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Haplotypes have played a major role in the study of highly-penetrant single-gene disorders, and recent evidence that the
human genome has hot-spots and cold-spots for recombination have suggested that haplotype-based methods may play a
key role in the study of common complex traits. This report reviews the motivation of using haplotypes for the study of the
genetic basis of human traits, ranging from biologic function, to statistical power advantages of haplotypes, to linkage
disequilibrium fine-mapping. Recent developments of regression models for haplotype analyses are reviewed, offering a
synthesis of current methods, as well as their limitations and areas that require further research. Regression models provide
significant advantages, such as the ability to control for non-genetic covariates, the effects of the haplotypes can be
modeled, step-wise selection can be used to screen for a subset of markers that explain most of the association,
haplotype� environment interactions can be evaluated, and regression diagnostics are well developed. Despite these
strengths, the current regression methods tend to lack the sophisticated population genetic perspectives offered by
coalescent and other similar approaches. Future work that links regression methods with population genetic models may
prove beneficial. Genet. Epidemiol. & 2004 Wiley-Liss, Inc.

Key words: case-control; cladistic; coalescent; generalized linear models; Hardy-Weinberg Equilibrium; linkage
disequilibrium; variance component

Grant sponsor: U.S. Public Health Service, National Institutes of Health; Grant number: GM65450.
nCorrespondence to: Daniel J. Schaid, Ph.D., Harwick 7, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55905.
E-mail: schaid@mayo.edu
Received 2 September 2004; Accepted 3 September 2004
Published online 10 November 2004 in Wiley InterScience (www.interscience.wiley.com)
DOI 10.1002/gepi.20037

INTRODUCTION

Haplotypes, the combination of closely linked
alleles on a chromosome, play key roles in the
study of the genetic basis of disease. These roles
vary from biologic function to providing informa-
tion about ancient ancestral chromosome seg-
ments that harbor alleles that influence human
traits. The main purpose of this report is to review
the rapidly expanding developments of statistical
methods for the association of haplotypes with
different types of traits. Before these methods are
reviewed, it is worthwhile to review the following
factors that motivate the use of haplotypes:
biologic function, statistical power advantages,
and linkage disequilibrium (LD) mapping.

BIOLOGIC FUNCTION

Until recently, genetic markers on haplotypes were
widely spaced, and not likely to possess biological
function. In contrast, many of the single nucleotide

polymorphisms (SNPs) in current use may define
mutations within functional DNA variations, such as
exons or promoters, and are densely spaced, so that
haplotypes composed of these types of markers can
have more of a biological role. As emphasized by
Clark [2004 (this issue)], the functional properties of
a protein are often determined by how it is folded,
which in turn is determined by the linear sequence
of the amino acids; this linear sequence is deter-
mined by DNA variation on a haplotype. There is
strong evidence that several mutations within a
single gene in cis position (i.e., on the same haplo-
type) can interact to create a ‘‘super-allele’’ that has a
large effect on the observed phenotype. Some
examples in humans are a gene that influences
intestinal lactase activity [Hollox et al., 2001], a gene
responsible for human lipoprotein lipase [Clark
et al., 1998], the HPC2/ELAC2 gene that increases
the risk for prostate cancer [Tavtigian et al., 2001],
and a gene that influences actions of catecholamines,
which influence bronchodilation, and hence asthma
[Drysdale 2000]. Hence, there are strong biological
reasons why haplotypes can be important to study.
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STATISTICAL ADVANTAGES OF
HAPLOTYPES

Haplotypes composed of SNPs that may or may
not be functional can sometimes provide greater
power than single-marker analyses for genetic
disease associations, due to the ancestral structure
captured in the distribution of haplotypes [Akey
and Xiong, 2001]. The literature on the relative
efficiency of analyzing haplotypes versus single
markers is complicated by differing assumptions
about the number of trait loci, the number of
alleles at the trait loci, and the amount of linkage
disequilibrium among alleles from the marker and
trait loci. Most reports have compared the max-
imum of single-locus statistics, with Bonferroni
correction for the multiple tests, to a global test of
haplotype associations. The following conclusions
seem justified. For a quantitative trait, when the
set of measured SNPs includes causative SNPs,
single-locus tests are more powerful than haplo-
type-based tests when the number of causative
SNPs is less than the number of haplotypes
[Bader, 2001]. Intuitively, when associations are
concentrated on a small number of SNPs, the
maximum of multiple single-locus tests is likely to
be more powerful than a global test that considers
all haplotypes. Furthermore, for some simulations
based on coalescent theory, single-locus analyses
were more powerful than haplotype-based meth-
ods even when the markers were not causative,
but rather in LD with a dialleic locus that
influences a quantitative trait [Long and Langley,
1999]. In contrast, for case-control studies, haplo-
type-based methods can be more powerful than
single-locus analyses when the SNPs are in LD
with a causative diallelic locus [Akey and Xiong,
2001]. Both single-locus [Slager et al. 2000] and
haplotype-based methods lose power when there
are multiple alleles at a causative locus, but
haplotype-based methods lose less power. In this
situation, the power advantage for haplotype-
based methods is greatest when the marker alleles
are not in strong LD with each other, yet in strong
LD with the causative alleles [Morris and Kaplan,
2002]. This situation is likely to occur when the
ages of the marker variants are much older than
the ages of the alleles at the causative locus, so that
the markers have weak LD by the time of origin of
the disease susceptibility alleles. How often this
occurs is unknown, but the above studies suggest
that haplotype methods may be more powerful
for younger, and hence more rare, causative

variants, in contrast to older more common
causative variants.

A limitation of the above comparisons is that
they have focused on two extremes, either using
the maximum of single-locus statistics or using a
global test for all haplotypes. When there are
many haplotypes, there are many degrees of
freedom, which can weaken power to detect
associations. In contrast, a multi-locus statistic
that simultaneously tests for the main effects of all
loci, yet without regard to haplotype phase, can
have greater power than both the single-locus
method and the haplotype method. A multi-locus
test allows for association across multiple loci, yet
has fewer degrees of freedom than the haplotype
method. This feature has been observed for SNPs
that are carefully chosen to ‘‘tag’’ common
haplotypes [Chapman et al., 2003]. Further dis-
cussions of this multi-locus approach are given
by Clayton [Clayton et al., 2004 (this issue)].
More comprehensive evaluations of the relative
efficiencies of single-locus tests, multi-locus un-
phased genotype tests, and haplotype-based
methods would help to clarify these issues.

LINKAGE DISEQUILIBRIUM
MAPPING

Haplotypes have played a key role in the study
of simple Mendelian diseases, mainly for fine-
mapping, taking advantage of ancestral recombi-
nations that trim haplotypes to informative small
segments that harbor a disease locus. Because
ancestral recombinations weaken associations,
haplotype studies typically cover small chromo-
somal regions, ranging from tens of kilobases
(kb’s) to a few hundred thousand kb. Both
haplotype association methods and LD fine-
mapping methods take advantage of the fact that
in the vicinity of a causative locus, haplotypes of
diseased subjects tend to share more ancestry than
haplotypes of unaffected subjects, and this excess
sharing decreases with distance from the causa-
tive locus. Both approaches share the common
goal of localizing the disease susceptibility locus.
However, the means to accomplish this goal
differs between the two approaches.

