

Original Article

High-frequency resistance training is not more effective than low-frequency resistance training in increasing muscle mass and strength in well-trained men

Running Head: Resistance training frequency and muscle hypertrophy.

Gederson K. Gomes¹, Cristiane M. Franco¹, Paulo Ricardo P. Nunes¹ and Fábio L. Orsatti^{1,2*}

¹-Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, Brazil

²-Department of Sport Sciences, Health Science Institute, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil

*Corresponding author:

Fábio Lera Orsatti

Federal University of Triângulo Mineiro (UFTM), Post Graduate Program in Physical Education, Exercise Biology Laboratory (BioEx), Uberaba-MG, Brazil. Av. Frei Paulino, 30 – 38.025-180 – Phone: +55 (34) 3318-5067.

E-mail: fabiorsatti@gmail.com or fabio.orsatti@uftm.edu.br

ABSTRACT

We studied the effects of two different weekly frequency resistance training (RT) protocols over eight weeks on muscle strength and muscle hypertrophy in well-trained men. Twenty-three subjects (age: 26.2 ± 4.2 years; RT experience: 6.9 ± 3.1 years) were randomly allocated into the two groups: low frequency (LFRT, $n = 12$) or high frequency (HFRT, $n = 11$). The LFRT performed a split-body routine, training each specific muscle group once a week. The HFRT performed a total-body routine, training all muscle groups every session. Both groups performed the same number of sets (10-15 sets) and exercises (1-2 exercise) per week, 8-12 repetitions maximum (70-80% of 1RM), five times per week. Muscle strength (bench press and squat 1RM) and lean tissue mass (dual-energy x-ray absorptiometry) were assessed prior to and at the end of the study. Results showed that both groups improved ($p < 0.001$) muscle strength [LFRT and HFRT: bench press = 5.6 kg (95% Confidence Interval (CI): 1.9 – 9.4) and 9.7 kg (95%CI: 4.6 – 14.9) and squat = 8.0 kg (95%CI: 2.7 – 13.2) and 12.0 kg (95%CI: 5.1 – 18.1), respectively] and lean tissue mass ($p = 0.007$) [LFRT and HFRT: total body lean mass = 0.5 kg (95%CI: 0.0 – 1.1) and 0.8 kg (95%CI: 0.0 – 1.6), respectively] with no difference between groups (bench press, $p = 0.168$; squat, $p = 0.312$ and total body lean mass, $p = 0.619$). Thus, HFRT and LFRT are similar overload strategies for promoting muscular adaptation in well-trained subjects when the sets and intensity are equated per week.

20 **Key words:** Training volume; Weight lifting; Strength training; Hypertrophy

21 INTRODUCTION

22 Attenuated rate of muscle growth following RT is observed in well-trained subjects
23 when compared with their untrained state (38). About 2/3 of muscle growth occurs in the first
24 weeks of training (5, 9, 38). It is assumed that the attenuated rate of muscle growth can be, at

25 least in part, due to the adaptation of muscle to RT, and therefore is difficult to provide a
26 more effective “stimulus” to increase muscle growth (1, 10-11). However, when an
27 appropriate progressive overload stimulus is applied, well-trained subjects can obtain
28 significant hypertrophic responses (1, 24, 31-32). Thus, manipulation of training frequency
29 (number of times a muscle group is trained over a week) has been proposed as effective
30 stimuli to increase muscle mass and strength in well-trained subjects (12, 34).

31 Muscle group split routines (individual muscle groups trained during a workout)
32 enables individuals to train with a higher daily set number (~16 sets per muscle group and
33 load \geq 70 % of 1RM (17)), while also providing greater recovery (i.e. 3 – 7 days) of all
34 involved muscle groups between sessions (1, 20). A high set number per muscle group may
35 imply intramuscular metabolic stress (15-16, 30) and high muscle protein synthesis (6), and
36 consequently hypertrophy after RT (1, 21, 31). Hence, a muscle group split routine has been
37 a widely accepted approach among competitive bodybuilders (17). However, recently, more
38 attention has been given to the effects of high-frequency resistance training (HFRT) as an
39 overload stimulus (12, 34, 36). The hypothetical effect of HFRT on muscle hypertrophy has
40 considered that more days of RT (i.e. more stimuli) per week would result in a higher net-
41 positive protein balance in the week than low-frequency resistance training (LFRT) (12). For
42 instance, some studies have suggested that a low daily set number (i.e. \leq 3 sets) per muscle
43 group is sufficient to achieve a maximum muscle anabolic response (3, 12, 22-23, 28). As a
44 low daily set number allows less recovery of involved muscle groups between sessions, it is
45 possible to train more days per week and promote greater overall muscle protein synthesis
46 per week, and consequently hypertrophy (1, 12).

47

48 Although HFRT seems to result in more effective stimuli per week (i.e. more training days
49 per week) (12), there is very little empirical evidence to support that HFRT provides
50 additional stimuli to greater hypertrophic response compared to LFRT in well-trained
51 subjects. To the best of the authors' knowledge, only two studies (34, 36) conducted in well-
52 trained subjects and using accurate hypertrophic measures have compared muscular
53 adaptations when the subjects performed HFRT versus LFRT (volume-equated weekly
54 distributed). One study reported similar improvements in lean mass and strength between the
55 conditions (36), whereas the other study reported a dose-response relationship between RT
56 frequency and muscular adaptations (muscle mass and strength gains) in only one muscle
57 group (elbow flexor thickness) from three muscles assessed (elbow extensors and flexors and
58 vastus lateralis thickness) (34). The aforementioned studies have compared a low daily
59 training volume (i.e. three sets per muscle group) in a three-day routine (i.e. HFRT) with a
60 high daily training volume (9 sets per muscle group) in a one-day routine (i.e. LFRT). In
61 these studies, although there were more stimuli per week with HFRT, muscle size and
62 strength gains were similar between frequencies (one vs. three days per week) in well-trained
63 subjects, except for elbow flexor thickness gains (34, 36). It would seem reasonable to
64 assume that although more stimuli per week takes place in a three-day routine, three stimuli
65 per week (three-day routine) were not sufficient for HFRT to be better than LFRT in (one-
66 day routine) in well-trained subjects (12, 34, 36). Thus, acknowledging that HFRT may be an
67 important stimulus for promoting muscular adaptation, more training days (stimuli) than
68 three days per week seems to be necessary to observe a better performance of HFRT
69 compared to LFRT considering muscle mass and strength in well-trained subjects (12). To
70 confirm this assumption, we investigated the impact of two different frequencies, HFRT
71 (muscle groups were trained 5 days per week) vs.

72

73 LFRT (muscle groups were trained one day per week), on muscle strength and size gains in
74 well-trained men. The study aim was to investigate whether HFRT with low daily training
75 volume is a more effective way than LFRT with high daily training volume to increase
76 muscle mass and strength in well-trained subjects.

