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The adipokines chemerin and adiponectin are reciprocally related in the pathogenesis of insulin resistance 
and inflammation in obesity. Weight loss increases adiponectin and reduces chemerin, insulin resistance, and 
inflammation, but the effects of caloric restriction and physical activity are difficult to separate in combined 
lifestyle modification. We compared effects of diet- or exercise-induced weight loss on chemerin, adiponectin, 
insulin resistance, and inflammation in obese men. Eighty abdominally obese Asian men (body mass index 
[BMI] ≥ 30 kg/m2, waist circumference [WC] ≥ 90 cm, mean age 42.6 years) were randomized to reduce daily 
intake by ~500 kilocalories (n = 40) or perform moderate-intensity aerobic and resistance exercise (200–300 
min/week) (n = 40) to increase energy expenditure by a similar amount for 24 weeks. The diet and exercise 
groups had similar decreases in energy deficit (–456 ± 338 vs. –455 ± 315 kcal/day), weight (–3.6 ± 3.4 vs. 
–3.3 ± 4.6 kg), and WC (–3.4 ± 4.4 vs. –3.6 ± 3.2 cm). The exercise group demonstrated greater reductions 
in fat mass (–3.9 ± 3.5 vs. –2.7 ± 5.3 kg), serum chemerin (–9.7 ± 11.1 vs. –4.3 ± 12.4 ng/ml), the inflamma-
tory marker high-sensitivity C-reactive protein (–2.11 ± 3.13 vs. –1.49 ± 3.08 mg/L), and insulin resistance 
as measured by homeostatic model assessment (–2.45 ± 1.88 vs. –1.38 ± 3.77). Serum adiponectin increased 
only in the exercise group. Exercise-induced fat mass loss was more effective than dieting for improving adi-
pokine profile, insulin resistance, and systemic inflammation in obese men, underscoring metabolic benefits 
of increased physical activity.
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Obesity, particularly abdominal obesity that is asso-
ciated with pathological accumulation of visceral fat, 
results in aberrant production of adipokines associated 
with insulin resistance and chronic inflammation that 
underlie obesity-related comorbidities (Klimcakova et al., 
2010). Chemerin, a protein produced in adipose tissues, 
is found in higher concentrations in obese individuals 
(Rourke et al., 2013) and increases insulin resistance by 
inhibiting insulin-mediated glucose uptake in skeletal 
muscle and impairing insulin receptor signaling at the 
levels of insulin receptor substrate 1, Akt and glycogen 
synthase kinase 3 phosphorylation (Sell et al., 2009). 
Chemerin also promotes inflammation through binding 
to chemokine-like receptor 1 (CMKLR1, ChemR23) and 
chemoattraction of macrophages (Lehrke et al., 2009). 

Adiponectin, an adipocyte-derived protein with anti-
inflammatory and insulin-sensitizing effects, is decreased 
in obesity (Klimcakova et al., 2010). Overweight and 
obese adults with high chemerin and low adiponectin 
levels have a sixfold higher risk of metabolic syndrome 
compared with those with low chemerin and high adi-
ponectin (Chu et al., 2012), suggesting that reciprocal 
alterations in the proportions of these adipokines con-
tribute to the derangements seen in obesity. Chemerin 
and adiponectin are promising novel early biomarkers 
of adipose tissue dysfunction and adverse metabolic 
outcomes.

Bariatric surgery (Chakaroun et al., 2012; Sell et 
al., 2010), caloric restriction (Blüher et al., 2012), and 
combined diet and exercise (Kim et al., 2014; Lee et 
al., 2013) reduced adiposity and circulating chemerin, 
as did exercise alone (Chakaroun et al., 2012; Saremi 
et al., 2010; Stefanov et al., 2014; Venojärvi et al., 
2013). However, none of the exercise-only interventions 
induced significant weight loss nor directly compared 
effects with isocaloric dietary restriction, so the effects 
of exercise-induced weight and fat mass loss in obese 
individuals remain to be clarified. Adiponectin concen-
tration increases in association with improved insulin 
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sensitivity after weight loss (Madsen et al., 2008) and 
exercise-induced reduction in body fat (Malin et al., 
2014). However, few randomized trials of weight loss 
that included aerobic exercise have controlled for caloric 
restriction, and they are inconclusive regarding the effects 
of chronic exercise on adiponectin (Ryan et al., 2003; 
Simpson & Singh, 2008; Auerbach et al., 2013).