For LD fine-mapping, the main focus is either
the distribution of complete marker haplotypes or
pair-wise LD among the chromosomes from
affected cases, with the chromosomes from con-
trols playing a lesser role. The genealogy of the
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case chromosomes provides the most information
on the position of the underlying trait locus. The
controls are expected to share much less ancestry
among themselves, and so the role of controls is
often to provide information on the frequencies of
haplotypes, or pair-wise marker LD, among
haplotypes that are not ancestral to disease-
bearing chromosomes. Some methods have fo-
cused on pair-wise associations of markers and
use composite likelihoods [Terwilliger, 1995; Dev-
lin et al., 1996; Xiong and Guo, 1997; Collins and
Morton, 1998; Maniatis et al., 2004], because more
ambitious complicated models are likely to be
overly simplistic, and perhaps too stringent in
their assumptions about population history [Dev-
lin et al., 1996; Zhang et al., 2004]. Other methods
account for the dependence among chromosomes
from cases by modeling their ancestry [Hastbacka
et al., 1992; Kaplan et al., 1995; Graham and
Thompson 1998; Rannala and Slatkin 1998; Morris
et al., 2000, 2002], others reconstruct the local
genealogical tree [Lam et al., 2000], and others are
based on haplotype sharing [McPeek and Strahs,
1999; Molitor et al., 2003a,b]. Some of the more
recent methods are built on the modern popula-
tion genetic coalescent theory. The parameters of
these statistical models for the haplotype structure
typically include recombination rates, mutation
rates, the genealogy of the haplotypes, the location
of the causative locus, the age of the causative
allele(s), and demographic parameters, such as the
size of the population and growth rates. These
more complex models are attractive because they
account for many of the population genetic
features of interest. Because of the complexity of
the likelihoods, markov chain monte carlo
(MCMC) methods are used to fit the models. In
practice, the more complex the model, the more
parameters, and hence the longer the time to fit
the models by MCMC. In theory, unphased
haplotypes can be accounted for in the MCMC
methods, treating them as latent variables. How-
ever, this increases the dimension of the para-
meters to estimate, slowing the convergence of
MCMC. Because of this, most LD methods require
haplotypes with known phase, which is typically
accomplished by using the most likely pair of
haplotypes per subject [for a review of statistical
methods to infer haplotypes see Niu, 2004 (this
issue)]. This practice is not satisfactory, because
inferring the most likely pair of haplotypes, and
then treating them as if they were directly
observed, can result in a substantial loss of
information and overly optimistic confidence

intervals for parameter estimates [Morris et al.,
2004]. The better approach is to directly analyze
the unphased genotype data, accounting for
haplotype ambiguity by statistical methods.

LD fine-mapping methods have achieved vary-
ing levels of success for Mendelian diseases of
large genetic effect, such as Cystic fibrosis
[McPeek and Strahs 1999; Morris et al., 2000,
2002; Liu et al., 2001; Molitor et al., 2003b],
Friedreich’s ataxia [Liu et al., 2001; Molitor et al.,
2003b], Huntington’s disease [Morris et al., 2000],
Diastrophic dysplasia (Finland) [Hastbacka et al.,
1992; Rannala and Slatkin 1998], Myoclonus
epilepsy (Finland) [McPeek, 1999], hereditary
hemochromatosis [Lam et al., 2000], and idio-
pathic distortion dystonia (Ashkenazi Jews) [Ran-
nala and Slatkin 1998]. Recent attempts for the
somewhat more complex Crohn’s disease show
promise [Conti and Witte, 2003]. The utility of the
current arsenal of LD fine-mapping methods for
common complex diseases, however, is not yet
determined. Common diseases can be compli-
cated by multiple genes, with both allelic and
locus heterogeneity, both of which are likely when
there are multiple rare variants of recent origin
[Neale and Sham, 2004]. In addition, common
disease can be complicated by phenocopies, as
well as environmental risk factors that are
stronger than the putative genetic risks, making
it necessary to statistically account for environ-
mental effects. Furthermore, complex diseases are
studied with a variety of epidemiologic designs,
such as case-control or cohort studies. Hence,
although the population genetic principles of
many LD fine-mapping methods are attractive,
particularly because they provide an estimate of
the location of the causative locus, the value of this
current arsenal of statistical methods for complex
traits is not yet known.

STATISTICAL METHODS FOR
ASSOCIATION OF HAPLOTYPES

WITH TRAITS

In contrast to the LD fine-mapping methods, the
development of methods to evaluate the associa-
tion of haplotypes with traits has followed the
more traditional biostatistical path, essentially
treating haplotypes as categorical covariates. This
path offers the advantage of using a wide variety
of established statistical regression methods, with
necessary extensions to account for unphased
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haplotypes. This review discusses many of these
regression approaches, offering insights to their
properties, and raising considerations for further
research. A potentially important area of future
development is to bring a closer link between the
population genetic principles underlying LD fine-
mapping and the more traditional biostatistical
regression framework.

TRADITIONAL HAPLOTYPE ASSOCIATION
METHODS FOR CASE-CONTROL STUDIES

If haplotypes are directly observed, then it is
simple to compare the frequencies of haplotypes
between cases and controls, using many of the
statistical methods that are used to compare allele
frequencies. When phase is unknown, the under-
lying haplotypes can be treated as missing data
within the expectation-maximization (EM) algo-
rithm [Excoffier and Slatkin, 1995]. This allows
estimation of haplotype frequencies for the cases
and controls, and construction of a likelihood ratio
statistic to test equality of haplotype frequencies
between cases and controls, LRT¼2(lnLcases+ln
Lcontrols�ln Lpool), where the log likelihoods (In L)
are maximized separately for the group of cases,
for the group of controls, and for the pool of all
subjects. Some limitations of this approach are
that the chi-square approximation for the distri-
bution of the LRT may not be adequate when there
are many haplotypes (hence sparse data), it lacks
adjustment for environmental covariates, it is
restricted to categorical outcomes, and it is
assumed that the pairs of haplotypes are in Hardy
Weinberg Equilibrium (HWE) proportions. This
latter assumption is somewhat strong, because the
random pairing of haplotypes implies that the
genotypes at each locus are expected to be in
HWE [Schaid, 2004]. For the group of cases, the
causative locus can be in HWE, but only if
the allelic effects are multiplicative on the geno-
type relative risk [Clayton, 1999]. If this is not
true, then the amount of departure from HWE will
be determined by the underlying genetic mechan-
ism, and the marker alleles that are in strong
LD with the causative allele will be dragged away
from HWE.

The success of this approach, as well as the
more general regression methods discussed be-
low, depends on getting the ‘‘right size’’ haplo-
types. If the haplotypes are too long, composed of
many distant loci that have recombined with the
causative locus, then the haplotypes will be

composed of many random alleles, with many
haplotypes, diluting associations with disease.
Hence, an important consideration is to scan the
haplotype for the sub-haplotype that has the
strongest association with disease, or perhaps for
the single causative SNP within a haplotype that
explains the haplotype association. This is very
much like the ‘‘haplotype method’’ [Valdes et al.,
1997], which matches cases and controls according
to the genotype at the primary locus, and
examines residual associations among secondary
loci, to determine if the primary locus explains all
of the haplotype-disease association. This can also
be accomplished by step-wise regression, as
discussed below.