77

78 METHODS

79 EXPERIMENTAL APPROACH TO THE PROBLEM

80 The experimental and randomized (Figure 1) study was performed over eight weeks.
81 Muscle strength, body composition, and delayed muscle soreness were assessed at the
82 baseline and at the end of study. The sample consisted of 23 resistance-trained men (height =
83 1.75 ± 4.9 m; body mass = 78.5 ± 9.6 kg; age = 26.2 ± 4.2 years) divided into two groups:
84 LFRT (n=12), and HFRT (n=11). The LFRT group performed 2 specific resistance exercises
85 in each training session while the HFRT group performed all resistance exercises in each
86 training session (Table 1). Both groups performed two different five-day-a-week (Monday to
87 Friday) and volume-equated training routines (HFRT and LFRT). After the RT period (eight
88 weeks), the assessments were performed 72 hours after the last session of training to avoid
89 residual effects.

90 Table 1 and Figure 1 about here

91

92 SUBJECTS

93 The inclusion criteria consisted of well-trained men, aged between 18 to 32 years,
94 having practiced RT for at least for three years without interruptions and a back squat/body
95 mass ratio ≥ 1.5 and bench press/body mass ratio ≥ 1.0 (33). Moreover, the inclusion criteria

96 comprised absence of (assessed by questionnaires): myopathies, arthropathies, neuropathies;
97 muscle, thromboembolic and gastrointestinal disorders; cardiovascular and infection
98 diseases; non-drinker (no alcohol intake whatsoever in their diet), non-smoker, non-
99 supplements and non-pharmacological substances (e.g. anabolic steroids) or any illegal
100 agents for muscle growth at least for one year.

101 All volunteers were informed about the objectives and procedures of the study and
102 gave us their written informed consent. The study (nº 1697) was approved by the University
103 Review Board for the Use of Human Subjects (local Ethics Committee) and was written in
104 accordance with the standards set out by the Declaration of Helsinki.

105

106 NUTRITIONAL ASSESSMENTS

107 All the subjects completed three-day diet records (two days in the middle of the week
108 and one at the weekend) (37), which (the three-day food record) was collected twice during
109 the study, in the first and last training weeks. Energy and macronutrients (carbohydrates,
110 proteins and fat) were quantified by a nutritionist who used the “DietSmart Professional”
111 software, version 7.7. Macronutrients data were corrected for body mass to reduce the inter-
112 individual differences.

113 To maximize muscle anabolic response, all volunteers consumed 30 g of a nutritional
114 supplement (Whey Protein Super Bland concentrate, Spartacus Nutrition, São Paulo-Brazil)
115 containing 24 g of whey protein and 6.4 g of carbohydrate immediately after all training
116 sessions (2).

117 **BODY COMPOSITION ASSESSMENTS**

118 Total-body dual-energy x-ray absorptiometry (DXA) was performed using a
119 densitometer plus scanner (GE/Lunar iDXA Corp., Madison, WI, EUA). To minimize
120 interobserver variations, all scans and analyses were performed by the same evaluator at the
121 same time of day, and the day-to-day percent coefficient of variation was 0.5% for the bone-
122 free lean mass and fat mass. Patients were instructed to remove metal objects (e.g., snaps,
123 belts, underwire bras, jewelry), as well as their shoes and wore only light clothes. Body
124 composition was analyzed using the enCORE 14.0 software (GE/Lunar iDXA Corp.,
125 Madison, WI, USA) for the total body. The upper trunk was defined as the trunk region
126 minus the android region. More details on the analysis of regional body composition were
127 described in other study (35). The muscle mass index (MMI) was calculated dividing the
128 appendicular muscle mass (fat-free mass of arms and legs) by the height in meters squared.

129

130 **MAXIMUM STRENGTH ASSESSMENT**

131 The lower and upper body strength was quantified by the 1RM test, which consisted
132 of the maximum load that an individual could lift during the exercises. Before the 1RM test,
133 all volunteers reported no exercise other than activities of daily living for at least 72 hours.
134 The 1RM test complied with recognized guidelines as established by the American College
135 of Sports Medicine (26). The subjects performed a specific warm-up prior to testing
136 consisting of loads corresponding ~ 50% of the 1RM and 5–10 repetitions were performed.
137 After the warm-up, the volunteers were allowed to rest for 1 minute. Afterwards, 3–5
138 repetitions were performed and the load was increased between 60 to 80% of 1RM. After
139 doing this exercise, the volunteers rested for three minutes.

140

141 Then, the load was adjusted to find the equivalent load of one repetition maximum, which
142 ranged between three and five attempts. The load that was adopted as the maximum load was
143 the one used for the last part of the exercise that was performed with no more than one
144 repetition by the volunteer. At the end of the study, only the 1RM of the back squat and the
145 bench press exercises were reassessed and it was used to determine muscle strength gains.
146 The 1RM back squat was conducted prior to 1RM bench press with a 20 min rest period
147 separating tests (34). The same qualified fitness professional supervised all the 1RM tests.

148

149 DELAYED ONSET MUSCLE SORENESS

150 A visual numeric pain rating scale was used to detect delayed onset muscle soreness
151 (DOMS) as recommended by The National Initiative on Pain Control (25). All volunteers
152 self-reported the subjective delayed muscle soreness (scale 0-10) according to the body
153 segments (chest, elbow flexors, elbow extensors, thigh and calf) the day after (24 hours) the
154 first and the last RT session.

155

156 RESISTANCE TRAINING PROTOCOL

157 A five-day-a-week (Monday to Friday) regime of the RT protocol (Table 1) was
158 performed over eight weeks. Both groups performed two different volume-equated training
159 routines (HFRT and LFRT). Both groups performed 10 sets (except triceps extension and
160 barbell curl, where 5 sets were performed) per exercise, 8-12 repetition maximums with 70-
161 80 % of 1RM per set and 90 seconds rest recovery between sets and exercise in the training
162 week. However, the LFRT group performed 2 specific resistance exercises in each training
163 session while the HFRT group performed all resistance exercises in each training session

164 (Table 1). The LFRT group performed the RT (length time ~31 min) divided according to the
165 body segments: Monday – shoulder adductors and elbow extensors, Tuesday – knee
166 extensors and hip extensors and flexors, Wednesday – shoulder extensors and elbow flexors,
167 Thursday – knee flexors and plantar flexors and Friday – shoulder abductors, lumbar spine
168 flexors and extensors. The HFRT group performed the RT (length time ~32 min) for all body
169 segments: Monday to Friday – shoulder adductors, elbow extensors, knee extensors, hip
170 extensors and flexors, shoulder extensors, elbow flexors, knee flexors, plantar flexors,
171 shoulder abductors, lumbar spine flexors and extensors. The exercises performed were leg
172 press 45°, squat, bench press, seated row, hamstring curl, barbell curl, tricep extension, lateral
173 raises, calf standing, abdominal crunch and lower back bench (Table 1). A warm up session
174 (one set of 15 repetitions) with ~ 50% of 1RM was done in each exercise before each RT
175 session. At the end of the RT sessions, stretching exercises were done so that participants
176 could cool down. During RT, if the volunteer was able to perform more than 12 repetitions in
177 the first set of each exercise, the load was adjusted between 5-10% to ensure the repetition
178 zone between 8 to 12 repetitions and maintain the relative load of 70-80% of 1RM and a
179 progressive overload.

