High-intensity Interval Training in Different Exercise Modes: Lessons from Time to Exhaustion

Authors
Ana Catarina Sousa1,2,3, Ricardo J. Fernandes3, Joao Paulo Vilas Boas4, Pedro Figueiredo5

Affiliations
1 Research Center for Sports, Exercise and Human Development, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
2 University Institute of Maia, ISMAI, Maia
3 Center of Research, Education, Innovation and Intervention in Sport, CIFID2, Faculty of Sport, University of Porto, Porto, Portugal
4 Porto Biomechanics Laboratory, LABIOMEP, University of Porto, Porto, Portugal
5 Portugal Football School, Portuguese Football Federation, Lisbon, Portugal

Key words
HIIT, VO2max, exercise, recovery

accepted 14.04.2018

Introduction
It has been known for some time that maximal oxygen uptake (VO2max) intensity can provide potentially valuable information about middle and long distance exercise [4]. Studies have focused on different strategies and training methods to improve athletes’ aerobic performance [1], such as high-intensity continuous and interval training (HIIT) [21, 25]. The time sustained at the exercise intensity corresponding to VO2max (Tlim) provides information on both aerobic and anaerobic fitness, helping to monitor the training effects and prescribe training loads [3]. In fact, the use of a fraction of Tlim has been used to establish HIIT for endurance athletes [16, 25], individualizing training prescription and enabling greater performance improvements.

ABSTRACT
To provide information for high-intensity interval training (HIIT) load, we compared the temporal variables of VO2 response at, and after, a time sustained at the exercise intensity corresponding to VO2max (Tlim) in different exercise modes. Forty-five trained male swimmers (11), rowers (13), runners (10) and cyclists (11) completed an incremental protocol to determine the velocity (vVO2max) or power (wVO2max) at VO2max and a square wave exercise from rest to 100% of vVO2max/wVO2max.
The temporal variables of VO2 response were examined using a breath-by-breath gas analyzer. VO2 responses were not different between exercise modes, except for the percentage of VO2max at 50% of Tlim, which was ~6% higher in rowing compared to cycling (97.70 ± 2.90 vs 92.40 ± 5.69%, p = 0.013). During the recovery period, both swimmers and rowers evidenced higher percentages of VO2max compared to cyclists at 30 s (65.1 ± 10.4 and 65.7 ± 5.6 vs 52.7 ± 5.6%) and 60 s (41.7 ± 10.8 and 38.4 ± 5.4 vs 30.4 ± 1.8%) time periods, all for p < 0.01. Furthermore, swimmers presented higher time values to reach 50% VO2max compared to runners and cyclists (51.1 ± 15.6 vs 38.1 ± 6.7 and 33.8 ± 4.7%; p < 0.001). When training at 100% of VO2max intensity, fixed intervals for HIIT could be set freely. However, recovery periods based on time or intensity are exercise-mode dependent.

In contrast, Smith et al. showed that velocities associated with VO\(_{2}\text{max}\) (vVO\(_{2}\text{max}\)), Tlim and 3000-m performance of trained middle distance runners increased after a 4-week training period when using the 60% of Tlim criteria (better than when training at 70% of Tlim) [26]. This conclusion was later extended to highly trained cyclists, in which 60% of Tlim was shown to be an effective exercise interval duration for enhancing 40-km time trial performance [17, 18]. However, to improve the 2000-m rowing performance the 2.5-min high-intensity exercise duration seems to be widely used [8, 9], with the percentage of time regarding Tlim not being taken into consideration. In swimming, in contrast to the above-referred exercise modes, intensity exercise duration seems to be widely used [8, 9], with the percentage of time spent at specific percentages, as well as the percentage duration for enhancing 40-km time trial performance [17, 18]. How -ever, to improve the 2000-m rowing performance the 2.5-min high-intensity exercise duration seems to be widely used [8, 9], with the percentage of time regarding Tlim not being taken into consideration.

Considering the values of Tlim among different exercise modes [27], it is expected that a fraction of this duration (as a way to provide greater improvement in aerobic fitness in each exercise mode) would be similar. However, the temporal variables of the VO\(_2\) response of Tlim (i.e. the time of Tlim necessary to attain and time spent at specific percentages, as well as the percentage of VO\(_2\max\) at specific temporal points of Tlim) have never been addressed in different exercise modes, still leaves unanswered whether Tlim interval duration would lead to similar ventilatory responses. In a similar manner, it has also been recommended that optimal improvement in cardiorespiratory performance should be done within the 90-100 % of VO\(_2\max\) training range [23], with the time spent at ≥ 90 and 95% of VO\(_2\max\) as a key point to judge the effectiveness of the training stimulus [19, 22, 24]. Although this training method is well described in running-related literature, it has not been investigated in other exercise modes. The slower on- and off-transient VO\(_2\) kinetics of swimming compared to other exercise modes [27, 28] and the higher VO\(_2\) slow component in cycling compared to running [6, 15] suggest that this stimulus cannot be homogenously applied in different exercise modes.