REGRESSION MODELS FOR HAPLOTYPES

It is worthwhile to recall that when haplotypes
have known phase, the generalized linear model
(GLM) that describes how the haplotypes influ-
ence the mean of the trait, but not the scale, can be
expressed as E[Y]¼f (X0b), where Y denotes the
dependent trait, the haplotypes, treated as inde-
pendent variables, are coded into the X matrix, b
denotes the effects of haplotype pairs, and f is a
function that generalizes the usual linear regres-
sion. In GLM terminology, gð Þ ¼ f�1ð Þ is the
‘‘link’’ function. Example link functions are the
identity for quantitative traits and logit for binary
traits. Although it is frequently assumed that the
effects of haplotypes are additive, dominant and
recessive relationships, or more general genetic
models, can be incorporated into the X matrix. For
example, Clayton has emphasized that haplotype
effects statistically represent higher-order interac-
tions among alleles on the same chromosome
[Clayton and Jones, 1999], suggesting that step-
wise methods can be used to evaluate the role of
these types of interactions [Cordell and Clayton,
2002], and that ignoring interactions can sometime
increase power to detect associations [Clayton et
al., 2004].

An advantage of considering a GLM is that
many regression methods are special cases,
including logistic regression for binary traits,
linear regression for quantitative traits, and para-
metric survival models for age of onset. For many
complex traits, age of onset tends to occur earlier
for those that have a genetic etiology. Hence, for
cohort studies, it is critical to account for censored
age of onset. Simple extensions also allow for the
semiparametric proportional hazards model.
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Furthermore, regression models provide a flexible
means to adjust for environmental factors, and to
evaluate haplotype x environment interactions. A
key point is that when haplotype phase is known,
the usual GLM considers the distribution of the
trait conditional on the haplotypes and other
covariates, and so in this case the distribution of
the haplotypes does not impact the usual GLM.

Because the X matrix plays a critical role in the
power to detect associations, we use a simple
example of a binary trait and two loci, denoted A
and B, each dialleic, to illustrate how interactions
come into play, and their influences on haplotype
effects. For this example, there are four two-locus
haplotypes (denoted AB, Ab, aB, and ab). Assume
that phase is known, so that the double hetero-
zygotes are distinguishable, giving ten two-locus
genotypes, as illustrated in Table I. For these ten
genotype categories, there are nine degrees of
freedom. We can simply parameterize the geno-
type frequencies in terms of nine odds ratios,
using genotype ab/ab as the baseline. Or, we can
consider nine parameters for a fully saturated
logistic regression model, comprised of main
effects and interactions. We shall consider two
types of models: (1) a ‘‘locus’’ model that parti-
tions allelic effects into within and between loci,
and (2) a ‘‘haplotype’’ model that considers the
main effects of haplotypes and their pair-wise
interactions.

For the locus model, first consider a logistic
regression model for the effect of the A locus.
Using the genotype a/a as the baseline, we can use
xA to count the number of A alleles, and use uA/a to
indicate whether a subject is the heterozygote A/a.

Then, the logit model for the marginal effect of the
A locus can be written as

logit ¼ ao þ aAxA þ wAuA=a;

where ao is the baseline parameter (which we shall
ignore), aA is the main effect of locus A, and wA

measures the departure from additive effects of
the A allele, the interaction within locus A (e.g.,
dominant/recessive effects). We can express a
similar marginal model for the B locus, with
appropriate subscripts to denote the main effect
and the within-locus interaction of locus B. So far,
we have four parameters. When considering both
loci jointly, there are four additional interactions
described by the products of the x and u covariates:
the interaction of the main effects, xAxB, the
interactions of the main effects and the within-
locus interactions (xAuB/b and xBuA/a), and the
within-by-within interaction (uA/auB/b). Finally, there
is the phase effect that distinguishes the risk
between the double heterozygotes. Let v indicate
whether a subject has the genotype AB/ab. Then, the
fully saturated logistic model can be expressed as

logit ¼
ao þ aAxA þ aBxB main effects

þwAuA=a þ wBuB=b within � locus interactions

þdA�BxAxB main�main interaction

þdA�wBxAuB=b þ dB�wAxBuA=a main�within interaction

þdwAwBuA=auB=b within�within interaction

þdphasev phase effect

where d denotes a parameter for interaction
between loci, with the subscript illustrating the
type of interaction. The design matrix for this

TABLE I. Design matrices for regression models: locus model for allelic main effects, interactions, and phase effect, and
haplotype additive model (elements with 0 are left blank)

Locus model

Main effects Interactions

Within-locus Main�main Main�within Within�within Phase Haplotype additive model

2-locus genotypes xA xB uA/a uB/b xAxB xAuB/b xBuA/a uA/auB/b v zAB zAb zaB

AB/AB 2 2 4 2
AB/Ab 2 1 1 2 2 1 1
AB/aB 1 2 1 2 2 1 1
AB/ab 1 1 1 1 1 1 1 1 1 1
Ab/aB 1 1 1 1 1 1 1 1 1 1
Ab/Ab 2 2
Ab/ab 1 1 1
aB/aB 2 2
aB/ab 1 1 1
ab/ab
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model is given in Table I. To express this in
matrix notation, let X be a 10� 9 design matrix,
and let g be the vector of all 9 parameters, so that
logit ¼Xg.

Now consider the haplotype model. Instead of
partitioning the effects between and within loci,
assume that we model the haplotypes, using the
haplotype ab as the baseline. In this case, there are
three main effects, bAB, bAb, and baB, and there
are six pair-wise interactions, for the six genotypes
that are heterozygous for their pairs of haplotypes.
Hence, this model also has 9 parameters. Let Z be
the 10� 9 design matrix for the haplotype main
effects and interactions, and let b be a vector for
the corresponding parameters. Since both the locus
and haplotype models are fully saturated, they
must give the same fit to the data. So, we have
Xg¼Zb, and solving for b, we find that
b¼(Z0Z)�1Z0Xg, which means that the haplotype
model is simply a linear reparameterization of the
locus model.

A more interesting question arises when we
drop the interaction terms from the haplotype
model, by removing the columns of Z that
correspond to the pair-wise interactions (see Table
I for this Z matrix). In this case, the additive effects
of haplotypes derived from b¼(Z0Z)�1Z0Xg are

The main point to notice is the bracketed
terms that contribute constant coefficients to the
haplotype effects (b-terms), implying that with-
i̇n-locus interactions do not distinguish the
b-terms haplotype effects, as expected for the
assumed additive effects of haplotypes. However,
the locus main effects, the interaction of locus
main effects, the interaction of locus main effects
and within-locus interactions, and the phase
effect, do not have constant coefficients across
the three different b’s, implying that all of these
effects influence the haplotype main effects.
Hence, by the additive haplotype model, we have
used only three parameters to capture the influ-
ence of six parameters from the locus model,
which could improve power by the reduced
degrees of freedom. Conti and Gauderman
[2004] propose Bayes model averaging to deter-
mine if the interaction forms, and phase effect,
should be kept in the model.