180

181 STATISTICAL ANALYSES

182 Data distributions were assessed using the D'Agostino-Pearson test. The data are
183 presented by mean and standard deviation or confidence interval of 95% (delta values). For
184 the participant's age and experience, the data are presented by median and inter-quartile
185 interval. The student's independent t-test (continuous data) or Mann – Whitney test (discrete
186 data) was used to compare the baseline characteristics between the HFRT and LFRT groups.
187 The Levene test was used to determine equality of variances at baseline.

188

189 The Mauchley test was used to evaluate the sphericity. Repeated measure ANOVA
190 was used to determine the effects of the group (LFRT and HFRT), time (pre and post), and
191 interaction of time by group. When an F-test was significant, effect size (partial eta-squared)
192 and observed power was performed to verify the statistical power of the analysis. The
193 student's independent t-test was used to compare the difference in training volume (at weeks
194 1, 4, 8 and sum of the 8 weeks, for exercise and all exercises). The statistical significance was
195 considered at $P < 0.05$.

196

197 RESULTS

198 There was no difference between the groups concerning the participants'
199 characteristics at baseline (Table 2).

200 Table 2 about here

201

202 Adherences to the HFRT and the LFRT were 98% and 97%, respectively. There were
203 no differences in dietary measure (carbohydrate, protein, fat, and energy) either within- or
204 between-subjects over the course of the study (Table 3).

205

206 Table 3 about here

207

208 The changes in fat-free mass (total, trunk, gynoid, leg and MMI) and muscle strength
209 (bench press and squat) and muscle soreness (DOMS) after 8 weeks of intervention (pre vs.
210 post) were statistically compared and interpreted. The LFRT showed more DOMS than
211 HFRT at the beginning, middle and end of the study (Table 4).

212

213 Table 4 about here

214 The HFRT showed a higher total volume than LFRT at the beginning, middle and end of the
215 study (Table 5).

216

217 Table 5 about here

218

219 There were significant ($P < 0.05$) effects for time in fat-free mass (total, trunk, gynoid,
220 leg and MMI) and muscle strength (bench press and squat), indicating that both the
221 interventions increase fat-free mass and muscle strength. There was no significant interaction
222 (time vs. groups) in fat-free mass and muscle strength, indicating that the responses were
223 similar between the interventions (Table 6).

224

225 Table 6 about here

226

227 DISCUSSION

228 This study examined changes in muscle mass and maximal strength after an 8-week
229 RT in different frequencies (LFRT and HFRT) in well-trained subjects. Our results showed
230 that 8 weeks of HFRT (five days a week) increases muscle mass and strength similarly to
231 LFRT (one day a week) in well-trained subjects. Thus, HFRT is not more effective than
232 LFRT in increasing muscle mass and strength in well-trained subjects when the sets (10-15
233 sets per week) and intensity (8-12 RM) are equated per week.

234 The few existing studies concerning the RT frequency effect on muscle mass and
235 strength in well-trained subjects have been limited to a three-day frequency as HFRT (34,
236 36). Evidence of different configurations of RT frequency is important to confirm previous
237 findings or to bring new insight into RT frequency and muscle mass and strength gains
238 interaction (12).

239 Hence, we investigated the impact of two different frequencies: HFRT with five days a week
240 vs. LFRT with one day a week, on muscle strength and size gains in well-trained men. Even
241 using higher frequency than those studies (five vs three times per week), we also did not
242 observe significant differences between HFRT and LFRT for gains in total muscle mass, leg
243 muscle, hip muscle, upper-trunk muscle, MMI and bench press and squat strength. Our
244 results are congruent with those of Thomas and Burns (36), who also showed hypertrophy
245 and strength gains following RT regardless of training frequency in well-trained subjects. In
246 addition, our findings are also supported by other studies that examined changes in muscle
247 mass and strength after different RT frequencies in untrained (8) and older (13) subjects.
248 Moreover, in a pilot study, Ribeiro et al. (2015) showed that four weeks of RT over four-days
249 (n=5) and six-day frequencies promote similar increases in muscle mass and strength in elite
250 bodybuilders (29). In contrast, a study reported that HFRT was better when compared to
251 LFRT (34). However, in this study the researchers measured three muscles and reported that
252 HFRT was better in forearm flexor hypertrophy but was not in extensors and vastus lateralis
253 (hypertrophic responses were similar between HFRT and LFRT) (34). Therefore, it seems
254 that regardless of the days per week used, different frequencies (with sets and intensity
255 equalized per week) respond in a positive and similar fashion regarding changes in muscle
256 mass and strength in well-trained subjects.

257 It is well known that a high RT set number per week produces greater hypertrophy
258 gains (21, 31), especially in well-trained subjects (1, 17). In a systematic review and meta-
259 analysis, Schoenfeld et al. (2017) showed that greater muscle hypertrophy is achieved by
260 performing at least 10 sets per week per muscle group (31). In the current study, both groups
261 performed 10-15 sets (15 sets to biceps and triceps) per week per muscle group. Our finding
262 showed that 10-15 sets distributed over one week (HFRT; five days a week, two-three sets
263 per day) increase muscle mass and strength similarly to 10-15 sets performed in one day a

264 week (LFRT one day a week, 10-15 sets per day) in well-trained subjects. These findings
265 suggest that the total number of sets per week (i.e. ≥ 10 sets per muscle), but not the total
266 volume distribution during the week, is important for muscle mass and strength gains in well-
267 trained subjects.

