Evidence of an Age-Related Decrease in Intestinal Responsiveness to Vitamin D: Relationship between Serum 1,25-Dihydroxyvitamin D₃ and Intestinal Vitamin D Receptor Concentrations in Normal Women*

PETER R. EBELING, MARIA E. SANDGREN, EUGENE P. DIMAGNO, ANN W. LANE, HECTOR F. DELUCA, AND B. LAWRENCE RIGGS

From the Endocrine Research Unit (P.R.E., B.L.R.), the Division of Gastroenterology and Internal Medicine (E.P.D.), and the Department of Health Sciences Research (A.W.L.), Mayo Clinic and Mayo Foundation, Rochester, Minnesota; and the Department of Biochemistry (M.E.S., H.F.D.), University of Wisconsin, Madison, Wisconsin

ABSTRACT

Although aged rats reportedly have reduced intestinal vitamin D receptor (VDR) concentrations, it is unclear whether an analogous age-related defect occurs in man. Thus, we assessed the interrelationship among serum 1,25-dihydroxyvitamin D₃ [1,25-(OH)₂D₃], calcium absorption and intestinal VDR in 44 healthy, ambulatory women, ages 20-87 yr. Fractional calcium absorption was measured after oral administration of ⁴⁶Ca (20 mg CaCl₂ as carrier); serum 1,25-(OH)₂D₃ by the calf thymus binding assay; and serum intact PTH, by a two-site immunochemiluminometric assay. Vitamin D receptor concentration was measured, by a new immunoradiometric assay, in biopsy specimens taken from the second part of the duodenum during gastroduodenoscopy in 35 of the women. Despite an age-related increase in serum PTH (r = 0.48; P < 0.001) and in serum 1,25-(OH)₂D₃ concentration (r = 0.32; P < 0.05), intestinal VDR concentration decreased with age (r = -0.38; P = 0.03) and fractional calcium absorption did not change with age. Although a contribution of decreased 25-hydroxyvitamin D 1α-hydroxylase activity to the blunting of the increase in serum 1,25-(OH)₂D₃, concentration late in life is not excluded, the data are far more consistent with impaired intestinal responsiveness to 1,25-(OH)₂D₃ action. This defect could lead to compensatory increases in PTH secretion and 1,25-(OH)₂D₃ production which maintain calcium absorption and serum ionic calcium, but at the expense of increased bone loss. (J Clin Endocrinol Metab 75: 176-182, 1992)

Subjects and Methods

Experimental subjects

The experimental subjects were paid volunteers who responded to posted notices at the Mayo Clinic or who had previously taken part in ongoing epidemiological studies. Of the 44 healthy, ambulatory women (ages 20-87 yr; mean ± sd, 52 ± 19 yr) studied, 20 were premenopausal and 24 were postmenopausal (15 ± 9 yr after menopause; range: 4-44 yr). None had any detectable disease or was taking any drugs known to affect calcium metabolism. As assessed by dual-energy x-ray absorptiometry of the lumbar spine (10), all had values within the age-adjusted 95% confidence intervals for normal women. None of the postmenopausal women had vertebral fractures on thoracic and lumbar radiographs. The studies were approved by the Mayo Institutional Review Board, and signed informed consent was obtained from each of the women.

Study protocol

The study diet was matched to each subject's habitual intake of calcium and phosphorus as assessed by a 7-day diet record and an interview by a dietitian. The distribution of calcium among the meals was also matched to that in the habitual diet, and each subject ate these meals in the Clinical Research Center for 4 days prior to commencement of the study, to ensure a constant calcium intake before the study. Blood was withdrawn through an indwelling catheter at 0700 h; the serum was separated and stored at -70 C until analysis. A 24-h urine collection was started at 0700 h.

Received May 28, 1991.

Address all correspondence and requests for reprints to: Dr. B. Lawrence Riggs, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905.

* Supported in part by Research Grants AG-04875 and RR-00585 from the National Institutes of Health.
Assessment of fractional calcium absorption

Intestinal calcium absorption was assessed by the method of Bullimore et al. (4). Radioactive calcium (\(^{40}\)Ca) was purchased from the Atomic Energy Commission (Oak Ridge, TN) and was administered orally with 20 mg calcium carrier (as CaCl\(_2\)) in 200 mL deionized water. Heparinized blood samples were obtained at baseline and 15, 30, 45, 60, 90, and 120 min after the dose and fractional calcium absorption (FCA) was calculated.

