Kilocalories

<table>
<thead>
<tr>
<th></th>
<th>Week One</th>
<th>Week Six</th>
<th>Week Twelve</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>1377 ± 209</td>
<td>1528 ± 212</td>
<td>1470 ± 285</td>
</tr>
<tr>
<td>HVCRT</td>
<td>1923 ± 193</td>
<td>1706 ± 196</td>
<td>1919 ± 269</td>
</tr>
<tr>
<td>CONT</td>
<td>1680 ± 229</td>
<td>1819 ± 232</td>
<td>2017 ± 312</td>
</tr>
</tbody>
</table>

Values ± SE; CONT = control; HVCRT = high-velocity circuit resistance training; TM = moderate-intensity treadmill training. No significant differences were detected between groups.
Table 4. Baseline and change scores of primary outcome measures for cardiometabolic syndrome

<table>
<thead>
<tr>
<th>Outcome Measures</th>
<th>Baseline</th>
<th>12 Weeks</th>
<th>Adjusted Mean at 12 Weeks</th>
<th>Group Comparisons</th>
<th>Adjusted Mean Difference (95% CI)</th>
<th>p</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>104.9 ± 3.9</td>
<td>104.5 ± 4.0</td>
<td>103.4 ± 2.0</td>
<td>HVCRT – TM</td>
<td>-0.3 ± 2.7 (-7.3, 6.7)</td>
<td>0.99</td>
<td>0.15</td>
</tr>
<tr>
<td>HVCRT</td>
<td>107.4 ± 3.2</td>
<td>106.0 ± 2.6</td>
<td>103.1 ± 1.9</td>
<td>HVCRT – CONT</td>
<td>-1.4 ± 2.9 (-9.6, 2.2)</td>
<td>0.95</td>
<td>0.48</td>
</tr>
<tr>
<td>CONT</td>
<td>96.7 ± 8.6</td>
<td>99.6 ± 6.6</td>
<td>104.6 ± 2.2</td>
<td>TM – CONT</td>
<td>-1.1 ± 2.9 (-8.8, 6.5)</td>
<td>0.98</td>
<td>0.34</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>119.0 ± 4.6</td>
<td>115.6 ± 4.3</td>
<td>121.9 ± 2.4</td>
<td>HVCRT – TM</td>
<td>-10.0 ± 3.7 (-19.7, -0.4)</td>
<td>0.04*</td>
<td>0.36</td>
</tr>
<tr>
<td>HVCRT</td>
<td>139.2 ± 4.7</td>
<td>119.7 ± 3.4*</td>
<td>111.9 ± 2.4</td>
<td>HVCRT – CONT</td>
<td>-15.7 ± 3.6 (-25.6, -6.4)</td>
<td>0.01*</td>
<td>0.42</td>
</tr>
<tr>
<td>CONT</td>
<td>124.3 ± 5.8</td>
<td>124.7 ± 5.1</td>
<td>127.6 ± 2.5</td>
<td>TM – CONT</td>
<td>-5.7 ± 3.4 (-14.5, 3.1)</td>
<td>0.29</td>
<td>0.70</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>74.1 ± 4.4</td>
<td>73.1 ± 4.1</td>
<td>74.4 ± 1.9</td>
<td>HVCRT – TM</td>
<td>-6.7 ± 2.7 (-13.6, 0.2)</td>
<td>0.06</td>
<td>0.18</td>
</tr>
<tr>
<td>HVCRT</td>
<td>80.8 ± 2.9</td>
<td>71.3 ± 2.7*</td>
<td>67.6 ± 1.8</td>
<td>HVCRT – CONT</td>
<td>-10.3 ± 2.8 (-17.7, -2.9)</td>
<td><0.01*</td>
<td>0.39</td>
</tr>
<tr>
<td>CONT</td>
<td>71.3 ± 4.2</td>
<td>74.6 ± 3.2</td>
<td>77.9 ± 2.0</td>
<td>TM – CONT</td>
<td>-3.6 ± 2.7 (-10.7, 3.6)</td>
<td>0.51</td>
<td>0.14</td>
</tr>
<tr>
<td>FG (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>98.0 ± 14.9</td>
<td>88.9 ± 9.9</td>
<td>87.4 ± 5.9</td>
<td>HVCRT – TM</td>
<td>-1.1 ± 8.1 (-22.1, 20)</td>
<td>0.99</td>
<td>0.09</td>
</tr>
<tr>
<td>HVCRT</td>
<td>95.9 ± 7.3</td>
<td>86.9 ± 4.9*</td>
<td>86.3 ± 5.5</td>
<td>HVCRT – CONT</td>
<td>-7.8 ± 8.4 (-29.8, 14.1)</td>
<td>0.74</td>
<td>0.30</td>
</tr>
<tr>
<td>CONT</td>
<td>89.0 ± 7.7</td>
<td>91.9 ± 6.7</td>
<td>94.1 ± 6.3</td>
<td>TM – CONT</td>
<td>-6.8 ± 8.7 (-29.4, 15.9)</td>
<td>0.83</td>
<td>0.12</td>
</tr>
<tr>
<td>TGL (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>147.5 ± 19.8</td>
<td>138.4 ± 19.9</td>
<td>128.0 ± 14.2</td>
<td>HVCRT – TM</td>
<td>-2.2 ± 19.6 (-53.3, 49)</td>
<td>0.99</td>
<td>0.44</td>
</tr>
<tr>
<td>HVCRT</td>
<td>127.9 ± 16.8</td>
<td>117.8 ± 11.3</td>
<td>125.8 ± 13.3</td>
<td>HVCRT – CONT</td>
<td>-18.5 ± 21.0 (-73.5, 36.5)</td>
<td>0.77</td>
<td>0.18</td>
</tr>
<tr>
<td>CONT</td>
<td>134.5 ± 30.4</td>
<td>142.5 ± 42.1</td>
<td>144.3 ± 16.3</td>
<td>TM – CONT</td>
<td>-16.3 ± 21.6 (-72.9, 40.2)</td>
<td>0.84</td>
<td>0.07</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>51.5 ± 5.4</td>
<td>55.9 ± 6.6*</td>
<td>56.5 ± 2.6</td>
<td>HVCRT – TM</td>
<td>-0.4 ± 3.6 (-9.7, 8.9)</td>
<td>0.99</td>
<td>0.12</td>
</tr>
<tr>
<td>HVCRT</td>
<td>50.2 ± 3.0</td>
<td>54.1 ± 3.6</td>
<td>56.1 ± 2.5</td>
<td>HVCRT – CONT</td>
<td>-1.3 ± 3.9 (-11.5, 9)</td>
<td>0.99</td>
<td>0.56</td>
</tr>
<tr>
<td>CONT</td>
<td>55.7 ± 5.2</td>
<td>61.2 ± 6.2</td>
<td>57.4 ± 3.0</td>
<td>TM – CONT</td>
<td>-0.9 ± 4.0 (-11.3, 9.6)</td>
<td>0.99</td>
<td>0.34</td>
</tr>
<tr>
<td>FRS (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>7.9 ± 2.5</td>
<td>7.0 ± 2.5</td>
<td>7.9 ± 0.8</td>
<td>HVCRT – TM</td>
<td>-3.0 ± 1.1 (-5.8, -0.2)</td>
<td>0.03*</td>
<td>0.00</td>
</tr>
<tr>
<td>HVCRT</td>
<td>11.4 ± 1.7</td>
<td>7.0 ± 1.3*</td>
<td>4.9 ± 0.7</td>
<td>HVCRT – CONT</td>
<td>-3.3 ± 1.2 (-6.4, -0.2)</td>
<td>0.03*</td>
<td>0.18</td>
</tr>
<tr>
<td>CONT</td>
<td>6.5 ± 2.3</td>
<td>6.2 ± 2.2</td>
<td>8.2 ± 0.9</td>
<td>TM – CONT</td>
<td>-0.3 ± 1.0 (-3.3, 2.7)</td>
<td>0.99</td>
<td>0.13</td>
</tr>
<tr>
<td>CMS-z Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>-0.9 ± 1.2</td>
<td>-2.8 ± 1.2</td>
<td>-2.7 ± 0.6</td>
<td>HVCRT – TM</td>
<td>-1.4 ± 0.8 (-3.4, 0.7)</td>
<td>0.25</td>
<td>0.20</td>
</tr>
<tr>
<td>HVCRT</td>
<td>-0.2 ± 0.6</td>
<td>-3.4 ± 0.7*</td>
<td>-4.1 ± 0.5</td>
<td>HVCRT – CONT</td>
<td>-2.8 ± 0.9 (-5.1, -0.5)</td>
<td>0.02*</td>
<td>0.29</td>
</tr>
<tr>
<td>CONT</td>
<td>-2.0 ± 1.5</td>
<td>-2.4 ± 1.7</td>
<td>-1.3 ± 0.7</td>
<td>TM – CONT</td>
<td>-1.4 ± 0.9 (-3.7, 0.9)</td>
<td>0.34</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Values ± SE, unless otherwise stated; * \(p \leq 0.05 \); 95% confidence interval (CI) are derived from analysis of covariance, adjusted for baseline level. CMS = cardiometabolic syndrome; CONT = control; DBP = diastolic blood pressure; FG = fasting glucose; FRS = Framingham risk score; HDL-C = high density lipoprotein cholesterol; HVCRT = high-velocity circuit resistance training; LDL-C = low density lipoprotein cholesterol; SBP = systolic blood pressure; TGL = triglycerides; TM = moderate-intensity treadmill training; WC = waist circumference.
FIGURE CAPTIONS