268 We observed that the LFRT group showed more DOMS than HFRT at the beginning,
269 middle and end of the study (Table 4). DOMS has been associated to exercise-induced
270 muscular damage (19). Muscular damage has been attributed to mechanical stimulus (i.e.
271 eccentric contraction), however metabolic stimuli (i.e. ischaemia or hypoxia) may exacerbate
272 the damage from eccentric contractions (19). Although the LFRT and HFRT were performed
273 with similar loads (at 70% of 1RM), the higher daily volume per muscle group (e.g.
274 metabolic stimuli) observed in LFRT (~5 times higher than the HFRT) may have contributed
275 to more DOMS (19). In a recent study, Bartolomei et al. (2017) showed that an acute bout of
276 resistance exercise with a higher volume produces a greater increase in the metabolic markers
277 (i.e. cytokine, hormonal and lactate response), muscle swelling (ultrasound measures) and
278 DOMS and produces greater reduced muscle performance (counter movement jump and
279 strength) in resistance-trained men (4). Furthermore, the protection against muscle damage
280 and DOMS due to resistance exercise has been attributed to the repeated bout effect (19).
281 Thus, as the HFRT group performed a higher frequency in a week of resistance exercise for
282 all muscle groups than the LFRT group (5 vs 1 times/week), the repeated bout effect may
283 have contributed to a protective effect against the DOMS in the HFRT group. Although
284 LFRT caused more DOMS levels than HFRT, there was no difference between the groups for
285 muscle mass and strength gains. Thus, HFRT may be an alternative strategy to LFRT, when
286 sets and intensity are equated per week, in order to increase their muscle mass and strength
287 without causing DOMS in well-trained subjects.

288 A dose-response relationship between RT set numbers per muscle group per week and
289 hypertrophy has been reported (31). It has also been observed that a high daily set number
290 per muscle group induces a lower repetition number (i.e. fatigue) in subsequent sets after the
291 first sets, leading to lower total volume per muscle group per week (18). Therefore, it seems
292 reasonable to assume that RT with a low daily set number per muscle group and high
293 frequency (HFRT) would promote a higher total volume per muscle group per week and
294 more muscle mass gains than RT with a high daily set number per muscle group and low
295 frequency (LFRT). Indeed, in the present study the HFRT group performed a higher total
296 volume (-13.9%; Table 5) than the LFRT group. This represented a small increase of ~1.4 set
297 per week in the HFRT group when compared to the LFRT group. However, there was no
298 significant difference between the groups in muscle mass and strength gains. These data
299 suggest that the increased total volume (~1.4 set per week) observed in the HFRT was not
300 sufficient to improve muscle mass and strength gains in well-trained subjects when compared
301 to LFRT. Indeed, it has been shown that a small increase from 10 sets in RT does not cause a
302 great change in hypertrophic gains (31). In a systematic review and meta-analysis,
303 Schoenfeld et al. (2017) showed that each set per week only represents a very small change
304 in muscle size of 0.37% (31). Thus, increasing the RT frequency (when the sets and intensity
305 are equated per week) to avoid the fatigue due to high volume of LFRT do not improve
306 muscle mass and strength gains in HFRT when compared to LFRT.

307 We set up the HFRT (five days a week) with two-three sets (performed to volitional
308 failure) per day to equal the set numbers per week of the HFRT group with the set numbers
309 per week of the LFRT group. It has been observed that when the RT volume is increased,
310 acute post-exercise muscle protein synthesis is maximized in young men (6). An implication
311 of this assumption for the current study is the possibility that the lack of superiority of HFRT
312 over LFRT in muscle mass gain was due to low daily training volume (two-three sets in 5-

313 day-a-week routine) and, consequently, low muscle anabolic response. Although previous
314 findings demonstrated that when given an adequate stimulus (e.g. volitional failure) during a
315 training session, a low daily set number (i.e. ≤ 3 sets) per muscle group seems to be enough
316 to achieve a maximum muscle anabolic response (3, 7, 12, 14, 22-23, 27-28), these studies
317 were not performed with well-trained subjects. Thus, future research is needed to address this
318 issue.

319 In conclusion, our results showed that 10-15 sets (8-12 RM) distributed over a week
320 (HFRT; five days a week, two set per day) increased muscle mass and strength similarly to
321 10-15 (8-12 RM) sets performed in one day a week (LFRT one day a week, 10-15 sets per
322 day) in well-trained subjects. Therefore, our findings suggest a set number (≥ 10 sets) per
323 week performed to volitional failure (8-12 RM), instead of training frequency, is an
324 important “stimulus” to promote muscle mass and strength gains in well-trained subjects
325 when the sets and intensity are equated per week. Thus, HFRT and LFRT are similar
326 overload strategies for promoting muscular adaptation in well-trained subjects when the sets
327 and intensity are equated per week.

328

329 **PRACTICAL APPLICATIONS**

330 Our results suggest that HFRT and LFRT are similar overload strategies for
331 promoting muscular adaptation in well-trained subjects. This allows a greater possibility of
332 manipulation of training frequency without reducing the performance in muscle strength and
333 mass gains. In addition, the LFRT group showed more DOMS than the HFRT group during
334 the study. Thus, HFRT may be an alternative strategy to LFRT in order to increase their
335 muscle mass and strength without DOMS in well-trained subjects.

336

337

338 **ACKNOWLEDGEMENTS:**

339 This investigation was supported by the *Fundação de Amparo à Pesquisa do Estado*
340 *de Minas Gerais – FAPEMIG* and by the *Coordenação de Aperfeiçoamento de Pessoal de*
341 *Nível Superior – CAPES*. The authors gratefully acknowledge the contributions of Jefferson
342 Fernandes de Sousa for supervising the training sessions throughout the study and João Vitor
343 Borges Mercaldi for funding part of the whey protein supplementation.