The relative contributions of caloric restriction 
and increased physical activity to weight-loss-induced 
changes in chemerin and adiponectin production remain 
unknown. It is difficult to compare results between diet 
and exercise because of the heterogeneity of weight-loss 
interventions, the difficulty of separating effects of caloric 
restriction from physical activity in combined lifestyle 
interventions, and the paucity of exercise studies utilizing 
comparable energy deficit to diet interventions. A meta-
analysis of weight-loss trials (Franz et al., 2007) included 
six exercise studies and 51 diet trials, and a recent review 
found only seven studies between 1990–2013 that com-
pared diet- and exercise-induced weight loss (Washburn 
et al., 2014). Moreover, adipokine levels were not evalu-
ated in these studies. We therefore aimed to compare the 
effects of weight and fat mass losses induced by regular 
moderate-intensity exercise with an equivalent energy 
deficit from dieting, and we hypothesized that exercise 
would reduce chemerin and increase adiponectin by a 
larger degree, with greater improvements in body com-
position, insulin resistance, and inflammation.

Participants and Methods
Eighty abdominally obese Asian (body mass index 
[BMI] ≥ 30 kg/m2, waist circumference [WC] ≥ 90 cm 
as defined by the World Health Organization [WHO] 
recommendations for Asian men; WHO Expert Consul-
tation, 2004), previously sedentary (exercise < 30 min/
day), community-dwelling men between 30 and 65 years 
of age were recruited by advertisements to participate 
in a 6-month weight-loss study and were randomized 
to either dietary modification or exercise training in 
Singapore between December 2010 and March 2013. 
Participants with vascular disease, inability to perform 
regular moderate-intensity aerobic exercise, or recre-
ational drug and alcohol abuse were excluded. Eleven 
participants had hypertension which was well-controlled 
with calcium channel blockers and/or beta blockers, and 
10 participants were on statins. The proportion of subjects 
with hypertension and/or dyslipidemia was similar in 
both groups (~25%). There were no changes in medica-
tions. The study was approved by a formally constituted 
ethics review board. Informed consent was obtained in 
writing. Sample size was calculated at 36 to detect 5% 
of weight loss from baseline (mean = 95 kg, SD = 7.5 
kg) in the same population of Asian men as in a previ-
ous study of lifestyle modification (Khoo et al., 2013), 
with 80% power at 5% significance, but 40 participants 
were recruited in each group to account for drop-outs. 
Participants were randomized by a dietitian who was not 
part of the study, using sealed envelopes.

Diet Modification

Men in the diet group were provided with written plans 
designed to reduce daily energy intake by 500 kcal/day, 
with 50–55% of total calorie intake as carbohydrate, 20% 
protein, and 25–30% fat. Daily energy requirement was 
estimated using basal metabolic rate (BMR; calculated 
with the Mifflin–St. Jeor equation [Mifflin et al., 1990]) 
multiplied by activity factor. Participants were instructed 
to consume ~1.5 L of fluids daily. Dietitians demonstrated 
how to fill in the diaries using standardized food models 
and examples of household measures and serving size, 
and they reviewed food diaries at 4-week intervals.

Exercise Training

Men in the exercise group were prescribed a moderate-
intensity (60–80% of predicted maximum heart rate) 
aerobic exercise program (e.g., stationary cycling, tread-
mill, elliptical cross-training), starting at 90 min/week in 
three divided sessions. Participants were helped to mea-
sure and maintain appropriate heart rates using a monitor 
that was worn or attached to gym equipment (HR-100CN, 
Omron, Kyoto, Japan). Exercise was gradually increased 
in duration (by 10–15 min/session/week) and frequency 
(starting at two sessions and increasing by one per week) 
until the target exercise volume of 200–300 min/week 
(five to seven sessions of 45–60 min including resistance 
training, ~1,400–2,100 MET-min as recommended by the 
American College of Sports Medicine for weight loss 
[Donnelly et al., 2009]) was achieved at 4 weeks to target 
3,500 kcal/week. Participants exercised in the research 
center gym under supervision at 2-week intervals in the 
first 4 weeks and then 4- to 6-week intervals, with the rest 
of the exercise (similar in intensity and type to the gym 
sessions) performed outside the research center.

