Extremely low volume, whole-body aerobic–resistance training improves aerobic fitness and muscular endurance in females

Gill McRae, Alexa Payne, Jason G.E. Zelt, Trisha D. Scribbans, Mary E. Jung, Jonathan P. Little, and Brendon J. Gurd

Abstract: The current study evaluated changes in aerobic fitness and muscular endurance following endurance training and very low volume, whole-body, high-intensity, interval-style aerobic–resistance training. Subjects’ enjoyment and implementation intentions were also examined prior to and following training. Subjects (22 recreationally active females (20.3 ± 1.4 years) completed 4 weeks of exercise training 4 days per week consisting of either 30 min of endurance treadmill training (~85% maximal heart rate; n = 7) or whole-body aerobic–resistance training involving one set of 8 × 20 s of a single exercise (burpees, jumping jacks, mountain climbers, or squat thrusts) separated by 10 s of rest per session (n = 7). A third group was assigned to a nontraining control group (n = 8). Following training, VO_2peak was increased in both the endurance (~7%) and interval (~8%) groups (p < 0.05), whereas muscle endurance was improved (p < 0.05) in the interval group (leg extensions, +40%; chest presses, +207%; sit-ups, +64%; push-ups, +135%; and back extensions, +75%). Perceived enjoyment of, and intentions to engage in, very low volume interval-style training, whole-body aerobic–resistance training imparted addition benefit in the form of improved skeletal muscle endurance.

Key words: VO_2peak, exercise training, whole-body exercise, high-intensity interval training, muscle endurance.

Received 26 March 2012. Accepted 11 June 2012. Published at www.nrcresearchpress.com/apnm on xx September 2012.

G. McRae,* A. Payne,* J.G.E. Zelt, T.D. Scribbans, and B.J. Gurd. School of Kinesiology and Health Studies, Queen’s University, Kingston, ON K7L 3N6, Canada.

M.E. Jung. School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia at Okanagan, Kelowna, BC V1V 1V7, Canada.

J.P. Little. Department of Biology, I.K. Barber School of Arts and Sciences, University of British Columbia at Okanagan, Kelowna, BC V1V 1V7, Canada.

Corresponding author: Brendon Gurd (e-mail: gurdb@queensu.ca).

*These authors contributed equally to the manuscript.
Introduction

Regular exercise improves health and lowers risk of several chronic diseases (Blair et al. 1989, 1995, 1996). Improvements in both aerobic fitness and muscular performance (i.e., muscular strength and endurance) are linked with many of the beneficial effects of exercise (Brill et al. 2000; Warburton et al. 2006). Unfortunately, low rates of physical activity are prominent in North America (Colley et al. 2011). Lack of time has been reported to be the most frequent barrier to regular exercise participation regardless of age, sex, socioeconomic status, and ethnicity (Godin et al. 1994; Trost et al. 2002). Recent evidence indicates that high-intensity exercise may be a time-efficient exercise stimulus for improving aerobic fitness and health (Babraj et al. 2009; Burgomaster et al. 2008) and may also elicit greater adherence than more traditional, longer duration, low-intensity training (King et al. 1995; Bartlett et al. 2011).

Tabata et al. (1996) demonstrated that intermittent training on a cycle ergometer, utilizing a protocol consisting of 7–8 × 20 s intervals separated by 10 s of rest, induced improvements in both aerobic fitness and anaerobic capacity with a very minimal time commitment (i.e., a total exercise time of ~4 min). Although this protocol, subsequently termed the “Tabata protocol”, has not been studied further in humans, the work-to-rest ratio utilized in this protocol can easily be adapted for use with whole-body exercises. Given the similarities between “Tabata intervals” and traditional resistance training (i.e., high-intensity exercise, short-duration intervals), it is possible that whole-body exercise utilizing Tabata intervals may represent both a potent aerobic stimulus and a form of resistance training. This form of training could therefore represent an attractive and time-efficient health-enhancing strategy targeting several components of fitness. It is currently unclear if the limited exercise dose (time and total work) associated with this protocol is sufficient to induce improvements in both aerobic capacity and muscular performance. If this style of aerobic–resistance interval training were able to induce such adaptations, it may represent an alternative exercise training paradigm that could improve health with minimal time and equipment requirements.