Figure 1. Participant flow through the study.

Figure 2. Mean change in CMS criteria. (a) Waist circumference, (b) Cardiometabolic syndrome z score, (c) Systolic blood pressure, (d) Diastolic blood pressure, (e) Mean arterial pressure, (f) Fasting blood glucose, (g) High-density lipoprotein cholesterol, and (h) Triglyceride. HVCRT: high-velocity circuit resistance training; TM: moderate-intensity treadmill training; CONT: no-exercise. Values ± SE.* Significantly different from baseline, p ≤ 0.05.

Figure 3. Effect of exercise modes on hemodynamic variables. (a) Systemic vascular resistance, (b) Stroke volume, (c) End diastolic volume, (d) Ejection fraction. HVCRT: high-velocity circuit resistance training; TM: moderate-intensity treadmill training; CONT: no-exercise. Values ± SE.* Significantly different from baseline, p ≤ 0.05.
Figure 1. Participant flow through the study.

279x362mm (300 x 300 DPI)
a. Circumference (cm)

b. Cardiometabolic Syndrome Z Score

c. Systolic Blood Pressure (mmHg)

d. Diastolic Blood Pressure (mmHg)

e. Mean Arterial Pressure (mmHg)

f. Fasting Glucose (mg/dL)

g. High Density Lipoprotein-C (mg/dL)

h. Triglycerides (mg/dL)