344

345 **REFERENCES**

- 346 1. American College of Sports Medicine position stand. Progression models in resistance
347 training for healthy adults. *Med Sci Sports Exerc* 41: 687-708, 2009.
- 348 2. Aragon, AA and Schoenfeld, BJ. Nutrient timing revisited: is there a post-exercise anabolic
349 window? *J Int Soc Sports Nutr* 10: 5, 2013.
- 350 3. Barcelos, LC, Nunes, PR, de Souza, LR, de Oliveira, AA, Furlanetto, R, Marocolo, M, and
351 Orsatti, FL. Low-load resistance training promotes muscular adaptation regardless of
352 vascular occlusion, load, or volume. *Eur J Appl Physiol* 115: 1559-1568, 2015.
- 353 4. Bartolomei, S, Sadres, E, Church, DD, Arroyo, E, Iii, JAG, Varanoske, AN, Wang, R, Beyer, KS,
354 Oliveira, LP, Stout, JR, and Hoffman, JR. Comparison of the recovery response from high-
355 intensity and high-volume resistance exercise in trained men. *Eur J Appl Physiol* 117: 1287-
356 1298, 2017.
- 357 5. Brook, MS, Wilkinson, DJ, Mitchell, WK, Lund, JN, Szewczyk, NJ, Greenhaff, PL, Smith, K, and
358 Atherton, PJ. Skeletal muscle hypertrophy adaptations predominate in the early stages of
359 resistance exercise training, matching deuterium oxide-derived measures of muscle protein
360 synthesis and mechanistic target of rapamycin complex 1 signaling. *FASEB J* 29: 4485-4496,
361 2015.
- 362 6. Burd, NA, Holwerda, AM, Selby, KC, West, DW, Staples, AW, Cain, NE, Cashaback, JG, Potvin,
363 JR, Baker, SK, and Phillips, SM. Resistance exercise volume affects myofibrillar protein
364 synthesis and anabolic signalling molecule phosphorylation in young men. *J Physiol* 588:
365 3119-3130, 2010.
- 366 7. Burd, NA, Mitchell, CJ, Churchward-Venne, TA, and Phillips, SM. Bigger weights may not
367 beget bigger muscles: evidence from acute muscle protein synthetic responses after
368 resistance exercise. *Appl Physiol Nutr Metab* 37: 551-554, 2012.
- 369 8. Candow, DG and Burke, DG. Effect of short-term equal-volume resistance training with
370 different workout frequency on muscle mass and strength in untrained men and women. *J*
371 *Strength Cond Res* 21: 204-207, 2007.
- 372 9. Counts, BR, Buckner, SL, Mouser, JG, Dankel, SJ, Jessee, MB, Mattocks, KT, and Loenneke, JP.
373 Muscle growth: To infinity and beyond? *Muscle Nerve* 56: 1022-1030, 2017.
- 374 10. Damas, F, Phillips, S, Vechin, FC, and Ugrinowitsch, C. A review of resistance training-induced
375 changes in skeletal muscle protein synthesis and their contribution to hypertrophy. *Sports*
376 *Med* 45: 801-807, 2015.
- 377 11. Damas, F, Phillips, SM, Libardi, CA, Vechin, FC, Lixandrao, ME, Jannig, PR, Costa, LA, Bacurau,
378 AV, Snijders, T, Parise, G, Tricoli, V, Roschel, H, and Ugrinowitsch, C. Resistance training-

379 induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only
380 after attenuation of muscle damage. *J Physiol* 594: 5209-5222, 2016.

381 12. Dankel, SJ, Mattocks, KT, Jessee, MB, Buckner, SL, Mouser, JG, Counts, BR, Laurentino, GC,
382 and Loenneke, JP. Frequency: The Overlooked Resistance Training Variable for Inducing
383 Muscle Hypertrophy? *Sports Med* 47: 799-805, 2017.

384 13. DiFrancisco-Donoghue, J, Werner, W, and Douris, PC. Comparison of once-weekly and twice-
385 weekly strength training in older adults. *Br J Sports Med* 41: 19-22, 2007.

386 14. Farup, J, de Paoli, F, Bjerg, K, Riis, S, Ringgard, S, and Vissing, K. Blood flow restricted and
387 traditional resistance training performed to fatigue produce equal muscle hypertrophy.
388 *Scand J Med Sci Sports* 25: 754-763, 2015.

389 15. Goto, K, Ishii, N, Kizuka, T, and Takamatsu, K. The impact of metabolic stress on hormonal
390 responses and muscular adaptations. *Med Sci Sports Exerc* 37: 955-963, 2005.

391 16. Gotshalk, LA, Loebel, CC, Nindl, BC, Putukian, M, Sebastianelli, WJ, Newton, RU, Hakkinen, K,
392 and Kraemer, WJ. Hormonal responses of multiset versus single-set heavy-resistance
393 exercise protocols. *Can J Appl Physiol* 22: 244-255, 1997.

394 17. Hackett, DA, Johnson, NA, and Chow, CM. Training practices and ergogenic aids used by
395 male bodybuilders. *J Strength Cond Res* 27: 1609-1617, 2013.

396 18. Hackett, DA, Johnson, NA, Halaki, M, and Chow, CM. A novel scale to assess resistance-
397 exercise effort. *J Sports Sci* 30: 1405-1413, 2012.

398 19. Howatson, G and van Someren, KA. The prevention and treatment of exercise-induced
399 muscle damage. *Sports Med* 38: 483-503, 2008.

400 20. Kerkick, CM, Wilborn, CD, Campbell, BI, Roberts, MD, Rasmussen, CJ, Greenwood, M, and
401 Kreider, RB. Early-phase adaptations to a split-body, linear periodization resistance training
402 program in college-aged and middle-aged men. *J Strength Cond Res* 23: 962-971, 2009.

403 21. Krieger, JW. Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-
404 analysis. *J Strength Cond Res* 24: 1150-1159, 2010.

405 22. Kumar, V, Atherton, PJ, Selby, A, Rankin, D, Williams, J, Smith, K, Hiscock, N, and Rennie, MJ.
406 Muscle protein synthetic responses to exercise: effects of age, volume, and intensity. *J
407 Gerontol A Biol Sci Med Sci* 67: 1170-1177, 2012.

408 23. Kumar, V, Selby, A, Rankin, D, Patel, R, Atherton, P, Hildebrandt, W, Williams, J, Smith, K,
409 Seynnes, O, Hiscock, N, and Rennie, MJ. Age-related differences in the dose-response
410 relationship of muscle protein synthesis to resistance exercise in young and old men. *J
411 Physiol* 587: 211-217, 2009.

412 24. Magine, GT, Hoffman, JR, Gonzalez, AM, Townsend, JR, Wells, AJ, Jajtner, AR, Beyer, KS,
413 Boone, CH, Miramonti, AA, Wang, R, LaMonica, MB, Fukuda, DH, Ratamess, NA, and Stout,
414 JR. The effect of training volume and intensity on improvements in muscular strength and
415 size in resistance-trained men. *Physiol Rep* 3, 2015.

416 25. McCaffery, M and Pasero, C. *Pain: clinical manual*. St Louis, MO: Mosby. Inc, 1999.

417 26. Medicine, ACoS. *ACSM's health-related physical fitness assessment manual*. Lippincott
418 Williams & Wilkins, 2013.

419 27. Mitchell, CJ, Churchward-Venne, TA, West, DW, Burd, NA, Breen, L, Baker, SK, and Phillips,
420 SM. Resistance exercise load does not determine training-mediated hypertrophic gains in
421 young men. *J Appl Physiol* (1985) 113: 71-77, 2012.

422 28. Ostrowski, KJ, Wilson, GJ, Weatherby, R, Murphy, PW, and Lyttle, AD. The effect of weight
423 training volume on hormonal output and muscular size and function. *J Strength Cond Res* 11:
424 148-154, 1997.

425 29. Ribeiro, AS, Schoenfeld, BJ, Pina, FL, Souza, MF, Nascimento, MA, dos Santos, L, Antunes, M,
426 and Cyrino, ES. Resistance training in older women: Comparison of single vs. multiple sets on
427 muscle strength and body composition. *Isokinetics Exerc Sci* 23: 53-60, 2015.