Energy Intake and Expenditure Analysis

Nutrient intakes at baseline and the end of the study were 
calculated using the Dietplan6 Software (Forestfield 
Software Ltd., Horsham, West Sussex, UK) from 3-day 
(2 weekdays and 1 weekend) consecutive food diaries at 
baseline and 24 weeks. Total energy expenditures (TEE) 
on the same days were calculated as the sum of the daily 
activity thermogenesis (DAT), where DAT = the sum 
of (energy equivalent of each of the activities recorded 
in the participant’s diary × time spent in each activity), 
and averaged for a mean daily TEE. Energy equivalents 
were derived from tables of values of approximate caloric 
expenditure for various activities (Ainsworth et al., 2011). 
The net energy balance was the difference between caloric 
intake and TEE.

Outcome Measures

Weight and WC (mean of three measurements midway 
between the lower costal border and the top of the iliac 
crest) were measured by the same investigator for each 
participant, who was blinded to group assignment. Fat 
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mass, fat-free mass, and body fat percentage were mea-
sured by bioimpedance electrical analysis using a body 
composition analyzer (BC-118E, Tanita, Tokyo, Japan). 
Maximal oxygen uptake (V· O2max) tests were conducted 
using a graded direct cycling ergometer (Aerobike 75XL-
II, Combi Wellness Co. Ltd., Tokyo, Japan) under the 
supervision of a physical trainer with an initial workload 
of 100 W starting after 5 min of warm-up, increasing at 
20 W/min on a continuous ramped protocol. Participants 
cycled between 70 and 120 revolutions per minute (rpm) 
with termination when they were unable to maintain a 
cadence of 20 rpm below the preferred cycling rate with 
a plateau in the VO2 for 15 s, and with maximal heart rate 
and respiratory exchange ratio > 1.15. V· O2max (L/min) 
was determined as the highest recorded 15 s-averaged 
V· O2max as measured with indirect calorimetry.

Venous blood was collected at 8 a.m. after overnight 
fast of at least 10 hr and stored at –70 °C for subsequent 
assays. All participants had been instructed not to exercise 
or excessively restrict caloric intake for 3 days before 
the blood tests were taken, so as to minimize the poten-
tial effects of exercise and diet on insulin, glucose, and 
adipokines, as the effects of a 50-min bout of exercise at 
75% VO2max in reducing fasting insulin and glucose levels 
were observed to disappear 72 hr after exercise (Boulé 
et al., 2005) while fasting for 72 hr has been shown to 
reduce chemerin and leptin (Chamberland et al., 2013). 
The UniCel DxC 800 analyzer (Beckman Coulter, Brea, 
CA) was used to measure serum glucose (lower limit of 
detection LLD 0.3 mmol/L, intra-assay and interassay 
coefficients of variation [CVs] 2.0% and 3.0%) and high-
sensitivity C-reactive protein (CRP) (CVintra 2.1%, CVinter 
3.4%). Serum insulin was measured using sandwich 
electrochemiluminescence immunoassay (Cobas e601, 
Roche Diagnostics, Indianapolis, IN, CVintra 4.0%, CVinter 
6.0%). Insulin resistance was calculated using homeosta-
sis model assessment (HOMA-IR) = glucose in mmol/L 
× insulin in μmol/L/22.5. Serum leptin (CVintra 5.9%, 
CVinter 8.7%; DRG Instruments GmBH, Marburg, Ger-
many), adiponectin (CVintra ≤ 10%, CVinter ≤ 12% %; DRG 
Instruments GmBH, Marburg, Germany) and chemerin 
(CVintra 4.3%, CVinter 7.6%; Kamiya Biomedical, Seattle, 
WA) concentrations were measured by enzyme-linked 
immuno-sorbant assay.

Statistical Analysis

Statistical analysis was performed using SPSS v.16.0 
(Chicago, IL). Differences in baseline measurements 
and changes between the groups were evaluated with 
maximum likelihood repeated measures mixed models 
analysis of variance in an intention-to-treat analysis. 
The relationships between changes in outcomes after 24 
weeks were determined using Pearson’s correlations. A 
p value < .05 was considered significant.