Collectively, it is suggested that high-intensity training may be exercise-mode dependent, and therefore should not be applied equally to every cycle and individual sport. Otherwise, it could be misleading when establishing an appropriate HITT work duration or intensity. The knowledge concerning these variables will enable coaches to design better training programs aimed at the relevant improvements in endurance performance. The purpose was to compare the temporal variables of the VO\(_2\) response at Tlim in swimming, rowing, running and cycling. In addition, as the recovery period in relation to HITT frequently diverges [20], we also compared the VO\(_2\) responses of the different exercise modes after Tlim exercises. It was hypothesized that the temporal variables of the VO\(_2\) responses at and after Tlim effort are distinct between exercise modes.

Material and Methods

Participants

Forty-five highly trained competitive male swimmers (n = 11; 18.8 ± 4.4 yrs-old, 1.79 ± 0.07 m; 70.7 ± 6.1 kg and 60.8 ± 5.1 ml.kg\(^{-1}\).min\(^{-1}\)), rowers (n = 13; 26.3 ± 6.1 yrs-old, 1.78 ± 0.04 m, 73.6 ± 2.3 kg and 66.2 ± 4.2 ml.kg\(^{-1}\).min\(^{-1}\)), runners (n = 10; 27.6 ± 4.1 yrs-old, 1.75 ± 0.07 m, 61.9 ± 6.4 m and 71.3 ± 4.1 ml.kg\(^{-1}\).min\(^{-1}\)) and cyclists (n = 11; 24.9 ± 5.3 yrs-old, 1.77 ± 0.07 m, 69.6 ± 4.4 kg and 65.2 ± 5.2 ml.kg\(^{-1}\).min\(^{-1}\)) (age, height, body mass and VO\(_{2}\text{max}\) respectively) participated in the current study. All subjects had similar training background regarding competitive experience (~10 years) and hours of practice per week (12-14 h). All participants (or parent/guardians when subjects were under 18 years-old) provided informed written consent, and the study design was approved by the Institutional Review Board of the host university. All research was conducted ethically according to international standards, and as required by the International Journal of Sports Medicine [10].

Experimental Design

Subjects visited the testing facilities on two different occasions over a one-week period (with a minimum of 24-48 h between tests). In the first session, an intermittent incremental protocol, until exhaustion, for VO\(_{2}\text{max}\) and vVO\(_{2}\text{max}\) (swimming and running) or wVO\(_{2}\text{max}\) (rowing and cycling) assessment. The second session assessed Tlim, and consisted of a single square-wave transition exercise from rest to the previously determined vVO\(_{2}\text{max}\) or wVO\(_{2}\text{max}\) intensities, until volitional exhaustion. See Sousa et al. for more details about both protocols [27].

Methodology

Respiratory and pulmonary gas-exchange variables were continuously measured using a telemetric portable breath-by-breath gas analyzer (K4b\(^{2}\), Cosmed, Rome, Italy), which was calibrated according to manufacturing settings. VO\(_{2}\text{max}\) was considered to be reached according to primary and secondary criteria [14], and, together with VO\(_{2}\text{peak}\) (maximum VO\(_2\) mean values reached during the square wave transition exercises, respectively) were measured over the last 60 s of exercise (in both protocols). Capillary blood samples (25 μL) for blood lactate ([La-]) were collected from the earlobe immediately at the end of the square wave transition exercises at 1, 3, 5 and 7 min of the recovery period, until maximal values were reached ([La-]\(_{\text{peak}}\) (Lactate Pro, Arkay, Inc., Kyoto, Japan).