In addition, although females have been included in some mixed-sex exercise training studies (e.g., (Burgomaster et al. 2008; Gurd et al. 2010)), and the efficacy of several models of interval training has been demonstrated (Talanian et al. 2007; Metcalfe et al. 2012), there are few studies examining adaptations to fitness and (or) muscle performance following low-volume, high-intensity interval training in females. It is therefore unclear whether females might benefit from low-volume, high-intensity interval-style training.

The primary purpose of this study was to evaluate changes in aerobic fitness and muscular performance induced by whole-body exercise training — based on the protocol established by Tabata et al. (1996) — in young healthy females and compare these changes with those induced by traditional endurance training. We hypothesized that aerobic fitness would be improved following both endurance and whole-body interval training, but only interval training would improve muscle endurance.

The time efficiency of the Tabata protocol (~4 min of exercise per session) may also make it an appealing exercise alternative for increasing exercise adherence. At present, although there is some evidence that high-intensity interval training may be perceived as enjoyable (Bartlett et al. 2011; Little et al. 2011α), we are unaware of any data examining the impact of whole-body, high-intensity interval training on predictors of adherence to this form of training in females. Thus our secondary purpose was to examine subjects’ enjoyment and implementation intentions (specific plans to engage in this exercise in the future) before and after training utilizing the Tabata protocol.

Methods

Study design

The study consisted of baseline assessment of physiological and psychological parameters, one of two 4-week exercise training interventions or a time-matched control period, and posttraining testing. The details of each phase are described below. Baseline testing was completed ~1 week before training. Postraining testing was completed in an identical fashion to baseline testing ~48–72 h after the final training session. An additional control group was recruited wherein subjects completed pre- and post-testing 4 weeks apart with no exercise intervention. Control group subjects were of similar age and fitness to the training group subjects and were instructed to maintain their current levels of recreational physical activity throughout the study.

Subjects

Female students studying at Queen’s University (n = 25) volunteered to participate in this study. All subjects were recreationally active (performing between 1 and 3 h of structured aerobic activity per week) prior to volunteering for the study. Subject characteristics are shown in Table 1. Two subjects in the endurance training group did not complete training due to foot and knee pain incurred during treadmill running that made completion of the study intolerable. One subject in the Tabata training group did not complete the study due to an injury that took place outside the study. All data associated with these subjects were excluded in the final analysis. The remaining subjects in the training groups (endurance, n = 7; Tabata, n = 7) completed all 16 training sessions over the 4-week training period. All subjects recruited to the control group (n = 8) completed both pre- and post-testing. To confirm that no change in activity occurred in the control group throughout their involvement in the study, repeated physical activity recall (PAR) questionnaires were ad.
ministered. No change in the amount of activity reported by the control group was observed. The study was approved by the Health Sciences Human Research Ethics Board at Queen’s University, and all subjects provided written informed consent.

Training protocol–intervention

The endurance group completed 30 min of treadmill running at ~85% of maximal heart rate (HR$_\text{max}$; determined as the highest HR observed during the pretesting VO_2peak or Cunningham–Faulkner tests) 4 days per week for 4 weeks. Speed and incline were adjusted throughout the training period such that the target HR was met in all training sessions. In the Tabata training group, subjects trained four times per week for 4 weeks using a novel model of exercise training similar to calisthenics or circuit-type training. Specifically, subjects performed a standard warm-up that consisted of walking up and down 5 flights of stairs, followed by 8 intervals of high-intensity exercise (using a 2.25 kg dumbbell) for large muscle groups. The speed and incline were modified by decreasing the speed to 6 or 6.5 mph as appropriate. Where modifications were made, the modified speed was held constant for both pre- and post-training tests. Subjects were instructed not to change dietary habits throughout the study and not to consume alcohol or caffeine or exercise for 24 h prior to any testing protocol. Water was provided freely during all testing days.

