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ABSTRACT 

Purpose: The aim of this study was to investigate the hemodynamic, oxidative stress (OS), and 

nitric oxide (NO
-
) responses to a submaximal isometric exercise session (IES) involving large 

muscle mass. Methods: Fourteen hypertensive (HTG: age: 35.9 ± 8.1 years, height: 1.73 ± 0.10 

m, total body mass: 78.0 ± 15.8 kg) and 10 normotensive (NTG: age: 41.1 ± 9.4 years, height: 

1.71 ± 0.12 m, total body mass: 82.3 ± 22.4 kg) participants performed 2 experimental sessions 

in the leg press and bench press: i) control session and ii) 8 sets x 1 min contraction at 30% 

maximal voluntary isometric contraction with 2 min rest interval. Blood pressure (BP) was 

measured at rest and during 60 min postexercise. Blood samples were collected at rest, 

immediately after the session, and 60 min postexercise. NO
-
 was obtained through the Griess 

reaction method. OS parameters were analyzed using commercial kits. A repeated-measures 

ANOVA with Bonferroni’s post hoc was used to analyze all dependent variables. Results: A 

significant decrease in systolic BP was observed only for HTG at 45 min and 60 min 

postexercise (baseline vs. 45 min: p = 0.03, Δ% = 4.44%; vs. 60 min: p = 0.018, Δ% = 5.58%). 

NO
-
 increased immediately postexercise only for HTG (p = 0.008, Δ% = 16.44%). Regarding OS 

parameters, TBARS presented a significant reduction 60 min after the IES for NTG and HTG; 

catalase increased in both groups. Conclusions: The data showed that only 8 minutes of IES 

with a large muscle mass elicits an elevated pro-oxidant activity leading to a greater NO
-
 

bioavailability, increases antioxidant reaction, and consequently reduces BP in hypertensive 

patients. 

 

Key Words: Oxidative Stress; Blood Pressure; Postexercise Hypotension; Hypertension; Static 

Strength.  
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INTRODUCTION 

The use of exercise as a recommendation and ongoing therapy to treat hypertension is well 

described in the scientific literature (1). Physical training such as aerobic exercise (2) and 

dynamic strength training (ST) (3) are the most studied and classically recommended. Changes 

in lifestyle, such as exercise, are associated with increasing nitric oxide (NO
-
) bioavailability (4), 

reduction of oxidative stress (OS) biomarkers (e.g., plasma thiobarbituric acid-reactive 

substances, TBARS) and increased antioxidant capacity (5).  

However, recently, the use of isometric handgrip (IHG, e.g., static ST) exercise in order to treat 

hypertension has gained attention in the scientific literature (6-9). Recent meta-analyses have 

suggested the efficacy of isometric exercise (IE) to chronically control and reduce blood pressure 

(BP) in normotensive, hypertensive, and prehypertensive adults (7, 9, 10). 

Nevertheless, only a few studies have evaluated vasodilatation mechanisms for the acute exercise 

model such as OS (6, 10). Additionally, the peripheral vascular resistance is another factor 

contributing to hypertension that scientific evidence has been shown to be most affected by 

biochemical parameters, such as OS and NO
- 
(11).  

A reduction in NO
-
 bioavailability may lead to endothelial dysfunction, vascular remodeling, and 

inflammation leading to vascular damage, which is also a major factor to enhance hypertension 

via increased peripheral vascular resistance. It is suggested that an increase in OS is one of the 

most important mechanisms associated with the pathophysiology of hypertension (12). In a study 

by Peters et al. (13), hypertensive patients performed 6 weeks of IHG and the authors reported an 

improvement in BP and antioxidant capacity and a reduction of reactive oxygen species (ROS) 

production. 
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Thus, the chronic IE protocol used in the study reduced OS (i.e., decreased TBARS) and 

improved antioxidant defense (i.e., increased catalase activity), which allowed a higher release of 

NO
-
 during recovery. Nevertheless, several studies have used IE with different acute and chronic 

protocols but with small muscle mass (handgrip) (6, 8, 14). Studies that compared resistance 

exercise with different muscle groups (upper and lower limbs), for instance, showed that 

dynamic resistance exercises that use larger muscle mass promote a greater magnitude in the 

reduction of BP (15). 