Data analysis

Occasional VO\(_2\) breath values were omitted from the analysis by including only those between VO\(_2\) mean ± 4 standard deviations, and after, smoothed by using a 3-breath moving average and 5 s time-averaged (Cosmed analysis software [7]). The VO\(_2\) temporal variables considered during the square-wave transition exercises were: (i) the percentage/time of total Tlim spent to attain 90, 95 and 100 % VO\(_{2}\text{max}\) (E90, E95 and E100, respectively); (ii) the percentage/time of total Tlim spent at intensities ≥ 90, 95 and 100 %VO\(_{2}\text{max}\) (≥ E90, ≥ E95 and ≥ E100, respectively); (iii) the percentage of VO\(_{2}\text{max}\) at 30 and 60 s time period (E30 and E60); and (iv) the percentage of VO\(_{2}\text{max}\) at 50, 60 and 70% of Tlim (E50-Tlim, E60-Tlim and E70-Tlim); and during the recovery period: (i) the time necessary to achieve 50 % VO\(_{2}\text{max}\) (R50); (ii) the percentage of VO\(_{2}\text{max}\) at 30 s time period (R30), and (iii) the percentage of VO\(_{2}\text{max}\) at 60 s time period (R60) (cf. ▶ Fig. 1).
Statistical Analysis

A Shapiro-Wilk test confirmed data normality and homogeneity, which was presented as mean ± SD. Differences between intermittent incremental protocols and square-wave transition exercises were tested with the paired sample T-Test. Differences between exercise modes were tested using a one-way ANOVA and explored further using Tukey’s HSD post hoc procedure. Correlations between all variables were assessed via Pearson’s product-moment correlation coefficient. Magnitudes of standardized effects (f and η²) were determined against the following criteria: small, 0.2–0.5; moderate, 0.5–0.8, and large, > 0.8. All statistical procedures were conducted with SPSS 21.0 and the significance level was set at 5 %.

Results

VO₂max was substantially different between exercise modes, with swimmers presenting ~8 and ~15 % lower values than rowers and runners (p < 0.001, f = 0.39), with this latter group exhibiting ~8 % higher values than cyclists. Tlim did not statistically differ between exercise modes (201.6 ± 28.1, 208.1 ± 28.1, 230 ± 23.7 and 208.0 ± 34.7 s, for swimming, rowing, running and cycling, respectively; f = 0.08) and no differences were found between VO₂max and VO₂peak for each exercise mode (< 2 % for all). However, VO₂peak values were ~16, ~12 and ~11 % higher for runners than swimmers, rowers and cyclists (respectively; p < 0.001, η² = 0.39).

The [La⁻] peak was ~30 % lower in swimming compared to the other three exercise modes (p = 0.001, η² = 0.34).

▶Table 1 shows the VO₂ response temporal variables (mean ± SD) during the square-wave transition exercises in each exercise mode.

VO₂ responses during all square-wave transitions were not different between exercise modes for any of the temporal variables considered, with the exception of E50-Tlim that was ~6 % higher in rowing compared to cycling (p = 0.013, η² = 0.23).

During the recovery period (>Fig. 2), swimmers and rowers evidenced higher R30 (p = 0.004, f = 0.27) and R60 (p = 0.01, f = 0.32) compared to cyclists, and no differences were found between other exercise modes. Moreover, swimmers also exhibited higher values

▶Fig. 1 A representative VO₂/ time curve in one exercise mode with the corresponding temporal variables analyzed during exercise periods (percentage/time of total Tlim spent to attain and spent above 90%, 95% and 100% of VO₂max: E90, E95 and E100, and, ≥E90, ≥E95 and ≥E100, respectively; percentage of VO₂max at 30s and 60s: E30 and E60; percentage of VO₂max at 50%, 60% and 70% of Tlim: E50-Tlim, E60-Tlim and E70-Tlim) and recovery periods (time necessary to achieve 50% VO₂max: R50; percentage of VO₂max at 30 s: R30; percentage of VO₂max at 60 s: R60).

▶Table 1 Temporal variables obtained during all square-wave transition exercises in each exercise mode (mean ± SD). * Significantly different than rowing (p < 0.05).