Testing Day A

Grip strength was assessed using a handgrip dynamometer (JAMAR Hydraulic Hand Dynamometer, Sammons Preston Inc., Bolingbrook, Illinois), while back and chest muscular endurance (reps completed before volitional fatigue) were assessed via pull downs (at 45% body mass) and chest-presses (at 30% body mass), respectively.

Tests were performed on a pull-down machine and a chest-press machine (Customized Equalizer 1000 series, Equalizer Exercise Machines, Red Deer, Alberta, Canada). Abdominal endurance was assessed by having subjects perform curl-ups (sit-ups) to volitional fatigue. All exercises were performed at a rate of 25 reps per minute (rpm), with subjects resting between tests until they felt comfortable with beginning the next test.

Following completion the muscle endurance testing, subjects were allowed to rest for as long as they wished (~30 min) before anaerobic capacity was assessed using the Cunningham–Faulkner test (6300 Treadmill, SportsArt Fitness, Taichung City, Taiwan, Republic of China). This rest time was recorded and kept the same within each subject for posttesting. Following a 3-min warm-up period (grade, 2%; speed, 3 miles per hour (mph)), the treadmill grade was increased to 15%, while speed was increased to 7 mph. Due to safety concerns, three participants were unable to complete the test at the original speed; for these subjects, the test was modified by decreasing the speed to 6 or 6.5 mph as appropriate. Where modifications were made, the modified speed was held constant for both pre- and post-training tests. Subjects were instructed to run for as long as possible, and the time at volitional fatigue was recorded.

Testing Day B

Quadriiceps endurance and hamstring endurance were assessed using leg extension (at 85% of body mass) and leg curl (at 75% of body mass) tests, respectively. Both tests were performed on a leg extension – leg curl machine (INSTINCT Dual Leg Extension/Leg Curl, STAR TRAC, Irvine, California).

Table 1. Subject characteristics before (pre) and after (post) training.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th></th>
<th>Endurance</th>
<th></th>
<th>Tabata</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>Age, years</td>
<td>19.2±0.9</td>
<td>—</td>
<td>21.1±2.8</td>
<td>—</td>
<td>20.7±1.0</td>
<td>—</td>
</tr>
<tr>
<td>Height, cm</td>
<td>164±5</td>
<td>—</td>
<td>163±5</td>
<td>—</td>
<td>168±8</td>
<td>—</td>
</tr>
<tr>
<td>Mass, kg</td>
<td>60.4±4.8</td>
<td>59.9±5.2</td>
<td>63.8±2.9</td>
<td>63.0±2.8</td>
<td>66.7±15.6</td>
<td>66.7±14.7</td>
</tr>
<tr>
<td>VO_2peak, mL·min$^{-1}$·kg$^{-1}$</td>
<td>47±4.5</td>
<td>46±6.1</td>
<td>45±5.0</td>
<td>48±3.0*</td>
<td>43±7.6</td>
<td>46±7.8*</td>
</tr>
<tr>
<td>Bruce protocol TTF, s</td>
<td>825±87.3</td>
<td>783±122.2</td>
<td>833±85.8</td>
<td>934±80.1*</td>
<td>805±121.4</td>
<td>879±94.9*</td>
</tr>
<tr>
<td>Cunningham–Faulkner, s</td>
<td>64±10.2</td>
<td>63±8.3</td>
<td>69±11.0</td>
<td>70±9.0</td>
<td>62±11.5</td>
<td>72±15.7</td>
</tr>
</tbody>
</table>

*Significantly different ($p < 0.05$) from pretraining value.

Prior to training, all subjects underwent two consecutive days of physiological testing. The order of testing days was randomized and counterbalanced such that half of participants completed testing day A first and the other half completed testing day B first (details of both testing days are below). All subjects were familiarized with fitness and muscular endurance tests prior to baseline testing. On the first day of testing, all subjects completed a series of questionnaires (described below), and anthropometric measures (height and body mass) were taken. Physiological testing was repeated 48–72 h after completion of the final training session. The order and time of day for testing days was the same for pre- and post-training within each subject. Subjects were instructed not to change dietary habits throughout the study and not to consume alcohol or caffeine or exercise for 24 h prior to any testing protocol. Water was provided freely during all testing days.