However, no known scientific literature exists showing the acute cardiometabolic effects of IE 

when performed with large muscle mass (e.g., leg press [LEP] and bench press [BEP]) using 

conventional strength training equipment. This may suggest the versatility of this type of 

contraction during the treatment of the hypertensive population. Moreover, the influence of 

larger muscle mass on BP responses and the role of NO
-
 and redox balance in this process is still 

unclear. 

Therefore, the purpose of this study was to investigate the hemodynamic, OS, and NO
- 
responses 

to 1 single bout of submaximal IE involving large muscle mass. The main hypothesis is that a 

submaximal isometric exercise session (IES) involving large muscle mass improves NO
-
 

bioavailability, increases redox balance, and promotes reduction of BP levels in hypertensive 

patients. 

 

MATERIALS AND METHODS 

Participants 

Twenty-four sedentary adult volunteers were recruited and separated, by convenience, into 2 

groups: normotensive group (NTG; n = 10; 5 women and 5 men) and hypertensive group (HTG; 
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n = 14; 7 women and 7men) (Table 1). Volunteers answered a detailed anamnesis to assess 

history of physical exercise and medical and nutritional information. In addition, an expert 

cardiologist performed a cardiovascular diagnostic evaluation of the degree of hypertension. The 

inclusion criteria were (i) hypertension grade I and II (SBP 130-139 mmHg and DBP 80-89 

mmHg for grade I; SBP ≥140 mmHg and DBP ≥90 mmHg for grade II) (16); (ii) continuous use 

of antihypertensive medication for at least 1 year; (iii) able to practice physical exercises; or (iv) 

not being enrolled in another physical activity program for at least 6 months. Volunteers were 

excluded if they presented (i) severe hypertension (SBP ≥ 180 mmHg and DBP ≥ 110 mmHg); 

(ii) any cardiologic changes during the exercise electrocardiogram, such as cardiac arrhythmias, 

extrasystoles, or other diagnoses by the cardiologist; (iii) target organ damage; (iv) any metabolic 

changes such as cancer and diabetes mellitus; or (v) bone, muscle, or joint problems that could 

prevent them from performing the exercises proposed in the study. Participants were oriented to 

maintain their regular nutritional habits and physical activities throughout the test period and 

refrain from caffeine, alcohol, and strenuous exercise 24 h prior to the test. All this information 

was verbally detailed. The university research ethics committee approved this study 

(#1.269.914/2015), and all subjects read and signed an approved informed consent document.  

Study Design 

This study was a randomized cross-over design. All participants were instructed to complete all 

sessions consisting of (i) a session to assess body composition and aerobic capacity; (ii) a session 

to obtain maximum voluntary isometric contraction (MVIC) in the LEP and BEP; (iii) an IES 

composed of 4 sets of submaximal contractions for each exercise with 1 min of duration at 30% 

of MVIC and 2 min of rest interval (hemodynamic variables were recorded at rest and 5, 10, 15, 

30, 45, and 60 min postexercise); and (iv) a control session (CS; nonexercise) followed the same 
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procedures of hemodynamic and biochemical measurements as the exercise session. On the leg 

press equipment, they just stayed with their feet on the platform without movement or 

performing strength. While in bench press, participants just stayed lying down without moving; 

both positions were maintained for the same duration as the exercise session. Afterwards, they 

went to a quiet room for a 60 min recovery, where the final blood collection was done. Each 

session had an interval between 48 h and 72 h. For both sessions, the volunteers were instructed 

to maintain medication schedules and perform 8 h fasting in order to collect venous blood 

samples (~20 mL). Two more blood samples were collected (immediately after the exercise 

session and 60 min postexercise) in both sessions. To avoid a possible interference from eating 

with blood markers, especially in OS variables (17), after the fasting blood sample collection, all 

participants had a standard breakfast 30 min before every session (exercise and nonexercise), 

with chocolate milk (185 kcal total – 32 g carbohydrate, 3.9 g protein, and 7.7 g fat)  and cereal 

bar (334 kcal total – 65 g carbohydrate, 7.7 g protein, and 5.6 g fat). 

Measurements 

Body Composition: Body mass (Filizola, São Paulo, Brazil), height, and body circumferences 

(Sanny, São Paulo, Brazil) were measured. Body fat was estimated by Jackson and Pollock’s 3-

sites skinfold protocol for adults (18) using a skinfold caliper (Lange, Santa Cruz, CA, USA). 