REGRESSION MODELS FOR
UNPHASED HAPLOTYPES

To account for unphased haplotypes, some
investigators have used statistical methods to
infer the most likely haplotype pair per subject,
and then use these inferred haplotypes as if they
were observed. This approach does not account
for the discarded haplotype pairs that are possi-
ble, and if LD is not strong, there can be
substantial loss of information [Schaid, 2002]. In
fact, using only the most likely haplotypes
introduces measurement error into the X matrix,
resulting in biased estimates of haplotype effects
[Zhao et al., 2003], and possibly increased error in
the estimated parameters [Tanck et al., 2003]. A
more appealing approach is to use all possible
pairs of haplotypes that are consistent with the
observed marker data.

For unphased haplotypes, we can still use the
general form of a GLM, but now we need to
account for haplotype ambiguity by modeling the
probabilities of the possible haplotype pairs per
subject. To illustrate these methods, we shall use G
to denote the unphased multilocus genotypes for
a subject and H¼{h1, h2} to denote a particular pair
of phased haplotypes. Assuming a prospective

likelihood, the contribution to the likelihood by
the ith subject can then be expressed as

L ¼
X
H2G

P YjXe; XgðHÞ; b
� �

PðHÞ; ð1Þ

where the sum is over all possible pairs of
haplotypes consistent with the observed geno-
types, Xe represents the environmental covariates,
Xg(H) is the genetic covariate, determined by
the numeric coding of each pair of haplotypes, b is
the vector of regression coefficients (including
effects of Xe, Xg(H), and possibly their interac-
tions), and P(H) is the prior probability of
haplotype pair H. Using this general formulation,
one can use a GLM to model the conditional
probability of the trait given covariates, P{Y|
Xe,Xg(H),b}. A summary of reports that fall under
this general scheme is given in Table II, illustra-
ting the type of trait addressed, and whether

bAB ¼ aA þ aB þ wA
2
9 þ wB

2
9

� �
þ dA�B 49

27 þ dA�wB
10
27 þ dB�wA

10
27 þ dwAwB

1
9

� �
þ dphase 4

27
bAb ¼ aA þ wA

2
9 þ wB

2
9

� �
þ dA�B 4

27 þ dA�wB
10
27 þ dB�wA

1
27 þ dwAwB

1
9

� �
� dphase 1

54

baB ¼ aB þ wA
2
9 þ wB

2
9

� �
þ dA�B 4

27 þ dA�wB
1
27 þ dB�wA

10
27 þ dwAwB

1
9

� �
� dphase 1

54
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environmental covariates were included in the
developed methods.

To fit the regression model of expression (1), it
is necessary to maximize the log-likelihood for
all subjects over the regression parameters (b)
and the parameters that describe the probabilities
of haplotype pairs. Alternatively, estimating
equations could be used [Zhao et al., 2003]. For
censored data, the semiparametric proportional
hazards model can be used, which additionally
requires estimation of the cumulative baseline
hazard [Lin, 2004]. Because there are typically
many haplotypes, it is often assumed that HWE
holds for the haplotypes. In this case, P(H) can be
modeled as the product of haplotype probabilities;
let qh denote the population frequency for the hth
haplotype (these must also be estimated). For a
binary trait, the HWE assumption can be imposed
on either the unaffected control subjects or the
pool of all subjects; see Table II. For a haplotype
that has a strong effect on disease status, HWE is
not expected to hold among the diseased subjects,
unless the effects of the haplotypes are multi-
plicative on the genotype relative risk, hence the
reason for assuming HWE among only the
controls. The impact of departures from HWE is
discussed later.

To maximize the log-likelihood, the unphased
haplotypes can be treated as missing data within
the EM framework, giving rise to the posterior
probability of the jth pair of haplotypes for the ith
subject

P Hi;jjG;Y;Xe;Xg Hi;j

� �
; b

� �

¼
P YjXe;Xg Hi;j

� �
; b

� �
P Hi;j

� �
P

H2G P YjXe;XgðHÞ; b
� �

PðHÞ
:

ð2Þ

The E-step uses the current parameter estimates
ðb̂b; q̂qÞ in expression (2) to update the posterior

probabilities. If there are sampling weights for the
subjects, denoted wi, then multiplying these times
the posterior probability of expression (2) gives a
weight, wi,j, for each pair of haplotypes. These
weights for haplotype pairs can then be used in
the M-step to update b̂b (by weighted regression).
To update q̂qh, the expected number of haplotypes
of type h is computed by

E½#h� ¼
X
i

X
Hi;j2Gi

wi;jCount hjHi;j

� �
;

where Count(h|H) counts the number of haplo-
types of type h in the pair H, with a value of 0, 1,
or 2. Then, the usual multinomial frequency
estimate is used, q̂qh ¼ E½#h�=ð2NÞ, where N is the
number of subjects. These types of regression
methods are distributed in a package of routines
called HaploStats, which run in the S-PLUS or R
statistical packages. It should be recognized that
simultaneously estimating both haplotype fre-
quencies and haplotype effects will be limited to
a relatively small number of loci, depending on
the sample size, because of the many parameters
to estimate.

HYPOTHESIS TESTING WITH
SCORE STATISTICS

An advantage of the GLM framework is that it
provides a means to construct score statistics to
test the null hypothesis of no haplotype effects.
These scores statistics, adjusted for environmental
covariates, measure the covariance of the residuals
of a GLM model that fits only the environmental
covariates with the expected haplotype coding in
the X matrix. The weights for the expected
haplotype codings are the posterior probabilities
of the haplotype pairs, given the observed

TABLE II. Regression methods for haplotype effects on traits

Trait Likelihood HWE Covariates Reference

Binary Prospective Pool No [Chiano and Clayton, 1998]
Binary Prospective Pool Yes [Mander, 2001]
Binary/quantitative Prospective Pool Yes [Tregouet et al., 2002]
Quantitative Prospective Pool Yes [Mander, 2002]
Quantitative Prospective Pool Yes [Tanck et al., 2003]
Binary Prospective Controls Yes [Zhao et al., 2003]
GLM Prospective Pool Yes [Lake et al., 2003]
GLM Prospective Pool Yes [Seltman et al., 2003]
Binary Prospective Pool Yes [Stram et al., 2003]
Binary Retrospective Controls No [Epstein and Satten, 2003]
Censored Prospective Pool Yes [Lin, 2004]
Binary Prospective Pool Yes [Durrant et al., 2004]
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genotypes; these posterior probabilities are by-
products of the EM algorithm used to estimate
haplotype frequencies when ignoring the trait
[Excoffier and Slatkin, 1995]. Under the null
hypothesis, it is reasonable to assume HWE of
the haplotypes. An example of an X matrix,
assuming additive effects of haplotypes, for both
unambiguous haplotype pairs and enumerated
haplotype pairs with their posterior probabilities,
is given in Table III. Subject 3 has ambiguous
haplotypes; after listing all possible pairs, an X
matrix can be constructed, along with the corre-
sponding posterior probabilities for the rows of
the X matrix. To illustrate the score statistic, let ~yyi
denote a fitted value from a GLM with only
environmental covariates, and let E[] denote an
expectation over the posterior probability of
haplotype pairs under the null hypothesis, given
the observed marker data. For example, see
Table III for E[X] of subject 3. The score statistics
can then be shown to be

U ¼
XN

i¼1

yi � ~yyið Þ
aðfÞ Ei½X�;

where a(f) scales the distribution, with a value of
s2
mse for the normal distribution, and a value of 1

for binomial and Poisson distributions [Schaid et
al., 2002]. The variance of this score vector
accounts for the ambiguous haplotypes by use of
Louis’s score statistics with incomplete data
[Louis, 1982]. An advantage of the score statistics
is that they are rapid to compute, making it
feasible to compute P values by simulations (i.e.,
randomly ordering ðyi � ~yyiÞ, and recomputing the
statistics many times), which is more robust for
sparse haplotypes than relying on asymptotic
normality. An alternative to the score statistics is
to simply use the expected X scorings of haplo-

types, E[X], in standard regression packages
[Zaykin et al., 2002]. Although this latter approach
does not account for the increased variance of the
resulting statistic, limited simulations (Schaid,
unpublished data) suggest that ignoring the
additional variation in the X matrix is not harmful
when the haplotype effects are not large. An
advantage of this latter approach is that the
average X matrix can be used for a wide variety
of study designs, such as matched case-control
studies.