Physiological testing

Prior to training, all subjects underwent two consecutive days of physiological testing. The order of testing days was randomized and counterbalanced such that half of participants completed testing day A first and the other half completed testing day B first (details of both testing days are below). All subjects were familiarized with fitness and muscular endurance tests prior to baseline testing. On the first day of testing, all subjects completed a series of questionnaires (described below), and anthropometric measures (height and body mass) were taken. Physiological testing was repeated 48–72 h after completion of the final training session. The order and time of day for testing days was the same for pre- and post-training within each subject. Subjects were instructed not to change dietary habits throughout the study and not to consume alcohol or caffeine or exercise for 24 h prior to any testing protocol. Water was provided freely during all testing days.

Testing Day A

Grip strength was assessed using a handgrip dynamometer (JAMAR Hydraulic Hand Dynamometer, Sammons Preston Inc., Bolingbrook, Illinois), while back and chest muscular endurance (reps completed before volitional fatigue) were assessed via pull downs (at 45% body mass) and chest-presses (at 30% body mass), respectively.

Tests were performed on a pull-down machine and a chest-press machine (Customized Equalizer 1000 series, Equalizer Exercise Machines, Red Deer, Alberta, Canada). Abdominal endurance was assessed by having subjects perform curl-ups (sit-ups) to volitional fatigue. All exercises were performed at a rate of 25 reps per minute (rpm), with subjects resting between tests until they felt comfortable with beginning the next test.

Following completion the muscle endurance testing, subjects were allowed to rest for as long as they wished (~30 min) before anaerobic capacity was assessed using the Cunningham–Faulkner test (6300 Treadmill, SportsArt Fitness, Taichung City, Taiwan, Republic of China). This rest time was recorded and kept the same within each subject for posttesting. Following a 3-min warm-up period (grade, 2%; speed, 3 miles per hour (mph)), the treadmill grade was increased to 15%, while speed was increased to 7 mph. Due to safety concerns, three participants were unable to complete the test at the original speed; for these subjects, the test was modified by decreasing the speed to 6 or 6.5 mph as appropriate. Where modifications were made, the modified speed was held constant for both pre- and post-training tests. Subjects were instructed to run for as long as possible, and the time at volitional fatigue was recorded.

Testing Day B

Quadriiceps endurance and hamstring endurance were assessed using leg extension (at 85% of body mass) and leg curl (at 75% of body mass) tests, respectively. Both tests were performed on a leg extension – leg curl machine (INSTINCT Dual Leg Extension/Leg Curl, STAR TRAC, Irvine, California).
Subjects performed repetitions of either exercise at a rate of 25 rpm to volitional fatigue. Push-ups were performed at a rate of 30 rpm also to volitional fatigue. Back-extension endurance was tested by having participants lie in a prone position and extend both the hips and shoulders while maintaining the shoulders, hips, and ankles in line. The test was terminated when proper position could no longer be maintained or upon volitional fatigue.

As on testing day A, following muscle endurance testing, subjects were allowed to rest for as long as they wished (~30 min) before completing a maximal oxygen uptake (\(\text{VO}_2\text{peak}\)) test performed on a treadmill, using a modified Bruce protocol (Bruce et al. 1973). Heart rate and gas exchange were collected throughout the entire test using a Moxus Modular \(\text{VO}_2\) system (Moxus metabolic cart, AEI Technologies, Pittsburgh, Pennsylvania). Resting data were collected for 3 min prior to warm-up. Warm-up was completed at an incline of 2% and a speed of 2.5 mph for 3 min. Following warm-up, grade increased 2% every 3 min, with speed increasing from 2 mph in warm-up to 4 mph in stage 1, 5 mph in stage 2, and 5.5 mph for the remainder of the test. The test was terminated when the subject reached volitional fatigue. Attainment of \(\text{VO}_2\text{peak}\) was verified by a RER value greater than 1.1 or by achieving age-predicted HR\(_{\text{max}}\) (220 – age). We did not consistently observe a plateau in the response during the ramp protocol. \(\text{VO}_2\text{peak}\) was calculated by averaging the \(\text{VO}_2\) values from the final 30 s of the protocol.