Aerobic Capacity: A 12-lead electrocardiograph (Micromed Elite, Brasília, DF, Brazil) was used 

to record the maximal heart rate during the test using the modified Balke protocol, which was 

performed to rule out cardiovascular diseases. Arterial BP was measured during the test by 

auscultation. To determine the peak oxygen consumption (VO2 peak) the Balke protocol was 

used. The running velocity was selected according to previous familiarization on the treadmill 

(Imbramed
 
Super ATL, SP, Brazil) based on the individual physical capacity reported. All VO2 
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values were recorded by a gas analyzer (Córtex Biophysik, Metalyzer 3B, Germany) every 30 s. 

Then, the VO2 peak was calculated based on the plateau of oxygen consumption with increasing 

work rate and a respiratory exchange ratio greater than 1:1. 

Maximal Voluntary Isometric Contraction (MVIC): A Power Din Pro dynamometer (CEFISE
®
, 

Campinas, Brazil) was used to measure the MVIC in the LEP 45º (Righetto, Campinas, Brazil). 

The load cell with an accuracy of 200 kgf (CEFISE
®
, Campinas, Brazil) and sampling frequency 

of 100 Hz was coupled in parallel to the load implement axis of the equipment and perpendicular 

to the plate for LEP. The MVIC in BEP (Biodelta-Portico, São Paulo, Brazil) was performed 

with an initial load of 90% of 1 RM where the participant should maintain the isometric 

contraction for 3 s; up to 5 trials were performed with a 10% load increment and 3 min interval 

at each attempt. A fleximeter (Sanny
®

, São Paulo, Brazil) was used to adjust the knee angle at 

90º for leg press and the elbow angle at 90º for bench press. A warm-up was performed prior the 

LEP and BEP CVIM tests, consisting of 2 sets of 10-12 repetitions performed at 50% 1 RM with 

2 min of rest pause between the sets for activation of muscles and joints involved in the test. 

After 2 min, all participants performed a set of familiarization with maximal isometric 

contractions for 5 s and 3 min of pause. For the determination of the MVIC for LEP, participants 

were instructed to push the LEP and hold the maximal force for 5 s. Tests were repeated 3 times 

with 3 min of pause, and all contractions were monitored in real time to ensure a good 

assessment; the major values were considered to MVIC. A researcher (R.R.O.) controlled the 

correct technique and promoted verbal encouragement during each muscle contraction. The 

maximal value of MVIC of both tests was used for further analysis. 

Measurement of Blood Pressure and Heart Rate: BP and heart rate (HR) were assessed before 

(10-minat rest in sitting position) and during the session as a safety parameter for the participant, 
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after each contraction for, and after 5-, 10-, 15-, 30-, 45- and 60-min post sessions in supine 

position. Oscillometer equipment (Microlife, BP3AC1-1PC, Switzerland) was used to measure 

BP according to the AHA recommendations (19). HR was also continuously recorded by 

telemetry using a portable heart monitor (Polar, RS800 CX, Finland). Mean arterial pressure 

(MAP) was calculated as Moraes et al.(3). Rate-pressure product (RPP) was calculated by 

multiplying HR by SBP. 

Biochemical Analysis: Venous blood samples were obtained from the forearm before each 

session (control and exercise) after fasting for at least 8 h, immediately after the session, and 60 

min postexercise. After data collection, the blood samples were immediately processed in a 

refrigerated centrifuge to obtain plasma and serum (4°C for 15 min at 2500 rpm). Plasma and 

serum samples were stored in multiple aliquots (Eppendorf, Germany) at -80°C. All assays were 

performed within 2 months of sample collection, in duplicate, and at the first defrost. Plasma 

samples were analyzed to determine NO
-
, superoxide dismutase activity (SOD), catalase activity 

(CAT), total antioxidant capacity by the Trolox-equivalent antioxidant capacity (TEAC), lipid 

peroxidation by the TBARS, glutathione reduced (GSH), and uric acid. The lipid profile was 

used to estimate total cholesterol, low-density lipoprotein cholesterol (LDL-c), high-density 

lipoprotein cholesterol (HDL-c), HDL-c/LDL-c ratio and triglycerides using an automated 

chemistry analyze (COBAS c111 system, Roche Diagnostics, Switzerland). 