Procurement of duodenal mucosal biopsies

Multiple mucosal biopsy specimens were obtained from the second part of the duodenum in 35 of the women by gastroduodenoscopy at least 30 min after completion of the calcium absorption study. Each biopsy specimen was immediately frozen by immersion in methanol and dry ice, stored at \(-70^\circ\) C, and sent on dry ice to the University of Wisconsin for VDR assays.

Assay of vitamin D receptors

The concentration of VDR was measured by an immunoradiometric assay using purified porcine intestinal receptor as a standard and two high-affinity monoclonal antibodies directed against two different epitopes on the receptor (11). The extracts of human intestinal mucosa were prepared as described (12). Based on experiments with nuclear extracts of porcine intestinal mucosa, coefficients of variation were 8.6% intraassay and 18.2% interassay. Sensitivity (the lowest amount of receptor detectable with 95% confidence, Student's \(t\) test) was 3 fmol VDR per crude biopsy extract.

We also measured 1,25(OH)\(_2\)[26,27-\(^3\)H]D\(_3\) binding activity in human intestinal mucosal extracts by a modified (13) hydroxypatite binding assay (14, 15). Pellets were assayed for radioactivity in BioSafe II counting solution (RPL, Mount Prospect, IL) in a Pias 400 CL/D liquid scintillation counter (Packard Instruments, Downers Grove, IL).

Biochemical methods

The serum 1,25(OH)\(_2\)D\(_3\) concentration was measured in two to four replicate microassays by the method of Reinhardt et al. (16) and the mean of these results was used. This method uses rapid extraction and preliminary purification on a silica Sep-Pak column with hexane/isopropanol followed by nonequilibrium competitive protein binding assay with 1,25(OH)\(_2\)D\(_3\) receptor from calf thymus and 1,25(OH)\(_2\)[26,27-\(^3\)H]D\(_3\) as tracer (Incastor Corporation, Stillwater, MN). Serum 25-hydroxyvitamin D [25(OH)D] was measured by high-pressure liquid chromatography (17). Serum intact PTH was measured by duplicate immunochromatographic assays (18); intraassay variation was 9%, and interassay variation was 14%.

We measured serum osteocalcin (also called bone Gla-protein) by RIA (19) with antiserum raised in rabbits to bovine osteocalcin; heterogeneous bovine osteocalcin was used for tracer and standard. Antibody-bound and free \(^{125}\)I-labeled osteocalcin were separated by the doubleantibody method. Intraassay variation was less than 7% and interassay variation was less than 10%. All measurements were made in duplicate.

We measured serum bone alkaline phosphatase activity by a solid-phase immunoassay method using two monoclonal antibodies and serum isoenzyme standards (20). The intraassay variation was 3.3% and interassay variation was 13%.

We measured serum and urinary calcium and dietary calcium content by atomic absorption spectroscopy (model 2380, Perkin Elmer Instruments, Norwalk, CT). Serum and urinary creatinine (21) and serum and urinary phosphorus (22) were measured with a centrifugal analyzer (Multistat Plus System, Instrumentation Laboratory, Inc., Spokane, WA). We measured urinary hydroxyproline by high-pressure liquid chromatography (23), and the results were normalized to 100 mL glomerular filtration based on creatinine clearance.

Statistical methods

Correlations among age, intestinal VDR, and variables relating to bone and calcium metabolism were assessed through the calculation of either Pearson's Product Moment correlation coefficient or Spearman's Rank correlation coefficient as appropriate. The independent effects of age and variables related to bone and calcium metabolism on VDR and FCA were assessed using multiple regression models. While developing the models, the use of higher order terms and interactions among the independent variables was investigated as was the use of transformations to normalize residuals, stabilize variances, and reduce the influence of outliers. In no instance did the existence and nature of the relationships depend on the transformation, although the natural logarithm transformation was sometimes used because it successfully stabilized the variance. All analyses were performed by using the Statistical Analysis System software program (24).

Results

The variables measuring bone and calcium metabolism as well as those under investigation as potentially related to such measures are summarized in Table 1. Their individual association with age as assessed by Spearman's Rank correlation coefficient are also summarized in Table 1, whereas their individual regression equations on age are summarized in Table 2. Only three of the variables—serum PTH, creatinine clearance, and lumbar spine bone mineral density (BMD)—were highly associated with age (\(P < 0.001\)) in both analyses, while a few other variables show a significant (\(P < 0.05\)) relationship with age.