Results
Baseline characteristics were similar between the diet 
and exercise groups (Table 1). Three participants in the 

diet group and 2 in the exercise group dropped out at 4–8 
weeks, citing difficulties in complying with the diet or 
exercise regimen due to personal and/or occupational rea-
sons. Their mean age and BMI were similar to the study 
completers. No adverse events or injuries were observed.

Energy Deficit and Anthropometry

At 24 weeks, there was similar negative daily energy 
balance of ~450 kcal in both diet and exercise groups 
(Table 1). Although the diet group lost significantly (p 
< .01) more weight in the first 8 weeks (–5.1 ± 2.4 kg) 
compared with the exercise group (–1.1 ± 2.0 kg), they 
subsequently regained weight before stabilizing (Figure 
1). In contrast, weight steadily decreased in the exercise 
group after 4 weeks. Weight did not change significantly 
in the last 4 weeks (0.1 ± 0.7 kg in the diet group and 0.3 
± 1.0 kg in the exercise group), such that at 24 weeks both 
groups had lost ~4% from baseline weight and WC (Table 
2). Total body fat mass and percentage of fat decreased to 
a greater extent in the exercise group (Table 2).

Insulin Resistance, Inflammation, and 
Adipokines

Serum glucose and leptin decreased comparably in both 
groups (Table 2). In the exercise group, insulin, HOMA-
IR, CRP, and chemerin (Figure 2) decreased significantly 
more than in the diet group. At baseline, chemerin con-
centration was significantly associated with fat mass (r = 
.32, p = .01), CRP (r = .33, p < .01), and HOMA-IR (r = 
.22, p = .04). The decrease in chemerin was significantly 
associated with reductions in fat mass, HOMA-IR, and 
CRP (Table 3). The reductions in chemerin and HOMA-
IR remained significantly associated with each other (r 
= .25, p = .04) in a multivariate analysis with baseline 
chemerin and HOMA-IR, and changes in weight and fat 
mass as the covariates.

Baseline adiponectin concentration was inversely 
associated with HOMA-IR (r = –.26, p = .02) while 
increase in adiponectin, which only occurred in the 
exercise group (Figure 3), was associated with reduction 
in fat mass (r = –.21, p = .04) but not in weight, WC, or 
chemerin. Baseline leptin concentration was significantly 
(p < .01) associated with WC (r = .44) and fat mass (r = 
.48). The decrease in leptin was significantly associated 
with reduction in fat mass (Table 3), but not with changes 
in HOMA-IR, CRP, chemerin, or adiponectin.

Discussion
We found that compared with calorie restriction, 
increased exercise was associated with greater reductions 
in serum chemerin, fat mass, insulin resistance and CRP, 
and with increased serum adiponectin, despite similar 
weight loss. Our findings concur with previous studies 
wherein hypocaloric diets (Blüher et al., 2012; Chakaroun 
et al., 2012), combined diet and exercise (Kim et al., 
2014; Lee et al., 2013), and exercise alone (Chakaroun 
et al., 2012; Saremi et al., 2010; Stefanov et al., 2014; 
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Table 1 Baseline Intake, Energy Expenditure, Anthropometry, Physical Capacity, Glucose, Insulin, 
CRP, and Adipokines in Obese Men 

Baseline Parameters Diet Group (n = 40) Exercise Group (n = 40) p
Age (years) 41.8 ± 7.2 43.3 ± 9.0 .41