Activity and psychological surveys

At baseline, on day 1 of each week of training (or control period), and during posttesting, participants were asked to complete a 7-day PAR questionnaire. Subjects were asked to recall any activity that they had undertaken outside the study training sessions over the previous 7 days. The questionnaire used was adapted from Sallis et al. (1985).

On the first testing day at baseline and posttraining, subjects assigned to the Tabata training group were asked to complete a questionnaire designed to examine enjoyment of, and implementation intentions for, whole-body interval training. Specifically, the following measures were taken at both time points. (i) Exercise enjoyment. Using a single-item measure of enjoyment, subjects were asked “how enjoyable is it for you to complete 4 min of whole-body, high-intensity exercise four times per week?” using a 10-point Likert-type scale, ranging from 1 (not enjoyable at all) to 10 (extremely enjoyable). (ii) Intentions. Subject’s intentions to add the 4-min whole-body, high-intensity exercise routine performed in this study to their weekly schedule after the completion of the study was also examined. Two items were used to assess participant’s intentions to implement this training into their routine: (i) once per week, and (ii) three times per week. Responses were made on a 10-point Likert-type scale, ranging from 1 (strongly disagree) to 10 (strongly agree).

Statistical analysis

All results are expressed as mean ± standard deviation, and the level of significance was established as \(p < 0.05\). \(\text{VO}_2\text{peak}\), the Cunningham–Faulkner test, all strength–endurance measures, results of the psychological questionnaires, and the results of the 7-day PAR across the 4 weeks of training and control were analyzed by two-factor (group × time) ANOVA with repeated measures on the second factor. A two-factor (exercise × week) repeated measures ANOVA was used to analyze the HR response, RPE, fatigue index, and number of reps completed for each exercise across the 4 weeks of training within the Tabata group. For significant \(F\) tests, Student–Neuman–Keuls post hoc tests were used to make pairwise comparisons.

Results

Physiological testing

Following training, the time to fatigue during the modified Bruce protocol increased significantly in both the endurance \((p < 0.05)\) and Tabata \((p < 0.05)\) groups (Table 1). This was accompanied by an associated increase \((p < 0.05)\) in \(\text{VO}_2\text{peak}\) of ~7%–8% (Table 1; Fig. 1). The changes between pre- and post-testing observed in the endurance and Tabata groups were not different from each other \((p > 0.05)\), and no change was observed between pre- and post-testing for \(\text{VO}_2\text{peak}\) in the control group.

No differences were observed between control and trained subjects at baseline, and there were no posttesting changes in the control group for any of the variables tested. In the
endurance-trained group, a significant improvement for muscle endurance was only observed in a modest increase (+3.1 reps, ~17%; \(p < 0.05 \)) for lat pulldowns. In the Tabata group, the maximum number of leg extensions increased (\(p < 0.05 \)) by 40%, while the maximum number of leg curls remained unchanged (Fig. 2A). The maximum number of pulldowns was unchanged, while chest press reps increased (\(p < 0.05 \)) by 207% and push-ups increased (\(p < 0.05 \)) by 135% (Fig. 2B). Finally, there were significant increases (\(p < 0.05 \) for all) in the number of sit-ups performed (+64%) and for back extension time (+175%) (Fig. 2C). The increases observed for leg extensions, chest presses, push-ups, sit-ups, and back extensions in the Tabata group were significantly greater (\(p < 0.05 \) for all) than the changes in both the control and endurance groups. No changes were observed for time to fatigue during the Cunningham–Faulkner test (Table 1; Fig. 1) or maximal grip strength in any group.

Physical activity and psychological questionnaires

No differences were observed for self-reported physical activity performed outside the study between any of the weeks examined (pretraining, weeks 1–4 of the intervention, and posttraining) for any group (data not shown). Perceived enjoyment of high-intensity, whole-body exercise increased posttraining compared with pretraining (\(p < 0.05 \); Table 2). Subjects also reported greater intentions to engage in whole-body, high-intensity exercise once, but not three times, per week upon completion of the study (\(p < 0.05 \); Table 2).

