Overview of Course

- Lecturers
 - Dr Peter Bibby
 - Dr Eamonn Ferguson
- Course
 - Part I - Anova and related methods (Semester 1)
 - Part II - Issues relating to ‘field work’ and its statistical analysis (Semester 2)
- Assessment
 - A single 3 hr examination in the Semester II examination period
- Related Courses
 - All modules offered within the School of Psychology will be understood better if the data and the statistical analyses that underpin psychological research are understood.
 - The practicals module will rely in part of the statistics that you learn in this module and the statistical knowledge you acquired in the first year.

Overview of Lecture

- Designing Experiments
- Control in Experimentation
- Statistical Hypotheses
- Errors in Hypothesis Testing

Designing Experiments

- Experimentation begins by formulating a number of research hypotheses.
- Translate the different research hypotheses into a set of treatment conditions and the selection of an appropriate experimental design within which to embody the different treatment conditions
- Different treatments are administered to different groups of subjects or to the same subjects in different orders and performance on some response measure is observed and recorded.

Independent and Dependent Variables

- The treatment variable is commonly known as an independent variable and the measure is known as the dependent variable.
- An independent variable is the variable that is manipulated
 - drug or placebo
- The dependent variable is the response measure which is manipulated on the basis of the independent variables
 - blood sugar levels

Quantitative, Qualitative & Classification Independent Variables

- There are three kinds of independent variables:
 - Quantitative variables are variables that represent variation in amount (e.g. amount of drug, loudness of noise).
 - Qualitative variables represent variations in kind or type (e.g. teaching strategy).
 - Classification variables systematically vary characteristics which are intrinsic to the subjects of the experiment (e.g. age, sex, IQ, species, word type, etc.)

Nuisance Variables

- Nuisance variables are potential independent variables which if left uncontrolled could exert a systematic influence on the different treatment conditions.
- Several researchers running the same experiment might produce an experimenter effect.
- The time of day could have an influence.
- The kind of subject selected can effect the influence of the independent variables.
- If we do not control for these differences in experimental situation, we might have a confounding variable in the experiment.
Dependent Variables

- Once we have designed an experiment and have produced an experimental hypothesis then we need to decide upon the specific details of the experiment.
- The idea is to select a measure that will "capture" the hypothesised differences.
- The measure that is adopted is known as the dependent variable.
- We hypothesise that the observed data will be somehow dependent on the nature of the independent variable.

Control in Experimentation

- Consider an experiment where the data is collected by running the experiment simultaneously in two different laboratories:
 - The two labs are identical in every respect except that the temperature for each room cannot be controlled.
 - Temperature variations may lead to systematic variations in the performance on a task.
- Randomly allocating different treatment conditions to the rooms gives an equally likely "chance" that different random temperatures will be associated with the different treatment means.

Completely Randomized Designs

- The completely randomized design is characterized by the fact that the subjects are randomly assigned to serve in one of the treatment conditions.
- This is also known as a between subjects design since any differences in behaviour observed among the treatment conditions are based on differences between different groups of subjects.

Randomized Block Designs

- Randomized block design uses blocks of subjects who are matched closely on some relevant characteristic.
- A common procedure is to treat a subject as a 'block', wherein the subject serves in all the treatment conditions of an independent variable.
- When subjects complete all the treatment conditions this type of design is commonly referred to as a repeated measures design or a within subjects design.

Statistical Hypotheses

- The Null Hypothesis
- The Alternative Hypothesis
- Deciding to Accept or Reject the Null Hypothesis.
- Errors in Hypothesis Testing.
- Juggling Type I and Type II Errors

Statistical vs Research Hypotheses

- A research hypothesis is a fairly general statement about the assumed nature of the world that gets translated into an experiment.
- Statistical hypotheses consist of a set of precise hypotheses about the parameters of the different treatment populations.
Statistical Hypotheses

- Two statistical hypotheses are usually stated
 - The Null Hypothesis
 - The Alternative Hypothesis
- These are mutually exclusive or incompatible statements about the treatment parameters

The Null Hypothesis

- The null hypothesis is the statistical hypothesis which will be tested. It is often symbolized as H_0.
- The function of the null hypothesis is to specify the values of a particular population parameter (usually the mean) in the different treatment populations (symbolized as μ_1, μ_2, μ_3 and so on).
- The null hypothesis typically chosen gives the same value to the different populations such that
 - $H_0: \mu_1=\mu_2=\mu_3$, etc.
- This is the same as saying that no treatment effects are present in the population.

The Alternative Hypothesis

- If the parameter obtained from the treatment groups are too deviant from those specified by the null hypothesis, H_0, then the null hypothesis is reject in favour of the other statistical hypothesis, called the alternative hypothesis, H_1.
- Usually the alternative hypothesis states simply that the values of the parameter in the different treatment populations are not all equal. Specifically,
 - H_1: not all μ's are equal.

Deciding to Reject the Null Hypothesis or not.

- A decision to reject H_0 implies an acceptance of H_1, which in essence, constitutes support of our original research hypothesis.
- On the other hand, if the parameter estimates are reasonably close to those specified by the null hypothesis, H_0 is not rejected.

Deciding to Reject the Null Hypothesis

- There is a problem with the way in which the null hypothesis and alternative hypotheses are set up.
- For the null hypothesis
 - All μ's are equal
 - For the alternative hypothesis
 - All μ's are not equal.
- These are statements at the level of the population means. However all we have are sample means.

- We have to adopt a criteria for rejecting the null hypothesis.
- We do this by calculating test statistics based on the properties of the F-distribution.
- The value we adopt is called the significance level and is referred to as α (alpha).
- The value for a that we usually adopt in psychology is 0.05.
Errors in Hypothesis Testing.

- The procedures we follow in hypothesis testing do not guarantee that a correct inference will be drawn.
- Whenever we make a decision about the Null Hypothesis we can make a mistake.
- There are two basic kinds of errors:
 - Type I Error
 - Type II Error

Type I Error

- Reality
 - Null Hypothesis is true
 - Alternative Hypothesis is false
- Decision
 - Reject the Null Hypothesis
 - Accept the Alternative Hypothesis

Type II Error

- Reality
 - Null Hypothesis is false
 - Alternative Hypothesis is true
- Decision
 - Fail to reject the Null Hypothesis
 - Reject the Alternative Hypothesis

Summary of Type I & II Errors

<table>
<thead>
<tr>
<th>Reality</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>Reject H_0</td>
</tr>
<tr>
<td>H_0 is false</td>
<td>Fail to reject H_0</td>
</tr>
</tbody>
</table>

Type I Error: Correct, Type II Error: Wrong

Trading off Type I and Type II Errors

Juggling Type I and Type II Errors

- Most of the time we do statistical analyses we are trying to juggle Type I and Type II errors.
- Generally, if it is important to discover new facts, then we may be willing to accept more Type I errors.
- On the other hand if it is important not to clog up the literature with false facts then we might be more willing to accept more Type II errors.