<table>
<thead>
<tr>
<th>Temporal variables</th>
<th>Swimming</th>
<th>Rowing</th>
<th>Running</th>
<th>Cycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>E90 (%)</td>
<td>30.8 ± 8.1</td>
<td>28.4 ± 10.2</td>
<td>22.1 ± 8.9</td>
<td>30.5 ± 17.1</td>
</tr>
<tr>
<td>(s)</td>
<td>60.0 ± 23.9</td>
<td>53.5 ± 18.4</td>
<td>53.0 ± 21.1</td>
<td>55.9 ± 20.6</td>
</tr>
<tr>
<td>E95 (%)</td>
<td>44.3 ± 8.8</td>
<td>47.6 ± 14.5</td>
<td>37.7 ± 12.7</td>
<td>44.5 ± 14.8</td>
</tr>
<tr>
<td>(s)</td>
<td>87.7 ± 34.4</td>
<td>91.5 ± 22.7</td>
<td>90.0 ± 26.2</td>
<td>81.4 ± 33.7</td>
</tr>
<tr>
<td>E100 (%)</td>
<td>57.0 ± 13.5</td>
<td>49.8 ± 12.6</td>
<td>47.1 ± 17.7</td>
<td>47.8 ± 18.9</td>
</tr>
<tr>
<td>(s)</td>
<td>108.0 ± 31.7</td>
<td>111.7 ± 24.0</td>
<td>112.5 ± 22.0</td>
<td>107.9 ± 36.3</td>
</tr>
<tr>
<td>≥E90 (%)</td>
<td>69.19 ± 8.11</td>
<td>71.6 ± 12.19</td>
<td>77.9 ± 9.0</td>
<td>69.5 ± 17.1</td>
</tr>
<tr>
<td>(s)</td>
<td>145.3 ± 23.7</td>
<td>153.0 ± 35.87</td>
<td>157.6 ± 44.4</td>
<td>151.7 ± 54.6</td>
</tr>
<tr>
<td>≥E95 (%)</td>
<td>55.7 ± 8.8</td>
<td>52.4 ± 14.9</td>
<td>62.2 ± 12.7</td>
<td>55.5 ± 15.8</td>
</tr>
<tr>
<td>(s)</td>
<td>117.5 ± 21.2</td>
<td>114.9 ± 30.9</td>
<td>140.0 ± 31.8</td>
<td>126.3 ± 33.8</td>
</tr>
<tr>
<td>≥E100 (%)</td>
<td>42.9 ± 13.5</td>
<td>49.8 ± 12.6</td>
<td>52.1 ± 7.7</td>
<td>47.8 ± 18.9</td>
</tr>
<tr>
<td>(s)</td>
<td>95.1 ± 28.1</td>
<td>111.2 ± 36.5</td>
<td>124.3 ± 16.4</td>
<td>116.7 ± 41.9</td>
</tr>
<tr>
<td>E30 (%)</td>
<td>76.0 ± 8.0</td>
<td>78.2 ± 6.0</td>
<td>78.3 ± 7.7</td>
<td>77.5 ± 6.0</td>
</tr>
<tr>
<td>E60 (%)</td>
<td>89.4 ± 7.8</td>
<td>90.8 ± 5.1</td>
<td>89.4 ± 4.1</td>
<td>91.5 ± 5.2</td>
</tr>
<tr>
<td>E50-tlim (%)</td>
<td>94.1 ± 3.0</td>
<td>97.7 ± 2.9</td>
<td>94.8 ± 2.9</td>
<td>92.4 ± 5.7 *</td>
</tr>
<tr>
<td>E60-tlim (%)</td>
<td>97.8 ± 2.7</td>
<td>98.4 ± 2.7</td>
<td>97.2 ± 2.0</td>
<td>97.3 ± 2.7</td>
</tr>
<tr>
<td>E70-tlim (%)</td>
<td>100.7 ± 2.0</td>
<td>100.1 ± 2.2</td>
<td>99.4 ± 1.8</td>
<td>99.5 ± 3.9</td>
</tr>
</tbody>
</table>

E90, 95 and 100 = percentage/time of total Tlim spent to attain 90, 95 and 100% of VO₂max, respectively; ≥E90, 95 and 100 = percentage/time of total Tlim spent at intensities ≥ 90, 95 and 100% of VO₂max, respectively; E30, and 60 = percentage of VO₂max at 30 and 60 s time period; E50-tlim, 60-tlim and 70-tlim = percentage of VO₂max at 50, 60 and 70% of Tlim, respectively.
for the R50 variable (p < 0.001, f = 0.36) compared to runners and cyclists, with no differences found between other exercise modes.

A moderate relationship between VO2max and R50 (r = −0.30, 95 % CI: −1.08: 0.1, p = 0.003), and R60 (r = −0.32, 95 % CI: −0.78: −0.03, p = 0.034) for all groups combined were found. Although these relationships were not evident within each exercise mode, they did not lose their significance when the time sustained variable was controlled for partial correlation: $r = −0.30$, $p = 0.045$ and $r = −0.31$, $p = 0.035$ for R50 and R60, respectively.