428 30. Schoenfeld, BJ. The mechanisms of muscle hypertrophy and their application to resistance
429 training. *J Strength Cond Res* 24: 2857-2872, 2010.

430 31. Schoenfeld, BJ, Ogborn, D, and Krieger, JW. Dose-response relationship between weekly
431 resistance training volume and increases in muscle mass: A systematic review and meta-
432 analysis. *J Sports Sci* 35: 1073-1082, 2017.

433 32. Schoenfeld, BJ, Peterson, MD, Ogborn, D, Contreras, B, and Sonmez, GT. Effects of Low- vs.
434 High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. *J
435 Strength Cond Res* 29: 2954-2963, 2015.

436 33. Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Noonan, JL, Schnaiter, JA, Bond-
437 Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer Interset
438 Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men. *J
439 Strength Cond Res* 30: 1805-1812, 2016.

440 34. Schoenfeld, BJ, Ratamess, NA, Peterson, MD, Contreras, B, and Tiryaki-Sonmez, G. Influence
441 of Resistance Training Frequency on Muscular Adaptations in Well-Trained Men. *J Strength
442 Cond Res* 29: 1821-1829, 2015.

443 35. Stults-Kolehmainen, MA, Stanforth, PR, Bartholomew, JB, Lu, T, Abolt, CJ, and Sinha, R. DXA
444 estimates of fat in abdominal, trunk and hip regions varies by ethnicity in men. *Nutr
445 Diabetes* 3: e64, 2013.

446 36. Thomas, MH and Burns, SP. Increasing Lean Mass and Strength: A Comparison of High
447 Frequency Strength Training to Lower Frequency Strength Training. *Int J Exerc Sci* 9: 159-
448 167, 2016.

449 37. Thompson, FE and Byers, T. Dietary assessment resource manual. *J Nutr* 124: 2245S-2317S,
450 1994.

451 38. Volek, JS, Volk, BM, Gomez, AL, Kunce, LJ, Kupchak, BR, Freidenreich, DJ, Aristizabal, JC,
452 Saenz, C, Dunn-Lewis, C, Ballard, KD, Quann, EE, Kwiecki, DL, Flanagan, SD, Comstock, BA,
453 Fragala, MS, Earp, JE, Fernandez, ML, Bruno, RS, Ptolemy, AS, Kellogg, MD, Maresh, CM, and
454 Kraemer, WJ. Whey protein supplementation during resistance training augments lean body
455 mass. *J Am Coll Nutr* 32: 122-135, 2013.

456
457 **Figure Captions**

458 **Figure 1** Participant flow diagram

TABLE 1. Training protocol

GROUPS	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY					
	<u>Sets</u>	<u>Sets</u>	<u>Sets</u>	<u>Sets</u>	<u>Sets</u>	<u>Sets</u>				
	Bench press	10	Squat	5	Seated row	10	Hamstring curl	10	Lateral Raises	5
LFRT	Triceps extension	5	Leg press 45°	5	Barbell curl	5	Calf standing	10	Abdominal crunch solo	10
									Lower back bench	10
	Leg press 45°	1	Bench press	2	Hamstring curl	2	Lateral raises	1	Calf standing	2
	Squat	1	Seated row	2	Bench press	2	Triceps extension	1	Abdominal crunch	2
	Bench press	2	Leg press 45°	1	Seated row	2	Barbell curl	1	Lower back bench	2
	Seated row	2	Squat	1	Leg press 45°	1	Squat	1	Seated row	2
HFRT	Hamstring curl	2	Hamstring curl	2	Squat	1	Leg press 45°	1	Hamstring curl	2
	Barbell curl	1	Barbell curl	1	Barbell curl	1	Seated row	2	Barbell curl	1
	Triceps extension	1	Triceps extension	1	Triceps extension	1	Bench press	2	Triceps extension	1
	Lateral Raises	1	Lateral Raises	1	Lateral Raises	1	Hamstring curl	2	Lateral Raises	1
	Calf standing	2	Calf standing	2	Calf standing	2	Calf standing	2	Leg press 45°	1
	Abdominal crunch	2	Abdominal crunch	2	Abdominal crunch	2	Abdominal crunch	2	Squat	1
	Lower back bench	2	Lower back bench	2	Lower back bench	2	Lower back bench	2	Bench press	2

LFRT - low frequency resistance training, **HFRT** - high frequency resistance training

ACCEPTED

TABLE 2. Participant characteristics at baseline

VARIABLE	LFRT n=12	HFTR n=11	P
Age (years)	25.5 (24.0 – 26.5)	27.1 (25.0 – 28.7)	0.267 †
Body Mass (kg)	78.2 ± 9.8	78.8 ± 9.9	0.899 #
Height (cm)	174.0 ± 5.2	176.8 ± 4.1	0.173 #
Experience (years)	6.0 (4.5 – 7.0)	7.0 (6.0 – 8.0)	0.131 #
Training session time (min)	31.0 ± 0.5	32.0 ± 0.6	0.0002*
1RM squat (kg)	132.9 ± 28.1	123.3 ± 17.5	0.344 #
1RM squat/body weight (kg)	1.7 ± 0.3	1.6 ± 0.2	0.285 #
1RM bench press (kg)	103.5 ± 15.4	100.6 ± 14.5	0.652 #
1RM bench/body weight (kg)	1.3 ± 0.1	1.3 ± 0.2	0.567 #
Muscle mass index (kg/m²)	9.9 ± 1.2	9.7 ± 0.9	0.624 #
Total fat free mass (kg)	61.1 ± 8.4	62.1 ± 4.4	0.722 #
Fat mass (%)	19.2 ± 6.1	16.5 ± 5.8	0.294 #
Total fat mass (kg)	14.4 ± 4.7	13.4 ± 6.2	0.722 #

LFRT - low frequency resistance training, **HFTR** - high frequency resistance training,

1RM – one repetition maximum **MMI** - muscle mass index,

#Test-t (accept Normality - Mean ± SD)

† Mann – Whitney Test reject normality – Mean (P₂₅ – P₇₅)

* Significant differences between groups P<0.05

TABLE 3. Dietary intake following 8-week resistance training period

	LFRT baseline	LFRT post	HFRT baseline	HFRT post	P groups	P moment	P interaction
Protein (g)	150.6 ± 20.0	152.1 ± 17.4	150.1 ± 18.7	151.4 ± 15.8	0.979	0.640	0.838
Carbohydrate (g)	263.9 ± 23.7	270.5 ± 27.7	264.6 ± 20.3	270.2 ± 29.2	0.983	0.342	0.918
Fat (g)	86.2 ± 12.9	88.1 ± 12.8	87.8 ± 15.4	87.7 ± 12.3	0.906	0.698	0.683
Energy (kcal)	2434.6 ± 244.9	2483.4 ± 258.8	2452.5 ± 255.7	2476.4 ± 256.1	0.957	0.265	0.703

LFRT – low frequency resistance training, **HFTR** – high frequency resistance training.