Characterization of training sessions

Although the total number of burpees performed during each training session did not change (week 1, 33 ± 5; week 4, 37 ± 8), there were significant (\(p < 0.05 \)) increases for the total number of mountain climbers (week 1, 29 ± 5; week 4, 38 ± 7), jumping jacks (week 1, 160 ± 39; week 4, 206 ± 56), and squat and thrusts (week 1, 76 ± 12; week 4, 95 ± 12).

The mean HR (presented as % HR\(_{\text{max}}\)) elicited by burpees was greater (\(p < 0.05 \)) in week 1 (92 ± 4) than in weeks 2, 3, and 4 (88 ± 5). Across all four weeks of training, burpees elicited an average RPE of 16.9 ± 1.6, an upper-body fatigue index (UBFI) of 7.1 ± 1.2, and lower-body fatigue index (LBFI) of 6.8 ± 1.6. No significant differences across training weeks were observed for mountain climbers (HR, 84 ± 4; RPE, 17.3 ± 1.4; UBFI, 8.5 ± 1.0; LBFI, 6.8 ± 1.6), jumping jacks (HR, 86 ± 6; RPE, 13.3 ± 1.8; UBFI, 3.7 ± 1.4; LBFI, 4.3 ± 1.5), or squat and thrusts (HR, 83 ± 6; RPE, 16.1 ± 2.0; UBFI, 7.9 ± 1.5; LBFI, 6.5 ± 1.5). The mean HR response was significantly greater (\(p < 0.05 \)) for burpees than for all other exercises, while RPE, UBFI, and LBFI were lower (\(p < 0.05 \)) for jumping jacks than for the other three exercises.

Discussion

In the current study, we compared changes in aerobic and anaerobic fitness and muscular endurance induced by continuous endurance training with changes following training utilizing whole-body aerobic–resistance interval training based on the Tabata protocol (Tabata et al. 1996) in females. The major findings are that training using the modified Tabata protocol for 4 weeks (i) improved aerobic fitness (\(\dot{V}O_{2\text{peak}} \)) to the same degree as 30 min per day of continuous high-intensity treadmill running, and (ii) improved lower-body, upper-body, and core muscular endurance while endurance training had no effect. These findings demonstrate that whole-body interval training provides additional benefit (im-
proved muscle endurance) when compared with continuous exercise. Further, it would appear that the minimal dose of high-intensity exercise required to improve both aerobic capacity and muscle performance lies at or below 4 min per day, 4 days per week.

Whole-body interval training and aerobic fitness

Although the ability of endurance training to increase aerobic fitness is well established (Blair et al. 1989, 1995, 1996), an emerging body of evidence suggests that high-intensity interval training is as effective, if not more effective, at inducing improvements in aerobic fitness ($\dot{V}O_{2\text{peak}}$) (Poole and Gaesser 1985; Gorostiaga et al. 1991; Burke et al. 1994; Tabata et al. 1996; MacDougall et al. 1998). Similar metabolic adaptations have also been observed in humans performing 20%–40% $\dot{V}O_{2\text{peak}}$, we are unable to comment with certainty on the intensity of the current protocol except to state that subjects were instructed to perform as many reps as possible and that all exercises elicited mean HR responses above 80% HR_{max}. These results are consistent with the notion that short-duration, high-intensity interval training is an effective stimulus to increase aerobic fitness. Our novel findings extend previous research (Burgomaster et al. 2008; Gibala et al. 2006; Little et al. 2010) likely contributed to a decreased reliance on substrate level phosphorylation (decreased PCR breakdown, glycogen turnover, and lactate accumulation) and subsequent delays in the development of muscle fatigue. Although these mechanisms require further research, our findings demonstrate that whole-body, short-duration, high-intensity intervals, originally designed to improve aerobic fitness, can also impact muscular endurance in previously untrained females.