DEPARTURE FROM HWE

Departure of the haplotype pairs from HWE can
result from genotying errors, selection, population
stratification, or statistical chance. Because haplo-
type ambiguity is caused by heterozygous loci,
departure from HWE in the direction of excessive
heterozygosity can increase the error in haplotype
predictions, yet excessive homozygosity does not
[Fallin and Schork, 2000; Single et al., 2002].
Excessive heterozygosity can also lead to inflated
Type-I error rates when analyzing ambiguous
haplotypes with the prospective regression model
[Lake et al., 2003].

REGRESSION MODELS FOR CASE-
CONTROL STUDIES

A limitation of the prospective likelihood is
that it does not account for how the sample was
ascertained. For case-control studies, it should be
clear that estimated haplotype frequencies will be
biased when haplotypes are associated with
disease, because cases are over-sampled. Further-
more, the regression coefficients for the haplotype

TABLE III. Example X matrix for unambiguous haplotype pairs (subjects 1 and 2) and enumerated haplotype pairs for
ambiguous subject 3

Haplotype X matrix (counts of haplotypes) (haplotype no.)

Subject
Haplotype�1
Haplotype�2 Haplotype pair, no. 1 2 3 4 5 6 Posterior probability a

1 1 1 1
1 1 0 1,2 1 1 0 0 0 0 1

2 0 1 1
0 1 1 3,3 0 0 2 0 0 0 1

3 0 1 0
0 0 1 4,5 0 0 0 1 1 0 P(4,5|G)
0 1 1
0 0 0 3,6 0 0 1 0 0 1 P(3,6|G)

3 E[X] b 0 0 P(3,6|G) P(4,5|G) P(4,5|G) P(3,6|G)

aPosterior probabilities are the probabilities of a pair of haplotypes, given the unphased genotypes (G) per subject; posterior probabilities
sum to 1 per subject.
bE½X� ¼

P
X2G

XgðHÞPðHjGÞ.

Association of Haplotypes With Traits 355



X matrix can be biased. This bias does not occur
when phase is known, because in this situation,
it has been shown that prospective and retro-
spective logistic models both give consistent
estimates of the log-odds-ratio [Prentice and
Pyke, 1979]; only the intercept is affected. The
proof of this requires a saturated model for the
distribution of the X covariate. For unphased
haplotypes, however, the saturated distribution of
haplotype pairs cannot be estimated. Rather, the
probability of an underlying pair of haplotypes is
typically modeled according to the haplotype
frequencies and the odds ratios. This can cause
the estimated regression coefficients to be biased.
The amount of bias depends on how accurately
the haplotypes can be predicted from the geno-
types. The stronger the LD among the markers,
the better the prediction of haplotypes from
genotypes, resulting in little bias [Stram et al.,
2003]. The ability of genotypes to predict haplo-
types can be quantified in terms of the squared
correlation coefficient between the true and
predicted haplotype counts. If this correlation is
at least 0.8, there is little bias in the coefficients,
but for very small values, the bias can be
substantial.

One way to correct for biased coefficients is to
use sampling weights for the subjects, with
weights based on the population disease preva-
lence [Stram et al., 2003]. Another way is to use
a retrospective likelihood, modeling P(G|Y) by
summing over all possible pairs of haplotypes
consistent with genotype G [Epstein and Satten,
2003]. This approach assumes HWE holds only
for the controls, yet still uses both cases and
controls to estimate haplotype frequencies, and
of course haplotype odds-ratios. Some limitations
of the current retrospective likelihood methods
are that environmental covariates cannot be
included (nor haplotype-environment interaction
covariates), and they are not robust to departures
from HWE among the controls when haplotype
effects are dominant or recessive [Satten and
Epstein, 2004], in contrast to some prospective
methods that are robust to departures from HWE
[Schaid et al., 2002; Zhao et al., 2003]. However, it
is possible to introduce an additional parameter, a
‘‘fixation index,’’ that accounts for the average
departure from HWE across the different types of
haplotype pairs, which reduces bias [Satten and
Epstein, 2004]. Some of these methods, based on
the retrospective likelihood, are implemented in
the software CHAPLIN (case-control haplotype
inference software).

MANY HAPLOTYPES, RARE
HAPLOTYPES

When there are many haplotypes, we are often
faced with the dilemma of how to account for the
rare ones. Frequency estimates for the rare
haplotypes can have large variances, due to
sampling variation, as well as unknown phase
[Fallin and Schork, 2000]. Furthermore, their
corresponding regression parameter estimates
will have very large variances, often leading to
model instability. One approach is to not include
rare haplotypes in the X matrix, yet this implicitly
groups them into the baseline category. Another
strategy is to group all rare haplotypes into a
single category. This facilitates model fitting, yet
makes it nearly impossible to interpret the regres-
sion coefficient for this heterogeneous grouping.
A more appealing approach is to ‘‘shrink’’ the
effects of each of the rare haplotypes. This
shrinkage can be toward a common mean, with
the effects of the rare haplotypes shrunk some-
what to the same degree as those haplotypes with
which they are most similar. Alternatively, the
effects of rare haplotypes can be shrunk toward
the effects of the haplotypes that are most similar
to the rare ones. This shrinkage has been
accomplished in several different ways, but before
we discuss some of these, it is worthwhile to
review biased estimation for general linear models
for quantitative traits, where shrinkage is towards
a common mean. This offers a general framework,
with many of the proposed methods variants of
this general approach.

For the general linear model, Y¼Xbþe, with the
error terms having a multivariate normal distribu-
tion with mean zero and covariance matrix
VðeÞ ¼ s2

eV, where matrix V is known, the usual
least squares estimator is

b̂b ¼ ðX0V�1XÞ�1X0V�1Y:

In the presence of sparse data, the variance of b̂b
can be large; we can reduce this variance, at the
price of introducing bias, by assuming that b is a
random variable, and imposing structure on the
covariance matrix of b. That is, we assume that b
has a multivariate normal distribution with mean
zero and covariance matrix VðbÞ ¼ s2

bS, where S is
a matrix of known structure. This S matrix plays a
key role in the shrinkage, and as we shall see, has
a natural interpretation when modeling haplo-
types. There is a large body of literature on
this two-stage hierarchical modeling approach
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[Leyland and Goldstein, 2001], with extensions to
generalized linear models [Lee and Nelder, 1996],
falling under the umbrella of generalized linear
mixed models [McCulloch and Searle, 2001]. The
Bayes estimator for b, allowing S to be singular, is

~bb ¼ SX0ðV þ X0SXÞ�1Y: ð3Þ
Although it may not be unusual for S to be a
singular matrix when it is used to measure
similarity of haplotypes (discussed below), an
intuitive way to see the shrinkage factor is to
assume that S is non-singular, in which case
expression (3) reduces to

~bb ¼ ðX0V�1X þ S�1Þ�1X0V�1Y:

This expression illustrates that S�1 serves to shrink
the usual least squares estimator by inflating the
‘‘denominator’’ matrix. Ridge regression is a
special case, when S�1 ¼ lI, where l is a ‘‘pen-
alty’’ term used for shrinkage.