As seen in Table 1, FCA ranged from 0.35%/h to 1.05%/h with a mean of 0.62 \(\pm\) 0.28%/h (mean \(\pm\) SD). A 95% confidence interval estimate of the true mean value of FCA would be the interval from 0.54%/h to 0.70%/h. Although FCA was not directly related to age, it was positively correlated with serum 1,25-(OH)\(_2\)D\(_3\) (Fig. 1) which is related to age. FCA was also positively correlated with urinary calcium (r = 0.34, P < 0.05) and negatively with dietary calcium intake (r = -0.33, P = 0.03) and not significantly with either intestinal VDR concentration or intestinal 1,25-(OH)\(_2\)D\(_3\) binding.

Multiple regression analyses to determine which variables maintained an independent association worked best when the natural logarithm of FCA was used. The best fitting regression equation (Table 3) involves three variables, viz., the reciprocal of serum 1,25-(OH)\(_2\)D\(_3\), dietary calcium and age (\(R^2 = 29\%\), P = 0.003). Thus, age which was not significantly related to FCA has a significant negative association with FCA (coefficient negative, P = 0.031) after adjusting for serum 1,25-(OH)\(_2\)D\(_3\) and diet calcium. In the stepwise process of building this model, it was observed that the previous positive correlation between FCA and urinary calcium disappeared after adjusting for serum 1,25-(OH)\(_2\)D\(_3\).

The intestinal VDR concentration decreased with age (Fig. 2, upper). In one woman the VDR concentration was undetectable, presumably because of receptor degradation during transport, and her value was excluded from statistical analyses. The intestinal VDR concentration was not related to serum 1,25-(OH)\(_2\)D\(_3\) concentration but correlated positively with creatinine clearance corrected for surface area (r = 0.39, P = 0.03) and with VDR binding activity (r = 0.35, P < 0.05). Although there was no overall correlation between intestinal VDR and serum 1,25-(OH)\(_2\)D\(_3\), there was a trend for a positive correlation between these two variables in women older than 60 yr (Fig. 3, upper). Using intestinal VDR as the
TABLE 1. Variables related to bone and calcium metabolism and their association with age in 44 women aged 20–87 yr

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>Median (range)</th>
<th>Spearman correlation with age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>52 ± 19</td>
<td>55 (29,73)</td>
<td>r</td>
</tr>
<tr>
<td>Intestinal VDR, fmol/mg protein</td>
<td>0.62 ± 0.28</td>
<td>0.56 (0.35,1.05)</td>
<td>-0.14</td>
</tr>
<tr>
<td>Intestinal 1,25-(OH)D3 binding, fmol/mg protein</td>
<td>329 ± 66</td>
<td>336 (234,390)</td>
<td>-0.35</td>
</tr>
<tr>
<td>Serum 1,25-(OH)D3, pmol/L</td>
<td>64 ± 10</td>
<td>G3 (46.07)</td>
<td>0.26 (0.06)</td>
</tr>
<tr>
<td>Serum 25(OH)D3, pmol/L</td>
<td>72 ± 22</td>
<td>76 (46.99)</td>
<td>-0.07 (0.06)</td>
</tr>
<tr>
<td>Serum PTH, pmol/L</td>
<td>2.8 ± 0.9</td>
<td>2.6 (1.9,4.2)</td>
<td>0.38 (0.01)</td>
</tr>
<tr>
<td>Serum calcium, mmol/L</td>
<td>2.32 ± 0.06</td>
<td>2.32 (2.28,2.40)</td>
<td>0.23 (0.12)</td>
</tr>
<tr>
<td>Intestinal VDR, fmol/mg protein</td>
<td>323 ± 66</td>
<td>336 (234,390)</td>
<td>-0.35 (0.04)</td>
</tr>
<tr>
<td>Intestinal 1,25-(OH)D3 binding, fmol/mg protein</td>
<td>89 ± 55</td>
<td>72 (39,159)</td>
<td>0.01 (0.04)</td>
</tr>
<tr>
<td>Serum bone alkaline phosphatase, μkat/L</td>
<td>0.31 ± 0.09</td>
<td>0.31 (0.20,0.45)</td>
<td>0.34 (0.02)</td>
</tr>
<tr>
<td>Creatinine clearance, mL/s/1.73 m²</td>
<td>1.37 ± 0.31</td>
<td>1.36 (0.98,1.82)</td>
<td>-0.56 (<0.001)</td>
</tr>
<tr>
<td>Urine calcium, μmol/day</td>
<td>3.3 ± 1.57</td>
<td>2.97 (1.50,5.54)</td>
<td>-0.21 (0.18)</td>
</tr>
<tr>
<td>Urine hydroxyproline/GFR, μmol/dL GF</td>
<td>133 ± 32</td>
<td>128 (99,178)</td>
<td>-0.03 (0.20)</td>
</tr>
<tr>
<td>Lumbar spine bone mineral density, g/cm²</td>
<td>1.17 ± 0.19</td>
<td>1.17 (0.88,1.43)</td>
<td>-0.74 (<0.001)</td>
</tr>
<tr>
<td>Dietary calcium, mmol/day</td>
<td>21.6 ± 9.6</td>
<td>20.8 (11.4,33.8)</td>
<td>-0.08 (0.20)</td>
</tr>
</tbody>
</table>