Discussion

The current study was the first that compared the temporal variables of the VO2 response at Tlim exercise in swimming, rowing, running and cycling, aiming to better specify training programs that will lead to improvements in endurance performance. Our main findings were that VO2 responses during all square-wave transitions were not different between exercise modes for any of the temporal variables considered, with the exception of E50-Tlim that was higher in rowing compared to cycling. In contrast, VO2 responses during the recovery period seems to be dependent on the exercise mode performed, since both swimmers and rowers evidenced higher R30 and R60 compared to cyclists, and swimmers exhibited higher R50 compared to runners and cyclists. Moreover, subjects who presented higher mean VO2max values were the ones that recover faster, independently of the performed exercise mode.

The rationale for using vVO2max and wVO2max in exercise prescription is that it corresponds to the lowest velocity/power at which VO2max is elicited in an incremental test, providing thus a fundamental intensity to develop athletes’ maximal aerobic capacity [13]. In the current study, all subjects reached their VO2max during the square-wave transition exercises performed at 100 % of VO2max until exhaustion. In an attempt to determine the running velocity associated with the longest time sustained at the VO2max intensity, Billat, Blondel and Berthoin [2] conducted all-out runs near this latter intensity ~ 90, 100, 120 and 140 %, reporting that the time sustained at VO2max intensity was almost trivial (i.e. less than 20 s on average) at the 90 and 140 % conditions. However, it reached substantially higher values at the 100 % intensity (190 ± 87 s), confirming that 100 % condition was, in fact, the intensity associated with the longest time sustained at the VO2max intensity.

Comparing the above-mentioned data with our study, although the absolute values sustained at 100 % of VO2max were clearly lower for each exercise mode, the relative ones were not different (~48 %). In another study conducted with former male runners, Hill, Williams and Burt [11] reported that a total Tlim time of 166 s (~50 %) and 299 s (~90 %) were needed (performed at 100 % of VO2max intensity) to reach 95 and 100 % of VO2max intensities, respectively. Conversely, the time spent at intensities >95 and 100 % were 50 % (164 s) and 10 % (32 s), respectively. Their relative values for the 95 % of VO2max intensity are closer to ours (~44 and ~56 % of Tlim total time to reach and spent, respectively), but our subjects needed only ~50 % of Tlim total time to reach 100 % of VO2max intensity. If we take into account that the time constant parameter describes the rate at which VO2 rises toward the steady state (1x time constant ~ 63 %), the differences found for the 100 % of VO2max intensity could be related with the VO2 kinetics profile of the subjects.

The lack of differences in temporal variables between exercise modes in the current study was not an expected outcome, at least for the higher intensities (95 % and 100 % of VO2max). Despite using a similar sample, Sousa et al. [27] reported that VO2 kinetics profile differed between distinct individual and cycle sports, with swimmers exhibiting a higher time constant (slower VO2 kinetics) compared to rowers, runners and cyclists also on a square-wave exercise performed at 100 % of VO2max intensity until exhaustion. In addition, these authors observed that runners, compared to cyclists, had faster VO2 kinetics, a fact already reported during an exercise intensity, which resulted in exhaustion in ~5 min [12]. Thus, it would be expected that VO2 response temporal variables would reflect the VO2 kinetics differences among these exercise modes. In this matter, it might be that the variability associated with temporal variables is higher compared to that related to VO2 kinetics parameters. In fact, it was previously suggested to use an individualized fraction of Tlim based on the VO2 kinetics as a valid alternative for individualized parameters [22].

As an alternative to fixed long-interval durations, the 50–70 % of Tlim at VO2max intensity has been suggested for individualizing interval training (cf. Buchheit and Laursen [5] for review) and between 60 and 75 % of Tlim have been used as the ideal exercise durations for interval training program optimization in trained cyclists [17, 18] and runners [26]. Although the influence of different HIIT programs in VO2max and time trial performance was examined before, the ventilatory responses between cycling and running was never reported, hindering a full understanding of this topic. In fact, Hill, Williams and Burt [11] reported that all examined runners did not attain VO2max during the first 60 % of Tlim at an intensity corresponding to VO2max, concluding that there was not a physiological rationale for prescribing exercise with those characteristics. In contrast, Laursen, Shing, Peake et al. [17] showed that when HIIT
incorporates VO\textsubscript{2max} and 60\% of Tlim as the interval intensity and duration, respectively, highly trained cyclists could significantly improve their 40-km time trial performance. In the present study, no differences were found between exercise modes, suggesting that the E50, 60 and 70-Tlim intensities could be used freely in each exercise mode for HIIT prescription. Moreover, in the current study, VO\textsubscript{2max} was not attained at 50 or 60\% of the exhaustive efforts at VO\textsubscript{2max} intensity, but only at 70\% of Tlim (in all exercise modes). Nevertheless, intensities ≥ 90\% of VO\textsubscript{2max} were achieved even in the E50-Tlim variable. Considering that an optimal improvement in cardiorespiratory fitness performance relies on training at intensities corresponding to 90-100\% of VO\textsubscript{2max} [23], the current data support a physiological rationale for prescription of HIIT at VO\textsubscript{2max} intensity for 50 ≤ Tlim ≤ 70\% durations, independently of the exercise mode performed.