Nitric Oxide (NO
-
): NO

-
 was measured using a Griess reaction, according to the following 

protocol. Plasma samples were deproteinized with zinc sulfate (20%). Then 300 μL of each 

sample was dispensed in duplicate in a 96-well plate, and 100 μL of vanadium chloride, 50 μL 

sulfinyl amide, and 50 μL of N-(1-Naphthyl) ethylenediamine dihydrochloride were added to the 

samples, and standard nitrite curves were prepared. After the addition of the reagents, the plates 
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were homogenized and incubated for 40 min at 37°C. The spectrophotometer reading was made 

at 540 nm. The coefficients of variability were <6%. 

Lipid Peroxidation: Serum samples were diluted in 320 μL MiliQ H2O (1:5), and then 1 mL of 5 

trichloroacetic acid (TCA) 17.5%, pH 2.0, and 1mL of thiobarbituric acid 0.6%, pH 2.0, were 

added, respectively. After homogenization, the samples were kept in a water bath for 30 min at 

95°C. The reaction was interrupted with the immersion of the microtubes in ice, the addition of 1 

mL of TCA 70%, pH 2.0, and incubation for 20 min at room temperature. After centrifugation 

(3000 rpm for 15 min), the supernatant was removed and put in new microtubes and read by 

spectrophotometry at 540 nm. The concentration of lipid peroxidation products was calculated 

using the molar extinction coefficient equivalent for malondialdehyde (MDA-equivalent = 1.56‧

105 M
-1

cm
-1

). The coefficients of variability were <6%. 

Antioxidant Parameters: The antioxidant parameters used in this study were measured using 

commercial kits and following the manufacturers’ protocols. SOD activity was measured using 

an assay kit (Sigma Aldrich
®
, CA, USA) with a final spectrophotometric reading at 450 nm. 

Total antioxidant capacity was measured with a Trolox-equivalent assay kit (Quanti Chrom
® 

Bio 

Assay Systems, CA, USA). CAT activity was measured using the Amplex TM Red assay kit 

(Thermo fisher Scientific
®
, USA) with a final spectrophotometric reading with 1 min incubation 

at 560 nm. Glutathione was measured using an assay kit (Sigma Aldrich
®
, CA, USA) with a final 

spectrophotometric reading at 490 nm. Serum uric acid was measured following the 

manufacturer’s recommendations (Labtest
®
, MG, Brazil). Briefly, in a 96-well microplate, 20 μL 

of sample and 1000 μL of working reagent were added to each well. After homogenizing and 

incubating at 37°C for 5 min, the absorbance was determined at 505 nm in a microplate reader 

(ELx800, Bio Tek, USA). For all antioxidant parameters the intraassay coefficient of variation 

was <4%. 
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Statistical Analysis  

The normality and homogeneity of variances within the data were confirmed with the Shapiro-

Wilk and Levene tests, respectively. All data were expressed as mean and (±) standard deviation. 

Repeated measures ANOVA was used for comparisons between and within groups. The 

statistical power (1-β) was calculated a priori for all procedures considering an alpha of 5% and 

an effect size (f = 0.3) for OS and NO
-
 (1-β = 0.89) and (f = 0.25) for hemodynamic measures (1-

β = 0.94), besides a specific statistical model employed (ANOVA for repeated measures with 

interaction between and within subjects). Cohen’s formula for effect size (d) was calculated, and 

the results were based on the following criteria: trivial (<0.2), small (0.2-0.6), moderate (0.6-

1.2), large (1.2-2.0), and very large (>2.0) effects (20). An alpha of 5% was used to determine 

statistical significance. All procedures were performed by the Statistical Package for Social 

Sciences (SPSS 21.0) and GraphPad Prism 6.0 (San Francisco, CA, USA). 