Data presented in mean and standard deviation (±SD).

TABLE 4. Daley onset muscle soreness

MUSCLE GROUP	WEEK 1		WEEK 4		WEEK 8	
	LFRT	HFRT	LFRT	HFRT	LFRT	HFRT
CHEST	7.0 (4.0 – 7.5)	0.8 (0.0 – 3.0)*	5.5 (4.0 – 7.5)	0.0 (0.0 – 0.5)*	5.0 (4.5 – 7.0)	0.0 (0.0 – 0.5)*
ELBOW FLEXORS	4.5 (3.0 – 6.0)	0.2 (0.0 – 3.0)*	4.5 (3.0 – 5.0)	0.0 (0.0 – 1.5)*	3.5 (3.0 – 5.0)	0.0 (0.0 – 0.8)*
ELBOW EXTENSORS	5.0 (1.5 – 7.5)	0.0 (0.0 – 2.0)*	3.5 (2.5 – 6.5)	0.0 (0.0 – 0.0)*	4.0 (3.5 – 5.0)	0.0 (0.0 – 0.0)*
THIGH	8.0 (9.0 – 0.0)	2.0 (0.6 – 3.5)*	7.5 (5.5 – 8.0)	0.0 (0.0 – 0.6)*	7.0 (4.5 – 8.0)	0.5 (0.0 – 4.5)*
CALF	8.0 (7.0 – 9.5)	1.0 (0.0 – 3.0)*	4.5 (2.0 – 6.5)	0.0 (0.0 – 0.0)*	5.5 (1.5 – 7.0)	0.0 (0.0 – 1.0)*

LFRT – low frequency resistance training, **HFRT** – high frequency resistance training,

Data are show in Mean (P₂₅ – P₇₅)

*Significant difference between groups (P<0.001).

TABLE 5. Weekly volume by muscle group (kg)

Exercices	Groups	Week 1	Week 4	Week 8	Sum week 1 to 8
Barbell curl	LFRT	1428.7 ± 223.7	1546.3 ± 189.8	1568.7 ± 293.6	12135.6 ± 1733.1
	HFRT	1856.1 ± 3141*	2029.1 ± 234.9*	2068.4 ± 273.3*	16007.8 ± 1942.2*
Triceps extension	Δ%	23.0	23.8	24.1	24.1
	LFRT	1512.6 ± 202.3	1535.6 ± 251.7	1650.0 ± 331.0	12380.4 ± 1666.7
Lateral Raises	HFRT	1740.6 ± 377.0	1970.0 ± 348.6*	1909.1 ± 505.7*	15139.6 ± 2425.7*
	Δ%	13.1	22.0	13.5	18.2
Bench press	LFRT	1230.5 ± 312.8	1324.1 ± 329.0	1381.3 ± 319.4	10298.5 ± 2832.14
	HFRT	1350.5 ± 248.0	1522.9 ± 295.1	1546.9 ± 292.2	18880.0 ± 24789.7
Seated row	Δ%	8.8	13.0	10.7	12.7
	LFRT	6472.01 ± 1066.1	6628.6 ± 938.7	6733.1 ± 1064.0	52705.9 ± 7654.8
Squat	HFRT	8014.72 ± 1321.7*	8972.6 ± 1428.6*	8639.6 ± 1089.1*	66460.2 ± 9491.7*
	Δ%	19.2	26.1	22.0	20.7
Leg press 45°	LFRT	5948.7 ± 1006.8	6306.2 ± 838.2	6392.1 ± 1088.7	50010.4 ± 7848.8
	HFRT	6773.6 ± 909.2	7549.2 ± 814.4*	7556.3 ± 817.8*	58803.0 ± 11329.1*
Hamstring curl	Δ%	12.1	16.4	15.4	14.9
	LFRT	3739.3 ± 781.5	4091.0 ± 871.9	4344.0 ± 879.0	33263.5 ± 7587.5
Hamstring curl	HFRT	4532.7 ± 454.4*	5319.8 ± 531.1*	5193.45 ± 1395.24	38558.09 ± 5617.9
	Δ%	17.5	23.1	16.3	13.7
Hamstring curl	LFRT	10290.0 ± 1251.8	10954.5 ± 1069.3	11257.5 ± 1683.4	84985.0 ± 11589.0
	HFRT	10853.3 ± 1681.0	12061.6 ± 1929.9	12910.0 ± 2180.2	93307.1 ± 16591.4
Hamstring curl	Δ%	5.1	9.1	12.8	8.9
	LFRT	3308.2 ± 531.9	3722.8 ± 518.2	3753.7 ± 633.4	28701.9 ± 3920.5
Hamstring curl	HFRT	4247.2 ± 732.2*	4695.18 ± 593.4*	5082.6 ± 568.8*	37251.4 ± 4071.9*
	Δ%	22.1	20.7	26.1	22.9

	LFRT	6497.5 ± 2045.7	8450.8 ± 2816.6	9312.5 ± 1954.0	68762.1 ± 13908.4
Calf standing					
	HFRT	7649.2 ± 1378.2	9393.2 ± 1613.4	9797.4 ± 1403.3	70122.7 ± 11657.5
	Δ%	15.0	10.0	4.9	11.7
Total Volume	LFRT	41168.5 ± 4067.8	45664.9 ± 6594.9	46910.1 ± 7164.9	353243.5 ± 42255.3
	HFRT	46644.5 ± 4920.0*	52985.1 ± 3661.6*	53194.0 ± 4659.6*	410652.9 ± 51940.5*
	Δ%	11.7	13.8	11.8	13.9

HFRT – high frequency resistance training, **LFRT** – low frequency resistance training,

Δ % - post value minus baseline value/ baseline value.