Whole-body interval training and muscular endurance

In addition to the marked increase in aerobic fitness, 4 weeks of whole-body, high-intensity interval training also resulted in an increase in muscular endurance across a variety of muscle groups (Figs. 2). We did not specifically assess muscular strength on each exercise (i.e., 1 repetition maximum), but handgrip strength did not increase following training. These findings are consistent with whole-body interval training fitting on the “strength–endurance continuum” theory of resistance exercise (Campos et al. 2002). This theory proposes that high-weight, low-repetition exercise will improve muscular strength, whereas low-weight, high-repetition exercise (similar to that performed in the current study) will improve muscular endurance (Campos et al. 2002). Although the mechanisms underlying this increase in muscle endurance were not investigated, we speculate that improvements in oxidative capacity typically observed following high-intensity interval training in skeletal muscle (Burgomaster et al. 2008; Gibala et al. 2006; Little et al. 2010) likely contributed to a decreased reliance on substrate level phosphorylation (decreased PCR breakdown, glycogen turnover, and lactate accumulation) and subsequent delays in the development of muscle fatigue. Although these mechanisms require further research, our findings demonstrate that whole-body, short-duration, high-intensity intervals, originally designed to improve aerobic fitness, can also impact muscular endurance in previously untrained females.

Predictors of behavior change before and after whole-body interval training

Regardless of how drastic the physiological changes are following any exercise training intervention, the general pub-

<table>
<thead>
<tr>
<th>Tabata</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived enjoyment</td>
<td>6.1±1.4</td>
<td>7.1±1.6*</td>
</tr>
<tr>
<td>Intentions to implement (once per week)</td>
<td>7.4±1.1</td>
<td>8.7±1.1*</td>
</tr>
<tr>
<td>Intentions to implement (three times per week)</td>
<td>6.7±1.6</td>
<td>7.0±1.2</td>
</tr>
</tbody>
</table>

*Significantly different ($p < 0.05$) from pretraining value.
lic is not likely to choose to engage in such activities unless they find them inherently enjoyable (Emmons and Diener 1986; Ekkekakis et al. 2008). High-intensity interval exercise has been shown to be perceived as enjoyable (Bartlett et al. 2011; Little et al. 2011a). Reports of physical activity enjoyment were higher after a single bout of intervals performed on a treadmill as compared with perceived physical activity enjoyment after a single bout of continuous running on a treadmill in a sample of fit, active young adults (\(\dot{V}O_{2\max} = -57 \text{ mL·kg}^{-1}·\text{min}^{-1}\); Bartlett et al. 2011). To our knowledge, this is the first study to examine enjoyment and intentions for whole-body aerobic–resistance training. In the present study, perceived enjoyment of the whole-body aerobic–resistance exercise protocol increased from pre- to post-training, as did intentions to engage in this type of exercise in the future. This is a noteworthy finding given that much of the affective response – exercise intensity literature would suggest that the higher intensity prescribed in this study would be rated as not enjoyable (Ekkekakis et al. 2008). It would be informative for future work to examine and compare changes in enjoyment and implementation intentions during, and following, both interval and endurance training.

Conclusion

In recreationally active females, four weeks (4 days-week\(^{-1}\)) of very low volume, whole-body, high-intensity interval training elicited similar improvements in aerobic capacity as endurance training, but resulted in the additional benefit of increased muscular endurance. Additional research is required to examine the contributing factors and cellular pathways (presumably in skeletal muscle) that mediate these adaptations. Further studies may also wish to examine whether this type of exercise can improve markers of health in individuals at risk for developing inactivity-related diseases such as cardiovascular disease and type 2 diabetes. Given the minimal requirement for exercise equipment and the low time commitment, studies exploring adaptations and adherence to this whole-body, high-intensity interval training protocol could facilitate application to home-based exercise programs. This could have widespread impact for encouraging exercise participation and resultant improvements in health.

Acknowledgments

We would like to thank a very dedicated group of subjects who made this project possible. This study was supported by grants from the Canadian Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada to B.J.G. We would also like to acknowledge the intellectual contributions of Jasmin Ma to this manuscript. The authors state that there were no conflicts of interest present in the current work.

References

Published by NRC Research Press