 

RESULTS 

The participants’ characteristics were different between groups. On the anthropometrics, HTG 

showed higher value for waist-to-height ratio than NTG, and no other differences were identified 

in body composition parameters. For hemodynamic variables, the NTG presented lower values 

of SBP, DBP, and mean arterial pressure when compared to HTG. Regarding the lipid profile 

measurements, only LDL presented a significant difference between groups, with higher values 

for HTG. On the neuromuscular parameters, no differences were identified between groups 

(Table 1). 
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Concerning BP responses after CS and IES sessions, an increase in DBP was identified in the 

NTG after 30 min of the CS. Furthermore, the IES presented a significant reduction in SBP only 

in the HTG baseline vs. 45 min and 60 min (131.86 ± 2.54 to 126.0 ± 2.59 mmHg, p = 0.03 and 

125.93 ± 2.54 mmHg, p = 0.018, respectively) with a moderate effect size for 45-min (d = 0.61) 

and 60 min (d = 1.01) after IE (Figure 1). 

Regarding HR and rate-pressure product, statistical differences in the within-group comparisons 

were identified during recovery in the CS and after IES (Figure 2), showing a significant 

reduction only for NTG in HR. 

Individual data and delta values for SBP in HTG and NTG after CS and IES are presented in 

Figure 3. 

Results from biochemical analysis showed that the HTG (126.21 ± 23.34 µM) presented higher 

values of NO
- 
at baseline when compared to NTG (103.17 ± 6.07 µM) with a very large effect 

size (d = 1.33), and a significant increase after IE (146.96 ± 31.67 µM) with a moderate effect 

size (d = 0.75). Both groups showed a significant decrease in TBARS after 60 min post-IE when 

compared with baseline (2.54 ± 0.81 to 1.89 ± 0.7 nmol/L with moderate effect size d = 0.745) 

and (2.61 ± 1.1 to 1.64 ± 0.37 nmol/L with very large effect size d=1.193) for NTG and HTG, 

respectively. Furthermore, NTG had a significant increase in CAT immediately after IES (34.72 

± 10.77 to 97.80 ± 8.33 U‧mL
-1

, p=0.000 and d=6.55) and after 60 min (83.38 ± 17.78 U‧mL
-1

, 

p = 0.000 and d = 3.31), and HTG had a similar increase immediately after IE (42.95 ± 12.88 to 

78.36 ± 17.55 U‧mL
-1

, p = 0.000 and d = 2.30) and after 60 min (79.87 ± 17.78 U‧mL
-1

, p = 

0.000 and d = 2.66), with higher values for NTG than HTG (Figure 4). 
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The NTG presented higher values of Trolox-equivalent antioxidant capacity than HTG at 

baseline and immediately after IE. The glutathione activity presented a significant increase at 60
 

after
 
min of recovery only for NTG (Table 2). 

 

DISCUSSION 

The purpose of the present study was to investigate the effects of IES on cardiovascular and 

biochemical parameters in normo- and hypertensive individuals. A previous study showed that 

IES using a small muscle volume (i.e., handgrip) reduced the BP of elderly hypertensive patients 

(6). Nevertheless, the involvement of a larger muscle volume in this process on the 

hemodynamic behavior of normotensive and hypertensive individuals remains unclear. The main 

finding was the OS responses and NO
-
 bioavailability from both groups (NTG and HTG) were 

quite similar, but only in HTG was post-isometric exercise hypotension observed. 

Isometric muscle contractions cause increased vascular resistance, and sessions have been 

prescribed with a great variety of training variables, such as volume, intensity, and rest between 

sets (6, 14, 21). These protocols promoted important systemic hemodynamic changes, such as 

autonomic control (22), improved local blood flow dilatation (23), and improved endothelial 

function (24). A previous study pointed out that IES involving a large muscle mass (e.g., leg) 

increased the release of lactate (25). It is known that lactate is involved in NO
-
 release, so such 

an event may have occurred in the present study, and is related to a decrease in BP (26). This 

process of isometric muscular contractions accompanied by rest intervals between sets induces 

ischemia-reperfusion in the adjacent region (25). This process may be involved in the pro- and 

antioxidant adjustments. 
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In this scenario, the combination of physical training with vascular occlusion induces ischemia-

reperfusion and improves and alters the metabolism of NO
-
 (27). In general, all these 

observations presumably indicated that such mechanisms were involved in the increase of CAT 

activity (28), in what might reverberate in an increase in plasma NO
-
 and PIEH. It has been 

suggested that the decrease in BP immediately after IE may be due to greater perfusion of the 

muscular blood flow generated by the release of vasodilator metabolites (25, 29); such inferences 

occurred partially in the present study supported by the increase in NO
-
 release and CAT activity. 