* Ranges from 10th–90th percentile.

TABLE 2. Relationships between age and other variables involved in bone and calcium metabolism in 44 women aged 20–87 yr (note: includes all measurements)

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Estimates from linear regressions on age</th>
<th>Estimated difference per decade of age (95% confidence interval)</th>
<th>Estimated % difference per decade of age (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal VDR, fmol/mg protein</td>
<td>Intercept = 394, β = -1.40, R² = 0.03</td>
<td>-14 (-26, -2)</td>
<td>-14 (-26, -2)</td>
</tr>
<tr>
<td>Serum 1,25-(OH)D3, pmol/L</td>
<td>Intercept = 51.0, β = 0.25, R² = 0.04</td>
<td>2.5 (0.1, 3.0)</td>
<td>2.5 (0.1, 3.0)</td>
</tr>
<tr>
<td>Serum PTH, pmol/L</td>
<td>Intercept = 90.2, β = -0.35, R² = 0.04</td>
<td>-3.5 (-6.9, 0.2)</td>
<td>-3.5 (-6.9, 0.2)</td>
</tr>
<tr>
<td>Serum bone alkaline phosphatase, μkat/L</td>
<td>Intercept = 1.57, β = 2.3, R² = 0.04</td>
<td>0.23 (0.1, 0.37)</td>
<td>0.23 (0.1, 0.37)</td>
</tr>
<tr>
<td>Creatinine clearance, mL/s/1.73 m²</td>
<td>Intercept = 1.88, β = -1.0, R² = 0.03</td>
<td><0.001 (-0.01, 0.018)</td>
<td><0.001 (-0.01, 0.018)</td>
</tr>
<tr>
<td>Urine calcium, μmol/day</td>
<td>Intercept = 4.26, β = -1.8, R² = 0.04</td>
<td>0.20 (0.0, 0.4)</td>
<td>0.20 (0.0, 0.4)</td>
</tr>
<tr>
<td>Urine hydroxyproline GFR, μmol/dL GF</td>
<td>Intercept = 138, β = -9, R² = 0.04</td>
<td>>0.20</td>
<td>>0.20</td>
</tr>
<tr>
<td>Lumbar spine bone mineral density, g/cm²</td>
<td>Intercept = 1.57, β = -8, R² = 0.04</td>
<td><0.001 (-0.10, -0.06)</td>
<td><0.001 (-0.10, -0.06)</td>
</tr>
</tbody>
</table>

Dependent variable is natural log

FCA, %/h
-0.401
-3.3 × 10⁻³
3.7 × 10⁻³
2
≥0.20

Intestinal binding of Intestinal binding of 1,25-(OH)2D3, fmol/mg protein
-8.6 × 10⁻⁸
8.2 × 10⁻⁸
4
≥0.20

Serum osteocalcin, ng/mL
1.85
4.1 × 10⁻³
2.1 × 10⁻³
8
0.06
4.2% (0.1%, 8.7%)

Serum bone alkaline phosphatase, μkat/L
-1.47
4.9 × 10⁻³
2.2 × 10⁻³
11
0.03
5.0% (0.6%, 9.6%)

Dietary calcium, mmol/day
3.08
-1.8 × 10⁻³
3.5 × 10⁻³
<1
≥0.20

Concentration decreased significantly with age, but was not related to serum PTH level or FCA.