For the analysis of haplotypes, the matrix S
imposes structure on the covariances of the
haplotype effects, as measured by b. How best
to construct S, allowing for covariances deter-
mined by shared genealogy, requires further
research. To date, intuition has been the major
guide. Since covariances of haplotype effects are
likely determined by the similarity of the haplo-
types, a number of similarity measures have been
proposed. Some simple similarities are a matching
measure (having a value of 1 if two haplotypes
match alike in state at all loci), a length measure
(physical or genetic length of the longest contig-
uous interval of matching alleles), or a count
measure (the number of alleles alike-in-state over
all loci) [Tzeng et al., 2003]. An advantage of these
simple similarity measures is that they are easy
to implement in standard software. A further
advantage of the count similarity is that it is
not necessary to determine haplotype phase
when using the hierarchical model for testing
hypotheses. Tzeng et al. first found this property
of the count similarity measure when comparing
the average haplotype similarity for pairs of
cases versus that for controls [Tzeng et al., 2003].
They showed that the count similarity measure
has the special feature that unknown phase
does not matter; their proposed statistic can be
computed directly from unphased genotype
data to get the same value of the statistic as if
phase were known.

To see why phase does not impact the hier-
archical model that uses the count similarity,
assume for now that phase is known, and that

we create the usual X matrix for additive
haplotype effects, with values of 0, 1, or 2 in each
column to count each of the haplotypes. Assume
the linear model Y¼Xbþe, where e � Nð0; s2

eIÞ,
and assume that b � Nð0; s2

bSÞ, where S is the
count similarity matrix. This can be translated to a
variance component model where VarðYÞ ¼
s2
bXSX

0 þ s2
eI. The matrix XSX0 does not depend

on haplotype phase, which means that we can
construct a likelihood ratio statistic to test the null
hypothesis of no association of any of the
haplotypes with the trait, Ho : s2

b ¼ 0, without
having to consider haplotype phase. To provide an
intuitive explanation of why the count similarity
does not depend on phase, let ahi;l denote the allele
on haplotype hi for subject i (hi¼1, 2 for a subject)
at locus l. When the count similarity is applied to
a pair of subjects, each with two haplotypes,
there are four pairs of haplotypes that contribute
to the total measure,

Ti;j ¼
X2

hi¼1

X2

hj¼1

XL

l¼1

I ahi;l ¼ ahj;l
h i

:

Without changing the value of Ti,j we can move
the summation over loci to the far left, which
means that at each locus we are creating a total
count of allele matches between two subjects, and
then summing over loci; this does not depend on
haplotype phase.

To show why XSX0 does not depend on phase,
assume that there are K distinguishable haplo-
types, and that all L loci are diallelic, with each
locus having alleles labeled a and b. Let A be a
K� L design matrix, such that a row of A is a
pattern of 1’s and 0’s according to the presence or
absence of allele a on a haplotype. The comple-
ment of the A matrix is the matrix B, with patterns
of 1’s and 0’s according to the presence of allele b.
The matrix AA0 counts the number of matches of
the a allele across loci, and the matrix BB0 gives a
similar count for the b alleles. Then, the total count
of matched alleles for pairs of haplotypes is
S¼AA0þBB0, so that the matrix XSX0 can be
written as XSX0¼XAA0X0þXBB0X0. The matrix
XA simply counts the number of a alleles at each
locus (columns of the matrix) for each subject
(rows of the matrix), and does not depend on
phase; XB gives a similar count for the b alleles.
Because these matrices do not depend on phase,
neither does XSX0. Although phase is not required
for computing the likelihood ratio statistic to test
whether s2

b ¼ 0, phased haplotypes are required
to estimate the best linear unbiased predictors,
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~bb ¼ s2
bSX

0½s2
bXSX

0 þ s2
eI�

�1ðY� �yyÞ, because SX0

depends on phase.
Instead of shrinking haplotype effects towards a

common mean, they can be shrunk such that
similar haplotypes are forced to have similar
effects. This can be accomplished by adding a
penalty term to the usual log likelihood [Klerkx
et al., 2003; Tanck et al., 2003),

penalty ¼ �0:5l
X
i

X
j

si;j bi � bj
� �2

:

This term penalizes haplotype effects that differ,
despite high similarity measured by si,j. A
difficulty implementing this approach is estima-
tion of the penalty coefficient l. Estimation by
cross-validation appears promising, but requires
more thorough evaluation.

CLADISTIC AND CLUSTERING OF
HAPLOTYPES

An alternative approach to account for many
unique haplotypes, as well as rare haplotypes, is
to cluster haplotypes such that those within a
cluster have the same effect on the trait. With
much fewer clusters than haplotypes, power
should increase, and interpretation of results
should simplify. Because the relationships among
present day chromosomes depend on their ances-
tral histories, and the trait-locus alleles are
embedded in this history, it is hoped that this
historical information can be used to define
clusters of haplotypes with similar ancestry, and,
hence, hopefully the same underlying alleles at
the trait locus. Although the strategies to include
this historical information border between purely
haplotype association methods and LD fine-
mapping methods that attempt to estimate the
trait locus position, many are based conceptually
on the coalescent process. The coalescent describes
the tree structure that ties present-day haplotypes
back to their most recent common ancestor,
assuming that haplotype variation is caused by
mutations, and not recombinations [Kingman,
1982]. Graphically, unique haplotypes, whether
observed or ancestral, define the nodes of the tree,
and a pair of haplotypes that have different alleles
at only one locus are connected by a line, the
connected set of haplotypes creates a tree. This
lead to the development of cladistic analyses
[Templeton et al., 1987, 1988, 1992, 2000; Temple-
ton 1995, 1998], which uses a cladogram (an
unrooted tree) to direct the search for trait-locus

alleles. The cladistic analysis uses a sequential
series of one degree-of-freedom tests to collapse
the cladogram into a smaller one, effectively
clustering haplotypes with similar effects. The
potential advantage of the sequential testing
approach is improved power over an omnibus
test of all haplotypes. However, because collap-
sing is based on statistical testing, this depends on
the size of the cladogram nodes (i.e., power to
detect differences between nodes). Recently, this
cladistic approach has been extended to the GLM
framework, allowing for unphased haplotypes as
described above [Seltman et al., 2003].