A low NO
-
 contributes to the development and maintenance of hypertension and is related to 

endothelial dysfunction (30). However, HTG showed higher values of NO
-
 when compared to 

NTG, and IES induced increases in NO
-
 bioavailability. This may have occurred as a 

compensatory way to maintain the pressure state taking into consideration the age of all subjects 

of this study (young participants) (31). Additionally, the increase of NO
-
 could be explained by 2 

major factors: (i) some pharmacological treatments for hypertension that may increase NO
- 
(30); 

and (ii) an exaggerated metabolic response to produce NO
- 

in order to control BP and to 

scavenge superoxide to reduce oxidative parameters as a defense mechanism (32). 

Furthermore, increases in basal NO
-
 production may represent a better OS, which was observed 

after IHG training (13), and it is plausible to infer that the reduction of OS may lead to an 

increase in NO
-
 (24). In that matter, lipid peroxidation was augmented in both groups after IES, 

and since the first antioxidant response (SOD) did not increase with exercise, it is reasonable to 

infer that the ROS produced during exercise was blunted, especially by NO
- 

scavenging and 

cytosolic antioxidants. Indeed, CAT and GSH increased after IES (GSH only in the NTG), as 

well as the total antioxidant capacity. 
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The amount of NO
-
 available is determined by a balance between its formation and scavenging 

superoxide anion, which is the major responsible for the latter process; its roles in hypertension 

have been investigated and are well documented (33). In fact, NO
-
 produced in a pro-oxidant 

environment is abducted by free radicals, decreasing its plasma concentration. Thus, the IES 

used in the present study reduced OS (i.e., decrease in TBARS) and improved antioxidant 

defense (i.e., increased CAT activity), allowing a better release of NO
-
 during the recovery time 

in hypertensive subjects. 

Some studies also investigated the acute effects of aerobic exercise (large muscle mass) on OS 

parameters (34, 35). The study by Farney et al. (34) was conducted with acute aerobic exercise 

and reported an increase in antioxidant activity immediately after exercise and during recovery. 

Furthermore, the study by Barili et al. (35) was conducted with 16 hypertensive women who 

performed 3 protocols of aerobic exercise, including 1 with blood flow restriction in a low-

intensity. The authors reported elevated levels of lipid peroxidation, as well as SOD and 

glutathione-s-transferase 30 min after exercise, which partially corroborates with the present 

results. 

The results of this study demonstrated that IES did not alter the activity of SOD and GSH, but 

increased CAT activity during recovery. Such increase is important because CAT participates in 

the reduction of hydrogen peroxide (H2O2) to water and carbon dioxide, thereby reducing the 

pro-oxidant potential of the H2O2 (36). Thus our data indicate that IES with greater muscle mass 

at 30% of MVIC increases the activity of blood catalase, which corroborates with the evidence 

that exercise improves plasma (37) and muscle CAT activity (38).  

In addition, the increased activity of antioxidant enzymes appears to be influenced by muscle 

group size involved during exercise (39). It is possible to think that the greater the muscle mass 
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involved during exercise, the higher BP will be. This would allow us to deduce that greater 

muscle mass would increase tissue hypoxia. Therefore, it can be presumed that the increase of 

the antioxidant activity could be a protective effect against the stimulus of the tissue hypoxia. It 

is reported that increased CAT activity in plasma after periods of occlusion increase the levels of 

H2O2 induced by ischemia-reperfusion. These data from the literature suggest that even brief 

periods of elevated intraluminal pressure raise H2O2 concentration, which provides a 

compensatory dilator mechanism with NO
- 

participation (40). It is likely that ischemia-

reperfusion processes induced by IE improve vascular function due to increased NO
- 

bioavailability related to increased CAT activity. 