Serum intact PTH concentration increased with age (r = 0.48, P = 0.001). There was a trend for serum osteocalcin concentration to increase with age (r = 0.29, P = 0.05); it did not correlate significantly with serum intact PTH concentration (r = 0.24; P = 0.12). Serum bone alkaline phosphatase activity also increased with age (r = 0.34, P = 0.02). Urinary hydroxyproline excretion did not increase with age. Creatinine clearance (adjusted for body surface area) decreased significantly with age. All creatinine clearance values (range, 0.79–1.91 mL/s/1.73 m²) were within the age-specific, pop-
ulation-based normal range as previously reported (25). There was a highly significant decrease in lumbar spine bone mineral density with age.

Discussion

Despite the significant age-related increase in serum 1,25-(OH)_2D_3, FCA did not increase with age, and there was, in fact, a negative correlation with age which did not reach statistical significance perhaps because of the relatively small number of experimental subjects, particularly in the later decades of life. Moreover, multiple regression analysis predicted that women aged 80 should have FCA values 38% lower than women aged 20 if adjusted for differences in serum 1,25-(OH)_2D_3 and dietary calcium intake. These findings are evidence for an age-related intestinal resistance to 1,25-(OH)_2D_3 action.

Our findings agree with those of Eastell et al. (8), who determined true calcium absorption by tracing all three meals, and found no change in calcium absorption with age in normal women. These findings differ from other studies showing age-related decreases in calcium absorption (2-6). The reason for these differences among studies is unclear. In both this study and that of Eastell et al. (8), we carefully screened our experimental subjects and excluded those who were hospitalized or housebound or who had secondary diseases, such as abnormal glomerular filtration rates and vitamin D deficiency. Such rigorous screening was not made in the other studies. Based on previous reports of a high incidence of subclinical vitamin D deficiency in elderly persons residing in northern England (26), studies from that area (4, 6) are particularly suspect in view of the demonstrated association between FCA and serum 1,25-(OH)_2D_3 concentration. Another difference may be the lack in our studies of large numbers of subjects in the eighth and ninth decades. The lack of a decrease in intestinal calcium absorption with aging suggests that the tendency for FCA to decrease was overcome by the demonstrated compensatory increases in PTH secretion and in 1,25-(OH)_2D_3 production. This is also supported by the positive correlation between serum 1,25-(OH)_2D_3 concentration and calcium absorption shown in this study and a previous study (5).

The increase in parathyroid function with aging suggests that the tendency for FCA to decrease was overcome by the demonstrated compensatory increases in PTH secretion and in 1,25-(OH)_2D_3 production. This is also supported by the positive correlation between serum 1,25-(OH)_2D_3 concentration and calcium absorption shown in this study and a previous study (5).

Although our data implicate intestinal resistance to 1,25-(OH)_2D_3 action as the main abnormality in the subjects studied here, they do not exclude a superimposition of impaired renal 25(OH)D 1α-hydroxylase activity occurring in the general population late in life. This has been demonstrated directly in experimental animals (29, 30) and indirectly in elderly humans (31, 32). This additional abnormality would impair metabolic conversion of 25OHD to 1,25-(OH)_2D_3, and lead to a blunting or reversal of the increase in serum 1,25-(OH)_2D_3 that had previously occurred with age. Although some studies have shown decreases in serum 1,25-(OH)_2D_3 with aging (33-36), others have found no change (37) or increases in serum 1,25-(OH)_2D_3 with aging (8, 38). Moreover, the largest study showed an increase until age 65 and then a small decrease thereafter (38). In elderly women, the severity of the 1α-hydroxylase defect was found to be inversely proportional to creatinine clearance with a threshold value of 0.83 mL/s/1.73 m² below which serum 1,25-(OH)_2D_3 decreased (35). Whereas the inclusion of such patients may have contributed to the age-related decrease in serum 1,25-(OH)_2D_3 in other reported studies, only 1 of the 44 subjects reported here had a creatinine clearance below that threshold value.