Analogous to the above cladistic analysis
method, a logistic regression method for case-
control data has been proposed, whereby stan-
dard hierarchical clustering is used to create a
hierarchical tree of haplotypes [Durrant et al.,
2004]. Likelihood ratio tests for logistic regression
are then used to sequentially trim back the tree
towards its root, creating fewer clusters, until
further trimming gives a poor fit of the model.
These methods focus on tests of association, rather
than LD fine-mapping. To create the tree, a
measure of ‘‘distance’’ between haplotypes is
required. The authors used a measure that gives
closer distance for haplotypes that share rare
alleles than for those that share common alleles,
since sharing rare alleles is expected to occur for
haplotypes that share more recent common
ancestry. Their measure of distance sums the
contribution from different loci, instead of con-
sidering the joint frequency of alleles from multi-
ple loci (i.e., haplotypes). Further improvements
might be possible by using haplotype frequencies
in a distance measure, which could potentially
improve the information on the tree structure.
Nonetheless, an advantage of the hierarchical
clustering, followed by trimming, is a reduction
in the number of haplotype groups, and a natural
way to cluster the rare haplotypes. Although the
proposed method required phased haplotypes
[Durrant et al., 2004], unphased haplotypes could
be easily analyzed by the following steps: (1) use
the EM algorithm to enumerate the possible
haplotypes, (2) cluster the distinguishable haplo-
types, (3) create an X matrix for the clusters; an
additive model would have a row for each
possible pair of haplotypes, and the columns
would serve to count the distinguishable clusters,
just as the X matrix for haplotypes counts the
haplotypes, (4) use the posterior probabilities to
compute the average X per subject, (5) use the
average X in regression models.

Schaid358



The success of the above cladistic and clustering
methods depends to a large extent on the ability to
construct an accurate cladogram, or hierarchical
clustering. Most proposed methods first construct
the cladogram ignoring the trait, and then use the
constructed cladogram for analyses, as if it were
constructed without error; current methods do not
account for the statistical variation in the chosen
cladogram, and how this impacts the association
analyses. Furthermore, if recombination is al-
lowed, the graph is no longer a simple tree, but
rather a network of connected haplotypes [Grif-
fiths and Marjoram, 1996; Nordborg and Tavare,
2002], which are difficult to model, even with
MCMC methods, although some new approaches
offer promise [Larribe et al., 2002]. Hence, some of
the most challenging aspects of using cladograms
to guide how to cluster haplotypes for association
analyses are construction of cladograms, and
accounting for their variation.

A potential limitation of the some of the above
clustering methods, as well as some of the earlier
discussed shrinkage methods for haplotype ef-
fects, is that they create the clustering, or the
shrinkage S matrix, without regard to the
association of the haplotypes with the trait. That
is, they do not allow the clustering, or the
S matrix, to adapt to the data, particularly to
the position of the underlying trait locus. It
would be much more informative to measure
haplotype similarity local to the trait locus, than
over the entire haplotype, particularly for long
haplotype segments. Durrant et al. [2004] get
around this problem by using a sliding window
of SNPs, with windows determined by blocks of
strong LD, and reconstructing the hierarchical
tree within each window. The number of win-
dows, and their sizes, influences the final results,
because windows that are too long will include
haplotypes with recombinations, which dilutes
associations, yet many windows increases the
stringency to reach statistical significance due to
the need to correct for multiple testing. Further
work is needed on how to best choose the size of
the sliding window.

As an alternative to sliding windows, spatial
clustering methods have been proposed, whereby
haplotypes are clustered into units with similar
effects, allowing for the clusters to be estimated,
along with their effect sizes, and allowing for
simultaneous estimation of the trait locus [Molitor
et al., 2003b; Thomas et al., 2003]. These fine-
mapping methods build on earlier work that used
a similarity S matrix and Bayesian spatial model-

ing via conditional autoregressive (CAR) models
[Molitor et al., 2003a]. The similarity matrix was
defined as the length of a chromosome segment
with identical markers around the trait locus,
which must be estimated. Hence, the similarity
matrix changes as the trait locus position is
updated in the estimation process. The CAR
approach shrinks the effect of a haplotype, say
haplotype h, towards an average, where this
average is defined in terms of the similarity of
haplotype h with all other haplotypes; those that
are most similar get the greatest weight. Some
limitations of this approach are the need to
estimate the effect of each haplotype (i.e., no
clustering), and the implicit assumption of just one
trait locus. If haplotypes fall into natural clusters,
because different mutations at the trait locus
occurred on different ancestral chromosomes, too
much smoothing may occur. To overcome this,
likelihood models have been developed that allow
for multiple clusters, each with its own effect on
the trait, hence allowing for multiple disease-
causing variants. The number of clusters, and
their effect sizes, are simultaneously estimated
[Molitor et al., 2003b; Thomas et al., 2003].

An alternative Bayesian fine-mapping ap-
proach explicitly allows for multiple disease-
causing mutations by clustering haplotypes
while simultaneously estimating parameters of
recombination rates, mutation rate, and location
of the trait locus [Liu et al., 2001]. It is an
advantage that the software for this method,
BLADE, is easily available. A limitation, how-
ever, is that the number of clusters is fixed by
the analyst. The authors assume that haplotypes
that fall into the same cluster are mutually
independent, conditional on the ancestral haplo-
type (i.e., a star genealogy for each cluster),
which may not be robust if the number of
clusters is misspecified.

Another Bayesian fine-mapping approach that
attempts to build more of a coalescent model into
the analysis, while allowing for multiple founding
mutations and phenocopies, is the ‘‘shattered
coalescent’’ [Morris et al., 2002]. By allowing
branches of the haplotype genealogical tree to be
removed during the estimation process, the tree
can be ‘‘shattered’’ into subtrees, hence allowing
for different ancestries among differing groups of
haplotypes. Like many other methods, it initially
required phased haplotypes, but extensions to
allow for unphased genotypes (treating unknown
phase as a latent variable) have increased its
statistical efficiency, at the price of increased
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computation time [Morris et al., 2004]. Although
it does not account for ascertainment (e.g.,
case-control studies), their simulations and appli-
cation to Cystic fibrosis suggest that the estima-
tion of the trait locus position is robust to
ascertainment. The main assumption of this
approach is that independent disease mutations
must occur at the same locus. To allow for disease
mutations at different loci, recombination would
need to be included in the coalescent model,
which is currently intractable for even small
sample sizes (Andrew Morris, personal commu-
nication).

In summary, the spatial clustering approach
uses the similarity matrix to assign haplotypes to
clusters, whereas the Bayesian framework assigns
haplotypes to clusters according to the estimated
genetic parameters. Although it is not yet known
how well these methods work for complex traits,
nor how these general approaches compare to
each other, they offer promising directions to link
traditional regression models with haplotype
clustering methods. Because of the complexity of
the likelihood models for spatial clustering and
the above Bayesian frameworks, MCMC methods
are used to fit the models. Although MCMC
methods are now common practice, they still
require sophisticated statistical skills, with careful
use of diagnostics to evaluate whether the models
have converged. There remain substantial compu-
tational and statistical challenges, particularly for
binary traits. Most current methods do not
account for ascertainment, so it is not clear how
well they will work for case-control studies of
complex diseases. Most methods assume phased
haplotypes. Unknown phase can be included as
another latent random variable, but this increases
the dimension of the parameters to estimate, which
can slow the MCMC sampler as it moves through-
out the target distribution (i.e., slow mixing),
increasing the time to convergence. Another more
subtle issue is the implication that a similarity
matrix has on the MCMC properties. If random
effects are correlated, then MCMC methods tend to
have poor mixing. This is counter to what we are
striving to achieve: using the similarity matrix to
impose high correlations among similar haplo-
types. Hence, a similarity matrix that imposes high
correlations among haplotype effects can make it
difficult to achieve model convergence within
reasonable time limits. More research is required
on how to handle unknown phase, the best types of
similarity measures, and efficient implementations
for MCMC methods.