Scientific literature is limited regarding the acute effects of IES on OS parameters, especially in 

hypertensive individuals. In a study by Alessio et al. (41) 12 subjects underwent an exhaustive 

aerobic exercise and IE under the hypothesis that the anaerobic nature of IE might have 

presented lower central stress and less ROS production. The authors reported an increase in lipid 

hydroperoxides only after the isometric session and elevated protein carbonyls and antioxidant 

capacity only after the aerobic session, with no significant changes in malondialdehyde levels. In 

addition, the authors used an IHG exercise that involves much less muscle mass than the leg 

press used in the present study, which makes it difficult to reach accurate direct comparisons and 

the involved mechanisms. Regarding the present results, it is important to note that the 

postexercise blood samples were taken in a fed state, which could possibly lead to biased OS 

results. However, both control and exercise sessions were performed in the same conditions, and 

a fed state could increase lipid peroxidation, acutely increasing the OS, and the antioxidant effect 

of exercise was even more prominent. 
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Additionally, this isometric program does not require qualified instruction in exercise technique, 

and only two upper and lower body exercise equipment can easily be structured in a small space 

and with low cost in relation to isokinetic dynamometers or a fitness center. This possibility of 

adjustment has a very important application for those living in confined spaces and for other 

patients with limited mobility. Therefore, it is of practical value for coaches and health 

professionals to apply this model of strength exercise as an adjuvant strategy to improve 

muscular strength and hypertension treatment. 

In conclusion, results of this study showed the first evidence that submaximal IES with greater 

muscle mass reduced BP levels for at least 1 h after the 8 min session and was well tolerated by 

the hypertensive patients. Furthermore, that model of exercise elicits an elevated pro-oxidant 

activity leading to a greater NO
-
 bioavailability, increases antioxidant reaction, and consequently 

reduces BP in hypertensive individuals. Further studies could increase the period of BP 

monitoring as well as the analysis of other OS parameters. 
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Figure captions 

 

Figure 1. Blood pressure responses to control session (A) and submaximal isometric exercise 

session (B) in normotensive (NTG) and hypertensive (HTG) adults; SBP: systolic blood 

pressure; DPB: diastolic blood pressure; MAP: mean arterial pressure; †: statistical difference 

from baseline (p<0.05); *: statistical difference between groups (p<0.05). Data expressed as 

mean and (±) standard deviation. 

 

Figure 2. Heart rate (HR) and rate pressure product (RPP) responses to control (A) and 

submaximal isometric exercise session (B) in normotensive (NTG) and hypertensive (HTG) 

adults; †: statistical difference from baseline (p<0.05); *: statistical difference between groups 

(p<0.05). Data expressed as mean and (±) standard deviation. 

 

Figure 3. Individual data and delta values of systolic blood pressure (SBP) after control session 

and isometric exercise for hypertensive (HTG) and normotensive (NTG) subjects. A: control 

session for NTG; B: submaximal isometric exercise for NTG; C: control session in HTG; D: 

submaximal isometric exercise for HTG. 

 

Figure 4.Nitric Oxide (NO
-
), thiobarbituric acid-reactive substances (TBARS) and catalase 

(CAT) responses to control (A) and isometric exercise session (B) in normotensive (NTG) and 

hypertensive (HTG) adults; †: statistical difference from baseline (p<0.05); *: statistical 

difference between groups (p<0.05).Data expressed as mean and (±) standard deviation. 
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Figure 4 
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Table 1. Age, body composition, hemodynamics, neuromuscular and number of medication data 

for normotensive and hypertensive adults. Data expressed as mean and standard deviation (± 

SD). 

 NTG (n = 10) HTG (n = 14) p-value 

Anthropometrics    

Age (years) 35.9 (8.1) 41.1 (9.4) 0.182 

Height (m) 1.73 (0.10) 1.71 (0.12) 0.620 

Total body mass (kg) 78.0 (15.8) 82.3 (22.4) 0.601 

BMI (kg/m
2
) 26.4 (6.6) 28.2 (5.7) 0.512 

Lean mass (kg) 29.0 (6.1) 32.2 (8.7) 0.334 

Fat mass (kg) 20.8 (12.9) 21.8 (10.3) 0.849 

Body fat (%) 25.8 (10.7) 25.3 (8.4) 0.918 

Waist-to-hip ratio 0.81 (0.07) 0.88 (0.10) 0.131 

Waist-to-height ratio 0.47 (0.04) 0.53 (0.07) 0.019* 

Neck circumference (cm) 35.8 (3.3) 38.0 (4.5) 0.223 

Hemodynamic    

SBP (mmHg) 115 (10.65) 128.89 (11.95) 0.007* 

DBP (mmHg) 71.75 (6.51) 82.96 (5.08) 0.000* 

MAP (mmHg) 86.17 (7.38) 98.27 (9.31) 0.000* 

HR (bpm) 72.95 (14.16) 70.35 (9.31) 0.593 

RPP (mmHg‧bpm) 8391.05 (835.97) 9034.27 (1193.66) 0.308 

Number of medications (%)   