Similarly to the 50–70\% of Tlim strategies, the 30 s interval has been used as an personalized work period in cycling [17, 18] and swimming [19]. In our study, no differences were found between exercise modes, as the E30 variable elicited similar VO\textsubscript{2max} intensities (~77\%). We also observed that the E60 variable did not imply differences among exercise modes, corroborating that swimming sets of the same VO\textsubscript{2max} intensity overall time (but with different work-interval durations, 30 s and 60 s) led to similar VO\textsubscript{2} responses [19].

These authors also showed that the time spent swimming above 95\% of VO\textsubscript{2max} was doubled when using longer intervals compared to shorter ones, which is confirmed by the current study as the relative percentage of VO\textsubscript{2max} elicited from the 60 s interval period (90\%) is higher than the 30 s one. As the 90\% (and 95 and 100\%) of VO\textsubscript{2max} has been recommended as a training intensity that promotes an optimal improvement in cardiorespiratory fitness performance [23], we suggest that the 60 s, but not the 30 s parameter, could be used, independently of the exercise mode performed, as an alternative for using other fixed-long-interval durations in HIIT.

The recovery time frequently suggested in HIIT tends to diverge [20], but it seems important to maintain a moderately high VO\textsubscript{2}, allowing its maximum to be reached in a relatively short time during the subsequent work. Thus, exercise should start from an elevated VO\textsubscript{2} baseline [5], without selecting an exaggerated intensity that could elicit premature exhaustion [20]. The recovery time may also be gauged by the attainment of a particular recovery HR value, as a percentage of maximum HR [29]. Although HR was not analyzed in the current study, we verified that swimmers needed more time to achieve 50\% of VO\textsubscript{2max} compared to runners and cyclists (f = 0.36) in the recovery period (higher R50). This fact may be justified by either a slower VO\textsubscript{2} off-kinetics, or by lower VO\textsubscript{2max} values at this particular exercise. In fact, an inverse relationship was found between the R50 variable and VO\textsubscript{2max} (explaining at least 10\% of the variance), which suggests that subjects with lower cardiorespiratory capacity need more time to recover. This fact enhances the idea that recovery time should be used differently in each exercise mode, as elicits different VO\textsubscript{2max} percentages. Although not within the scope of this study, the 90\% variance in R50 might be related with VO\textsubscript{2} kinetic parameters, as shown previously [28]. Previous studies have also used a recovery time normally ranging from 15 s to 1 min [20]. In our study, both swimmers and rowers (compared to runners and cyclists) presented higher VO\textsubscript{2max} percentages at 30 s and 60 s time periods (f = 0.27 and f = 0.32, respectively). Moreover, a negative relationship was found between R60 parameter and VO\textsubscript{2max}.

The continuous exercise work analyzed, with its conclusions suggested to be applied when repeated intervals are performed, must be acknowledged as a limitation of this study. Therefore, the transitions between recovery-exercise within the same set could be influenced by the elevated baseline of the previous repetition, and consequently, implying less absolute time to achieve the target intensities. This must be taken into account, especially by coaches.

In conclusion, VO\textsubscript{2} responses during all of the square-wave transition exercises studied did not differ between exercise modes for the temporal variables considered (excepting E50-Tlim which was higher in rowing than cycling). However, swimmers and rowers (compared to cyclists) evidenced higher percentages of VO\textsubscript{2max} at E30 and E60 s, and swimmers exhibited 50\% higher VO\textsubscript{2max} values (compared to runners and cyclists). Last but not least, subjects who recovered higher mean VO\textsubscript{2max} values were the ones that recovered faster, independent of the exercise mode.

Acknowledgements

We acknowledge all the subjects and their coaches for their participation in this study.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

Sousa AC et al. High-intensity Interval Training in... Int J Sports Med