Intake (kcal/day) 2,167 ± 371 2,442 ± 293 .08

TEE (kcal/day) 2,632 ± 185 2,540 ± 241 .74

NetE (kcal/day) –465 ± 349 –398 ± 336 .20

VO2max (L/min) 2.85 ± 0.34 2.88 ± 0.38 .89

BMI (kg/m2) 32.1 ± 3.0 32.1 ± 2.6 .49

Weight (kg) 95.7 ± 9.4 96.2 ± 10.9 .84

WC (cm) 106.1 ± 7.2 106.0 ± 8.5 .87

FFM (kg) 61.7 ± 6.7 63.3 ± 5.5 .53

FM (kg) 33.2 ± 5.6 32.1 ± 7.6 .74

% body fat 35.3 ± 4.7 34.7 ± 5.5 .35

Glucose (mmol/L) 6.19 ± 0.90 6.48 ± 0.98 .12

Insulin (μU/ml) 22.75 ± 13.26 20.19 ± 8.30 .44

HOMA-IR 6.62 ± 4.83 5.62 ± 2.51 .49

CRP (mg/L) 4.49 ± 4.78 3.94 ± 3.56 .51

Leptin (nmol/L) 15.89 ± 9.80 16.02 ± 14.75 .97

Adiponectin (μg/ml) 5.42 ± 0.63 5.22 ± 0.61 .09

Chemerin (ng/ml) 121.4 ± 12.6 122.2 ± 9.4 .78

Note. All values are given as mean ± SD. CRP = serum high-sensitivity C-reactive protein; TEE = total energy expenditure; NetE = energy balance 
= TEE minus intake; VO2max = maximal oxygen uptake; BMI = body mass index; WC = waist circumference; FFM = total fat-free mass; FM = total 
fat mass; HOMA-IR = homeostasis model assessment of insulin resistance. Intake, TEE, and NetE values are averages of daily caloric intake, total 
energy expenditure, and net energy deficit, derived from 3-day food and physical activity diaries kept by all participants.

Table 2 Intake, Energy Expenditure, Anthropometry, Physical Capacity, Glucose, Insulin, CRP, and 
Adipokines in Obese Men After 24 Weeks of Diet or Exercise

Changes in Parameters Diet Group (n = 40) Exercise Group (n = 40) p
Intake (kcal/day) –423 ± 392* 9 ± 319 < .01

TEE (kcal/day) 33 ± 209 464 ± 221* < .01

NetE (kcal/day) –456 ± 338* –455 ± 315* .80

VO2max (L/min) 0.07 ± 0.06 0.45 ± 0.06* < .01

BMI (kg/m2) –1.2 ± 1.9* –1.3 ± 1.2* .86

Weight (kg) –3.3 ± 4.6* –3.6 ± 3.4* .83

WC (cm) –3.4 ± 4.4* –3.6 ± 3.2* .81

FFM (kg) –0.7 ± 3.2 0.4 ± 2.8* .04

FM (kg) –2.7 ± 5.3* –3.9 ± 3.6* .02

% body fat –2.1 ± 4.4* –3.7 ± 3.4* .04

Glucose (mmol/L) –0.25 ± 0.59* –0.29 ± 0.75* .26

Insulin (μU/ml) –3.56 ± 10.92* –6.91 ± 5.12* .02

HOMA-IR –1.38 ± 3.77* –2.45 ± 1.88* .03

CRP (mg/L) –1.49 ± 3.08* –2.11 ± 3.13* .03

Leptin (nmol/L) –4.92 ± 5.73* –4.36 ± 7.38* .71

Adiponectin (μg/ml) –0.10 ± 0.45 0.41 ± 0.48* .01

Chemerin (ng/ml) –4.3 ± 12.4* –9.7 ± 11.1* .04

Note. The values are given as mean ± SD An asterisk indicates a significant difference from baseline. The level of significance is set at p < .05. CRP 
= serum high-sensitivity C-reactive protein; TEE = total energy expenditure; NetE = energy balance = TEE minus intake; VO2max = maximal oxygen 
uptake; BMI = body mass index; WC = waist circumference; FFM = total fat-free mass; FM = total fat mass; HOMA-IR = homeostasis model 
assessment of insulin resistance. Intake, TEE, and NetE values are averages of daily caloric intake, total energy expenditure, and net energy deficit, 
derived from 3-day food and physical activity diaries kept by all participants.
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Venojärvi et al., 2013) decreased chemerin. However, 
none of these studies directly compared isocaloric diet 
and exercise interventions or found greater improvement 
in adipokine profile and metabolic outcomes with the 
same degree of exercise-induced weight and fat mass 
loss. Our study therefore provides evidence for the greater 
benefits of exercise compared with diet-induced fat mass 
loss on adipokines such as chemerin and adiponectin 

that are increasingly recognized as novel biomarkers for 
metabolic outcomes.