Data presented in mean and standard deviation (±SD)

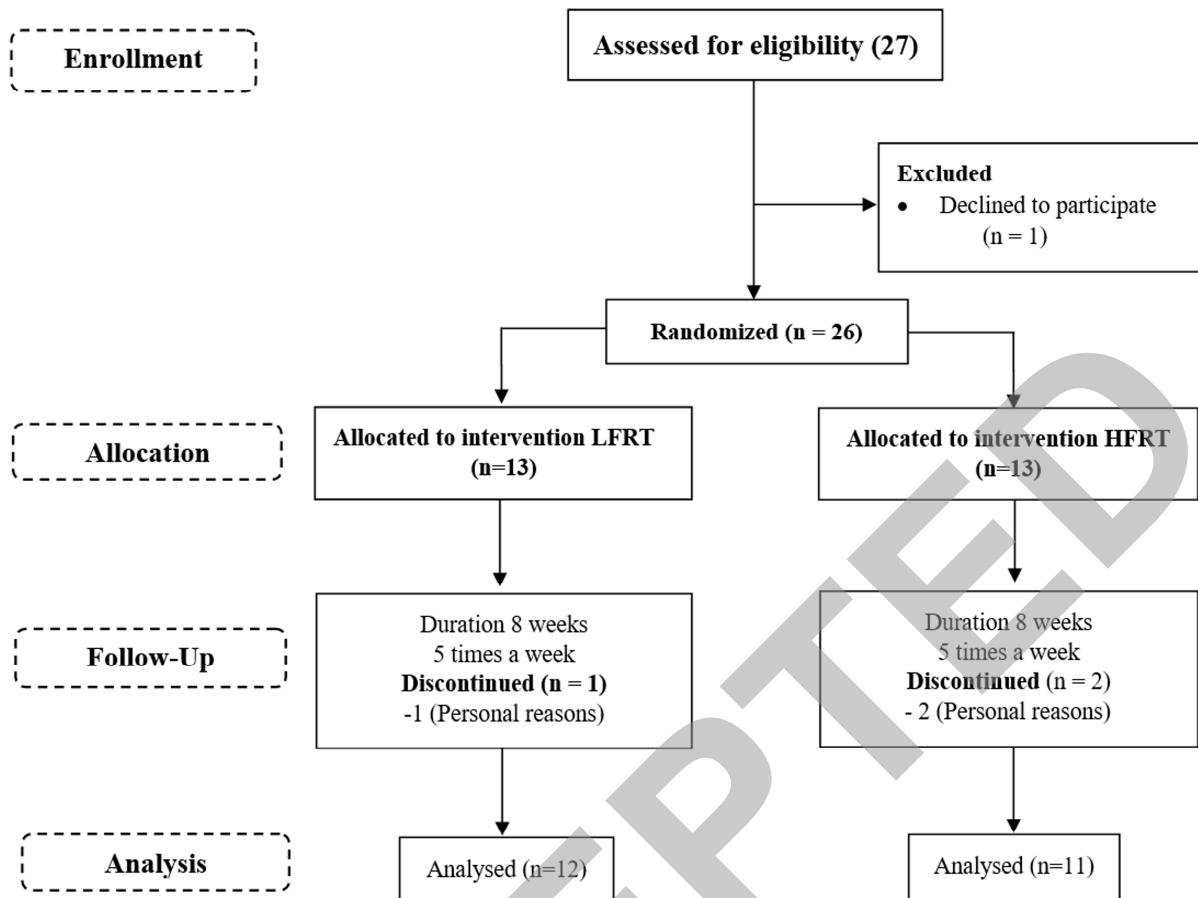

*Significant difference between groups (P<0.05).

TABLE 6. Body composition and muscle strength following 8-week resistance training period

VARIABLE	LFRT baseline	LFRT post	ΔLFRT	HFRT baseline	HFRT post	ΔHFRT	Δ _{HFRT} -Δ _{LFRT}	P groups	P moment	ETA	Power	P interaction
FFM-total (kg)	61.1 ± 8.4	61.7 ± 8.2	0.5 (0.0 – 1.1)	62.2 ± 4.4	62.9 ± 4.25	0.8 (0.0 – 1.6)	0.2 (-1.8 – 9.9)	0.689	0.007	0.30	0.82	0.619
FFM-trunk (kg)	27.7 ± 4.2	27.8 ± 4.0	0.1 (-0.2 – 0.5)	28.3 ± 1.4	28.9 ± 1.36	0.5 (-0.1 – 1.0)	0.3 (-0.3 – 0.9)	0.521	0.067	0.16	0.48	0.301
FFM-android (kg)	3.9 ± 0.5	3.9 ± 0.6	-0.0 (-0.1 – 0.1)	4.0 ± 0.3	4.0 ± 0.25	0.0 (-0.1 – 0.1)	0.1 (-0.1 – 0.1)	0.761	0.961	0.00	0.05	0.639
FFM-upper trunk (kg)	23.7 ± 3.6	23.8 ± 3.5	0.1 (-0.2 – 0.5)	24.3 ± 1.3	24.8 ± 1.3	0.4 (0.0 – 0.8)	0.2 (-0.3 – 0.8)	0.493	0.045	0.19	0.55	0.292
FFM-gynoid (kg)	9.5 ± 1.3	9.7 ± 1.5	0.2 (0.1 – 0.4)	9.6 ± 0.7	9.9 ± 0.7	0.3 (0.2 – 0.4)	0.1 (-0.1 – 0.2)	0.790	<0.001	0.63	1.00	0.586
FFM-leg (kg)	20.6 ± 2.7	21.1 ± 2.9	0.4 (0.2 – 0.7)	20.7 ± 2.5	21.1 ± 2.3	0.4 (0.0 – 0.7)	-0.1 (-0.5 – 0.3)	0.944	<0.001	0.47	0.98	0.671
FFM-arm (kg)	9.4 ± 1.6	9.3 ± 1.6	0.0 (-0.2 – 0.2)	9.5 ± 1.0	9.5 ± 1.1	0.0 (-0.2 – 0.2)	0.0 (-0.3 – 0.3)	0.787	0.710	0.00	0.05	0.890
MMI (kg/m²)	9.9 ± 1.2	10.0 ± 1.2	0.1 (0.1 – 0.2)	97.7 ± 0.9	98.8 ± 0.8	0.1 (0.0 – 0.2)	-0.1 (-0.2 – 0.1)	0.607	0.010	0.28	0.77	0.842
1RM squat (kg)	132.9 ± 28.0	140.9 ± 25.5	8.0 (2.7 – 13.2)	123.3 ± 17.5	135.3 ± 22.2	12.0 (5.1 – 18.1)	4.0 (-4.0 – 12.0)	0.448	<0.001	0.58	1.00	0.312
1RM bench press (kg)	103.5 ± 15.4	109.1 ± 18.5	5.6 (1.9 – 9.4)	100.6 ± 14.5	110.3 ± 12.1	9.7 (4.6 – 14.9)	4.1 (-1.8 – 9.9)	0.896	<0.001	0.56	1.00	0.168

HFRT – high frequency resistance training, **LFRT** – low frequency resistance training, **FFM** – fat free mass, **FFM-upper trunk** – trunk minus android, **MMI** – muscle mass index, **1RM** – one maximum repetition, Δ (**delta**) – post value minus baseline value, $\Delta_{HFRT}-\Delta_{LFRT}$ – Difference between delta HFRT and delta LFRT. Data presented in mean and standard deviation ($\pm SD$) and 95% Confidence interval for mean.

*Significant difference between groups ($P<0.05$).