Inhibitors of angiotensin-converting enzyme 14.29  

Angiotensin II receptor antagonist 21.43  
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Diuretics 7.14  

Beta blocker 14.29  

Combination 14.29  

Don’t use medications 28.57  

Lipid Profile    

Triglycerides (mg/dL) 82.34(41.66) 81.86 (45.68) 0.979 

Cholesterol (mg/dL) 161.56 (28.23) 181.86 (31.10) 0.115 

HDL (mg/dL) 46.02 (16.22) 41.76 (12.74) 0.478 

LDL (mg/dL) 99.08 (21.71) 123.73 (31.71) 0.045* 

TG/HDL ratio  2.02 (1.3) 2.37 (1.92) 0.627 

Cho/HDL ratio 3.74 (0.98) 4.82 (2.0) 0.130 

Neuromuscular    

Bench Press    

MVIC (Kg) 42 (21.23) 46.46 (22.23) 0.598 

MVIC relative (Kg/BM) 1.71 (0.94) 1.63 (0.75) 0.832 

MVIC relative (Kg/LM) 2.24 (1.88) 2.12(1.32) 0.837 

Leg Press    

MVIC (Kgf) 139.06 (51.23) 164.76 (71.27) 0.341 

MVIC relative (Kgf/BM) 1.84 (0.72) 1.89 (0.66) 0.685 

MVIC relative (Kgf/LM) 4.71 (1.19) 4.86 (1.37) 0.578 

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; 

HR: heart rate; RPP: rate pressure product; HDL: high density lipoprotein; LDL: low density lipoprotein; TG: 

triglycerides; Cho: Cholesterol; MVIC: maximal voluntary isometric contraction; BM: body mass; LM: lean mass; 

*: statistical significant (p<0.05).   
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Table 2. Oxidative stress parameters responses of control session and isometric exercise in normotensive and hypertensive adults. 

Data expressed as mean and standard deviation (± SD). 

  Control Session   Isometric Exercise 

 NTG  HTG  NTG  HTG 

 BL Post 60’ Rec  BL Post 60’ Rec  BL Post 60’ Rec  BL Post 60’ Rec 

GSH 

(µM) 

6.61 

(1.03)* 

6.26 

(0.94) 

5.89 

(1.07) 

 5.51 

(0.40) 

5.90 

(0.62) 

5.95 

(1.20) 

 5.61 

(0.93) 

6.21 

(0.97) 

6.77 

(0.56)
 †
 

 6.38 

(1.10) 

6.35 

(0.94) 

6.00 

(1.19) 

TEAC 

(mM) 

1.44 

(0.45) 

1.66 

(0.48) 

1.46 

(0.47) 

 1.40 

(0.48) 

1.61 

(0.44) 

1.64 

(0.49) 

 1.88 

(0.52) * 

1.94 

(0.41) * 

1.92 

(0.36) 

 1.64 

(0.31) 

1.61 

(0.2) 

1.64 

(0.45) 

SOD 

(U/mL) 

39.04 

(13.83) 

60.58 

(24.59)
†
 

78.01 

(5.16) 
†
 

 42.3 

(14.3) 

63.3 

(20.0) 
†
 

79.3 

(6.9) 
†
 

 79.8 

(15.9) 

70.3 

(21.1) 

58.5 

(11.8) 

 76.5 

(19.7) 

80.9 

(15.6) 

64.7 

(23.1) 

Uric Acid 

(mg/dL) 

6.41 

(0.59)
 

6.79 

(0.98) 

6.73 

(0.98) 

 6.36 

(1.25) 

6.74 

(1.01) 

6.81 

(1.21) 

 7.00 

(1.51) 

7.01 

(1.88) 

7.22 

(2.01) 

 7.29 

(1.72) 

6.70 

(1.0) 

6.78 

(1.36) 

NTG: normotensive group; HTG: hypertensive group; BL: baseline; GSH: Glutathione; TEAC: trolox-equivalent antioxidant capacity; SOD: superoxide 

dismutase; * Statistical difference for between groups comparison(p<0.05); 
†
 Statistical difference from baseline for within-group comparison(p<0.05).  
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