Exercise was associated with improvement in body 
composition independent of weight loss (Chakaroun et 
al., 2012; Oh et al., 2013), so the greater reduction in fat 
mass is likely to contribute to the larger improvements 
in adipokine profile and insulin resistance in the exer-
cise group. The associations between postintervention 

Table 3 Significant Correlations (Given as r Values) Between Changes (Δ) in Body Fat Mass, 
Insulin Resistance (HOMA-IR), Serum CRP, Leptin, and Chemerin Levels, After 24 Weeks  
of Lifestyle Modification

Variable ΔFM ΔHOMA-IR ΔCRP ΔLeptin ΔChemerin

ΔFM — .35* .15 .48** .34*

ΔHOMA-IR .35* — .16 .22 .32*

ΔCRP .15 .16 — .13 .33*

ΔLeptin .48** .22 .13 — .20

ΔChemerin .34* .32* .33* .20 —

Note. CRP = high-sensitivity C-reactive protein; FM = total body fat mass; HOMA-IR = homeostasis model assessment of insulin resistance. 

*p < .05. **p < .01.

Figure 1 — Changes in weight over 24 weeks of dieting (circles) or exercise (squares) in obese men.
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Figure 2 — Changes in serum chemerin after 24 weeks of diet- or exercise-induced weight loss in obese men.

Figure 3 — Changes in serum adiponectin after 24 weeks of diet- or exercise-induced weight loss in obese men.
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reductions in chemerin and fat mass are consistent with 
previous combined weight loss interventions (Blüher et 
al., 2012; Kim et al., 2014; Lee et al., 2013), underscor-
ing the links between adiposity and chemerin production. 
Chemerin messenger RNA (mRNA) expression increases 
with adipocyte size (Sell et al., 2010) and is lower in 
lean compared with obese and diabetic individuals (Cha-
karoun et al., 2012) while changes in production of other 
adipokines, particularly adiponectin, may also influence 
chemerin production (Suzuki et al., 2012). We found that 
baseline chemerin concentration and insulin resistance 
(HOMA-IR), and reductions in both after fat mass loss, 
were also significantly correlated, as in previous lifestyle 
intervention studies (Kim et al., 2014; Lee et al., 2013). 
In particular, the reduction of ~8% in serum chemerin 
in our exercise group was comparable to the 7–10% 
reduction in chemerin that was significantly associated 
with improvement in insulin sensitivity after 12 weeks of 
moderate-intensity exercise in the study of Chakaroun et 
al. Direct links between insulin and chemerin production 
were demonstrated in human adipose cells where insulin 
infusion stimulated chemerin synthesis (Tan et al., 2009) 
and in human skeletal muscle cells where administra-
tion of chemerin increased insulin resistance (Bauer et 
al., 2012) and impaired insulin receptor signaling and 
glycogen synthase kinase 3 phosphorylation (Sell et al., 
2009). In our study, improvement in insulin sensitivity, in 
addition to being associated with reduction in adiposity, 
may thus also be directly mediated by chemerin reduction 
as shown by association of reductions in chemerin and 
HOMA-IR after correction for fat mass loss.

In contrast to studies that found that at least 10% 
weight loss is required to reduce inflammatory markers 
(Christiansen et al., 2010; Forsythe et al., 2008), we found 
that CRP was significantly decreased with modest (<5%) 
reduction in weight and adiposity. Associations between 
baseline chemerin and CRP concentrations, and reduc-
tions after fat mass loss, are likely related to the link 
between chemerin and increased adipose tissue macro-
phage infiltration (Hart & Greaves, 2010) and expression 
of CRP, interleukin-6 (IL-6), and tumor necrosis factor 
alpha (TNF-α) (Lehrke et al., 2009). Chemerin mRNA 
expression increases with the number of macrophages in 
adipose tissue (Sell et al., 2010), and proinflammatory 
cytokines up-regulate chemerin in adipocytes (Parlee 
et al., 2010), while stimulation of macrophages by 
chemerin increases proinflammatory cytokines (Mari-
ani & Roncucci, 2015) and vice-versa (Kralisch et al., 
2009). Greater reduction in CRP with exercise is consis-
tent with the observation that regular exercise reduces 
systemic inflammation, as demonstrated by the inverse 
relationship between serum CRP and physical activity 
in population studies (Kasapis & Thompson, 2005) and 
reduction in CRP, IL-6, and TNF-α in obese individuals 
after 3 months to 3 years of exercise programs (Huang et 
al., 2013). Changes in adiponectin and chemerin, which 
were not measured in these studies, may mediate these 
metabolic benefits.