Based on the findings reported here and those reported in the literature, the following model can be proposed for the pathophysiology of bone loss with aging (Fig. 4). Beginning in early adulthood, an age-related decrease in intestinal VDR leads to intestinal resistance to 1,25-(OH)_2D_3 action and impaired calcium absorption. This results in secondary hyperparathyroidism which increases 1,25-(OH)_2D_3 production and normalizes calcium absorption, but at the cost of increasing bone turnover (28). Because of the well-documented age-

![Fig. 1. Relationships with FCA in 44 normal women. Left, with age; right, with serum 1,25-(OH)_2D_3 (r = 0.36; P < 0.05). FCA = 0.12 + 0.021 x serum 1,25-(OH)_2D_3.](image-url)
TABLE 3. Multiple regression equations for the dependent variables log FCA and intestinal VDR concentration

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Independent variable</th>
<th>β</th>
<th>Individual P value</th>
<th>Overall R² (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log FCA (n = 44)</td>
<td>Intercept</td>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/serum 1,25-(OH)₂D₃</td>
<td>-7.4</td>
<td>0.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dietary calcium</td>
<td>-1.5 × 10⁻²</td>
<td>0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>-7.6 × 10⁻³</td>
<td>0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal VDR (n = 32)</td>
<td>Intercept</td>
<td>504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>-1.8</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urinary hydroxyproline/GFR</td>
<td>-0.66</td>
<td>0.047</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.007</td>
</tr>
</tbody>
</table>

Fig. 2. Relationships with age. Upper, With intestinal VDR concentration in 35 normal women (r = 0.38; P = 0.03; VDR = 394 - 1.4 × age). The indicated outlier was excluded from the analysis. Lower, With serum 1,25(OH)₂D₃ concentration in 35 normal women (r = 0.88; P = 0.05; serum 1,25(OH)₂D₃ = 20.6 + 0.11 × age).

related defect in osteoblast function at the cellular level (39), however, increased bone turnover leads to increased bone loss. Later in life, impaired 25OHD 1α-hydroxylase activity also contributes to the impairment of calcium absorption. This model has important theoretical and practical implications for the pathogenesis and treatment of type II (age-related) osteoporosis (1).

The mechanism of the apparent intestinal resistance to 1,25(OH)₂D₃ action is not established. However, the age-related decrease in intestinal VDR despite significant increases in serum 1,25(OH)₂D₃ is consistent with the hypothesis that this is caused, at least in part, by a receptor-mediated process. Exposure to exogenous 1,25(OH)₂D₃ normally results in homologous up-regulation of VDR number in vitro (40) and in vivo in the rat intestine and rat kidney (41, 42). Homologous up-regulation of intestinal VDR in the subgroup older than 60 yr was inadequate to increase the VDR concentrations to within the range of those for the younger

Fig. 3. Relationships with serum 1,25(OH)₂D₃. Upper, With intestinal VDR in 13 normal women, ages >60 yr (r = 0.54, P = 0.06; VDR = 123 + 2.6 × serum 1,25(OH)₂D₃); middle, with intestinal VDR in 11 normal women, ages 40 to 60 yr (r = -0.28, P = 0.40); lower, with intestinal VDR in 10 normal women, ages 20 to 39 yr (r = 0.57, P = 0.09).

Fig. 4. Pathophysiological model of age-related bone loss.
women. We cannot exclude the possibility that local changes in duodenal villi with age could contribute to our findings, although we know of no data from other studies to support this. Although age was the best predictor for VDR in multiple regression analysis, urinary hydroxyproline also was in inversely correlated, consistent with a role of the abnormality in the pathogenesis of bone loss. The failure of intestinal VDR to correlate with FCA may have been related to the high variability of the latter technique. Peacock et al. (43) have reported that it has a coefficient of variation of 19%.

The reason for the age-related decrease in intestinal VDR is unclear. We favor an age-related process as has been demonstrated in rats (9). Postmenopausal estrogen deficiency may have a direct inhibitory effect on VDR synthesis, independent of vitamin D status, as previously demonstrated in rats (9). Postmenopausal estrogen deficiency is unclear. We favor an age-related process as has been demonstrated in rats (9).

In conclusion, despite the increase in serum PTH and plasma 1,25-(OH)2D3 concentrations with age, FCA and intestinal VDR concentration did not increase and, in fact, intestinal VDR decreased significantly with age. These findings are consistent with impaired regulation of intestinal VDR by 1,25-(OH)2D3. Whether this abnormality is responsible, at least in part, for the intestinal resistance to 1,25-(OH)2D3 action should now be assessed by studies of direct intervention.

Acknowledgments

We thank Mrs. Daryl G. Gonchorof, Mrs. Roberta A. Soderberg, Mr. James M. Peterson, Mrs. Carol A. McAlister, Ms. Jodie L. Van De Kostyne, and Ms. Jean Prahl for technical assistance. We also thank Dr. Rajiv Kumar for his assistance and criticism of the manuscript.

References

23. Kivirikko KI, Laitinen O, Prockop DJ. 1967 Modifications of a