MANY HAPLOTYPES, MANY
DEGREES OF FREEDOM

When there are many haplotypes, the power to
detect associations can weaken, due to the many
degrees of freedom. One strategy is to compute a test
statistic for each haplotype, and then use the
maximum of these (i.e., smallest P value) to test for
association, using the Bonferroni correction. While
this approach may be most powerful when only one
haplotype is strongly associated with the trait, its
power is weakened when the association is spread
out across multiple haplotypes. In this situation, a
global test that considers all haplotypes simulta-
neously is more powerful. A global test can be
derived from either a fixed effects model or a
random effects model. As we illustrated above, the
random effects model can also be formulated as a
variance component model. Hence, an important
issue is the relative power of these two approaches. If
haplotypes are coded as additive effects in a fixed
effects model, and the number of distinguishable
haplotypes is denoted K, the degrees of freedom for
the global F-statistic are K for the numerator and
N�K for the denominator, where N is the number of
subjects. As K increases, the power can weaken
because of the more stringent critical value. In
contrast, no matter the value of K, the variance
component model tests the null hypothesis Ho :
s2
b ¼ 0 versus the one-sided alternative hypothesis

Ho : s2
b40, and so the likelihood ratio statistic has an

asymptotic mixture distribution, analogous to using
a one-sided test for a standard normal statistic.
Because of this, it has been stated in several
workshops and conferences that the variance com-
ponent model is likely to be more powerful than the
fixed effects model when there are many haplotypes.

To determine the relative power of fixed effects
versus variance component models, I performed
some simulations, albeit somewhat limited in
scope. Using the coalescent approach, haplotypes
composed of 10 SNPs were simulated by Hud-
son’s MS program [Hudson, 2002], creating 13
haplotypes with frequencies illustrated in Figure
1. From this distribution, pairs of haplotypes were
randomly sampled for 100 subjects, and the count
sharing matrix, S, was constructed. For assumed
values of s2

b ranging from 0 to 0.25, and fixed
residual variance of s2

e ¼ 1 � s2
b, a vector of Y

values was simulated according to a multivariate
normal distribution with mean zero and covar-
iance matrix VarðYÞ ¼ s2

bXSX
0 þ s2

eI. The herit-
ability of the haplotypes is h2 ¼ s2

b=ðs2
b þ s2

eÞ.
From this data, both the score statistic for the
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fixed effects model (allowing for unphased
haplotypes) and the likelihood ratio statistic for
the variance component model were computed, as
well as their corresponding P values. This process
was repeated 100 times to compute the power of
these two methods. Results shown in Figure 1
illustrate that the power was almost identical for
both methods. This is a bit surprising, given that
the simulation process favored the variance
component model, and the much fewer degrees
of freedom for this test statistic. However, the
fixed effects model may have performed well
because there were not many degrees of freedom,
a maximum of 13 haplotypes, yet with some
random samples having fewer haplotypes due to
the skewed distribution of haplotypes by the
coalescent simulations (Fig. 1, top left). To further
explore the impact of a larger number of haplo-
types, I assumed an exponential distribution of 25
haplotypes, as illustrated in Figure 1 (top right).
Somewhat surprisingly, the fixed effects model
had slightly greater power than the variance
component model, despite the many degrees of
freedom (see Fig. 1, bottom right).

Since power is determined by the non-centrality
parameter of the distribution of a test statistic,
some insight to the relative power of fixed versus

random effects for haplotype analyses can be
gained by examining how the heritability of the
haplotypes influences the non-centrality para-
meters. For the F-statistic, the non-centrality
parameter is Z ¼ NR2=ð1 � R2Þ, where R2 is the
model multiple correlation coefficient. Since R2 is
interpreted as the percent of the variance of Y
explained by the model, we can consider R2 as the
heritability of the haplotypes, h2. To derive the
non-centrality parameter for the variance compo-
nent model, the general methods developed for
pedigree variance component linkage analysis
[Williams and Blangero, 1999] can be adapted to
our situation. Here, the non-centrality parameter
is Z ¼ Nh4fðSÞ, where f(S) is a function that
accounts for how the assumed similarity matrix
influences the expected Fisher information. The
main point is that the non-centrality parameter for
the variance component likelihood ratio statistic
depends on the square of the heritability, h4, which
can be dramatically smaller than h2 that influences
the non-centrality parameter for the F-statistic.
Although this likely explains my simulation results,
further research to evaluate how to best choose the
haplotype similarity matrix is warranted, with
more comprehensive comparisons between fixed
effects and variance component models.
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Fig. 1. Distribution of haplotypes by the coalescent simulations (top left) and an exponential distribution (top right), and their

corresponding use for simulated power to compare fixed effects F-statistic versus variance component likelihood ratio statistic (bottom).
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CONCLUSIONS AND FUTURE
DIRECTIONS

Haplotypes will likely continue to play a major
role in the study of the genetic basis of complex
traits, particularly with our evolving understand-
ing, and definitions, of ‘‘haplotype blocks’’ [Car-
don and Abecasis, 2003]. The international
HapMap project [Gibbs et al., 2003] will provide
a wealth of data that will motivate the development
and testing of new statistical methods, and
application of the current arsenal of statistical
methods to traits that are more complex than
single major gene disorders should provide in-
sights to their value. Experience with haplotype
data from different populations should provide
additional insights. Haplotypes composed of non-
causative SNPs can be population-specific, de-
pending on the population’s ancestry and demo-
graphy. This may be particularly relevant when a
common disease is explained by common variants,
where the age of the causative mutation allows for
different recombination histories in different po-
pulations, compounded by different migration
histories [Weiss and Clark, 2002; Neale and Sham,
2004]. In contrast, intragenic haplotypes, for which
the causative variants are included, should provide
greater power and reproducibility across different
studies [Neale and Sham, 2004].

As outlined in this review, more work is needed
to develop powerful methods to detect subtle
associations of haplotypes with traits, yet robust
to model misspecification, since most of our
attempts to model the complexity of real data
are likely to be overly simplistic. A quote from
Albert Einstein captures this well: ‘‘As far as the
laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not
refer to reality’’ (Albert Einstein, 1879–1955). The
regression approach offers several advantages: (1)
it is possible to control for non-genetic covariates;
(2) the effects of the haplotypes can be modeled;
(3) step-wise selection can be used to evaluate
each marker locus, or perhaps a set of loci making
up a sub-haplotype, while controlling for the
effects of all other marker loci; this allows one to
screen for a subset of markers that explain most of
the association [Valdes et al., 1997; Cordell and
Clayton, 2002]; (4) haplotype� environment inter-
actions can be evaluated [Lake et al., 2003]; (5)
regression diagnostics are well developed. Link-
ing GLM methods with population genetic mod-
els may prove beneficial.
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