Adiponectin increased significantly with exercise 
but not caloric restriction, an additional metabolic 

advantage of physical activity, and occurred with modest 
(~4%) weight loss, in contrast with studies that found 
that adiponectin increased with weight loss exceeding 
5–10% (Christiansen et al., 2010; Madsen et al., 2008) 
but not with smaller reductions (Auerbach et al., 2013; 
Kim et al., 2014; Ryan et al., 2003; Simpson & Singh, 
2008). The ~8% increase in adiponectin level in our 
exercise group was similar to the 11% rise in adiponec-
tin that was associated with significant improvement in 
systemic inflammation in obese adults who lost at least 
10% of baseline weight through dieting (Madsen et al., 
2008). Similarly, 12 weeks of exercise (~270 min/week) 
increased adiponectin by more than 15% without sig-
nificant caloric restriction in participants with fatty liver 
disease (Oh et al., 2013) and changed high-molecular 
weight adiponectin by ~10% in obese older adults in asso-
ciation with reduction in systemic inflammation, hepatic 
insulin resistance, and serum fetuin-A and leptin (Malin 
et al., 2014). However, adiponectin did not change with a 
similar duration of combined lifestyle modification (Kim 
et al., 2014; Lee et al., 2013). The reduction of leptin in 
association with decrease in fat mass concurs with previ-
ous observations (Blüher et al., 2012; Kim et al., 2014; 
Klimcakova et al., 2010; Lee et al., 2013).

Our diet group lost more weight in the first 2 months 
but regained weight before stabilizing at a lower level 
than baseline while weight decreased steadily in the 
exercise group after the first month. Lower-than-expected 
weight loss may have been due to unsupervised exercise 
and underestimation of intake. Weight regain may have 
been due to suboptimal diet compliance from neuro-
hormonal changes with caloric restriction, decreased 
muscle mass, and adaptive thermogenesis leading to 
greater-than-expected reductions in BMR and nonexer-
cise energy expenditure (Müller & Bosy-Westphal, 2013). 
In contrast, regular exercise has been shown to attenuate 
the biological drive to regain weight in animal models 
through decreased appetite and increased fat and glucose 
oxidation (MacLean et al., 2009) and may improve the 
coupling between energy intake and expenditure (Müller 
& Bosy-Westphal, 2013) that maintains energy balance 
after caloric restriction.

Our study was limited by the lack of a control group 
that exercised without fat mass loss (though our aim was 
to compare the effects of diet with exercise prescribed to 
induce weight loss), relatively short follow-up, and the 
small number of participants. Dual-energy X-ray absorp-
tiometry or computed tomography would be more sensi-
tive for body composition measurement. Activity diaries 
show low correlation with doubly-labeled water (DLW) 
techniques, which are the gold standard for measurement 
of energy expenditure (Strath et al., 2013), though DLW 
measurements are time-consuming and costly and may, 
like diaries, be affected by changes when under observa-
tion (Strath et al., 2013). Total adiponectin was measured, 
rather than proportions of high- (associated with insulin 
sensitivity) and low-molecular weight forms that may 
respond differently to dieting and exercise (Auerbach 
et al., 2013; Malin et al., 2014). Measurement of active 
(proinflammatory) and inactive (anti-inflammatory) 
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chemerin bioforms could further our understanding of 
differential effects of diet and exercise on chemerin for 
reducing inflammation (Mariani & Roncucci, 2015). 
Blood sampling at more frequent points would allow 
evaluation of effects of weight variations.

In conclusion, exercise prescribed to induce weight 
loss in obese Asian men was associated with greater 
reductions in fat mass, serum chemerin, resistance, and 
inflammation and increase in adiponectin, compared 
with a similar degree of energy restriction from dieting. 
Improved adipokine profile in the exercise group was 
possibly due to increased activity per se and/or greater 
reduction in adiposity. Our findings underscore the meta-
bolic benefits of regular exercise in obese individuals.
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