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ABSTRACT

Exercise-induced muscle damage is an important topic in exercise physiology.
However, several aspects of our understanding of how muscles respond to highly
stressful exercise remain unclear. In the first section of this review we address the
evidence that exercise can cause muscle damage and inflammation in otherwise
healthy human skeletal muscles. We approach this concept by comparing changes
in muscle function (i.e., the force-generating capacity) with the degree of leucocyte
accumulation in muscle following exercise. In the second section, we explore the
cytokine response to ‘muscle-damaging exercise’, primarily eccentric exercise. We
review the evidence for the notion that the degree of muscle damage is related to
the magnitude of the cytokine response. In the third and final section, we look at
the satellite cell response to a single bout of eccentric exercise, as well as the role
of the cyclooxygenase enzymes (COX1 and 2). In summary, we propose that
muscle damage as evaluated by changes in muscle function is related to leu-
cocyte accumulation in the exercised muscles. ‘Extreme’ exercise protocols,
encompassing unaccustomed maximal eccentric exercise across a large range of
motion, generally inflict severe muscle damage, inflammation and prolonged reco-
very (> 1 week). By contrast, exercise resembling regular athletic training (resi-
stance exercise and downhill running) typically causes mild muscle damage (myo-
fibrillar disruptions) and full recovery normally occurs within a few days. Large
variation in individual responses to a given exercise should, however, be expected.
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The link between cytokine and satellite cell responses and exercise-induced muscle
damage is not so clear. The systemic cytokine response may be linked more closely
to the metabolic demands of exercise rather than muscle damage. With the excepti-
on of IL-6, the sources of systemic cytokines following exercise remain unclear.
The satellite cell response to severe muscle damage is related to regeneration,
whereas the biological significance of satellite cell proliferation after mild damage
or non-damaging exercise remains uncertain. The COX enzymes regulate satellite
cell activity, as demonstrated in animal models; however, the roles of the COX
enzymes in human skeletal muscle need further investigation. We suggest using the
term ‘muscle damage’ with care. Comparisons between studies and individuals
must consider changes in and recovery of muscle force-generating capacity.

Keywords: Skeletal muscle, lengthening contractions, ultrastructural disruptions,
necrosis, myokines, cyclooxygenase (COX1, COX2), non-steroidal
anti-inflammatory drugs (NSAIDs)
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INTRODUCTION

Exercise-induced muscle damage has been a popular topic in exercise science for
many years. In particular, the term ‘delayed onset muscle soreness’ (DOMS) has
been a recurring theme since the early work of Hough (127) (e.g.,
(3,12,15,66,68,123,210)). Human studies investigating the physiological respons-
es to eccentric exercise (i.e., lengthening muscle actions) were conducted as early
as the end of the 19th century and the beginning of the 20th century (references in
(16)). More controlled experiments on eccentric exercise (e.g., ‘backwards’
cycling) were conducted by Abbott et al. (1,2) and Asmussen (16) in the 1950’s.
Extending the pioneering work of Hill (21,122), Katz (144) carefully explored the
basic physiology of muscle lengthening. Concerning the potential for eccentric
muscle actions to cause muscle damage, Katz wrote: ‘Rapid stretching of an
active muscle, beyond its optimum length, is apt to break or weaken permanently
parts of the contractile substance’ (p. 64, (144)). Important research into muscle
physiology and sarcomere and myofibrillar mechanics continued through the
work of Gordon, Huxley and Julian (108,109,132,133), and later Julian and Mor-
gan (140,141). Morgan (205) put forward the ‘popping sarcomere hypothesis’ to
explain the observations of disruptions to the myofibrillar machinery of skeletal
muscle fibres after eccentric actions (reviews: (5,206,207,245)). Many other
investigators have contributed to the paradigm of exercise-induced muscle dam-
age, but some worth mentioning for their significant contributions include Salmi-
nen and Vihko (258-260,306,307), Armstrong et al. (11,12,14,315), Faulkner et
al. (37,88,89), McArdle and Jackson (134,186-188), and Fridén and Lieber (157-
159). These investigators mainly worked with muscle preparations (in vitro stud-
ies) and animals models (e.g., rodents and rabbits). Work on humans at the
myocellular level was initiated by Fridén et al. (96,97,101-103) and Newham et al
(137,210,213) in the 1980’s. These authors investigated the effects of downstairs
running, eccentric (backwards) cycling, stepping exercise (one eccentric working
leg), isolated eccentric work for the elbow flexors and backward walking on a
treadmill (targeting the calf muscles). They reported disruptions at the ultrastruc-
tural level and more gross cellular damage, comprising leucocyte accumulation
and regeneration. Thereby, they confirmed many of the findings from previous
studies on muscle preparation and animals. During the last few decades
researchers have, with ever more advanced techniques, attempted to understand
the aetiology of exercise-induced muscle damage. This work has focused on
mechanical tearing, metabolic stress, the local and systemic inflammatory
response, as well as the recovery process involving satellite cell activation and
muscle regeneration (64,86,170,232,247,275,292,296,298).

In the first part we review the evidence for muscle damage and local inflam-
mation (i.e., accumulation of leucocytes in the muscle tissue) following various
types of eccentric exercise. In general, the assessment of muscle damage requires
reliable and valid markers. This is indeed a major challenge, because in human
research there are currently no markers that are considered the ‘gold standard’.
Histological observations (light or electron microscopy) and changes in muscle
function (force-generating capacity) seem to be the most valid markers of muscle
damage, although both have some limitations. Histological examination of mus-
cle biopsy samples (typically, sections cut from a 5−20 mg muscle sample) can
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identify abnormalities such as myofibrillar disruptions and the presence of
inflammatory cells. However, the question remains as to whether this small piece
is representative of the whole muscle (12,26,316). Changes in force-generating
capacity are an indirect measure of muscle damage. Nevertheless, with appropri-
ate testing, changes in muscle function give a good indication of the status of the
whole muscle (316). Muscle damage is therefore best assessed by measuring
changes in force-generating capacity and performing histological observations.
Other proxy markers of muscle damage, such as DOMS and circulating creatine
kinase (CK), are generally not considered sufficiently valid (66,280,316), but do
provide some additional or complementary information. In this section, we focus
on the relationships between changes in muscle function and histological evi-
dence for myofibrillar disruptions, inflammation and myofibre necrosis in human
studies.

In the second part of this review, we look at the exercise-induced cytokine
response. The systemic inflammatory response comprises a leucocytosis and an
acute-phase response (86). Cytokines (e.g., IL-1 and IL-6) are part of the acute-
phase response, and strenuous exercise generally seems to increase the circulating
levels of a number of different cytokines. Cytokines are traditionally regarded as
messenger molecules associated with leucocytes and inflammatory and immuno-
logical reactions. However, more recent research demonstrates that these
cytokines are not only produced by leucocytes, but also by myofibres and peri-
tendinous tissue (151,238). This had led to the term ‘myokines’, which refers to
muscle-derived cytokines and chemokines. Uncertainty persists concerning the
physiological actions and the precise source of production for cytokines found in
the circulation during and after exercise. We have reviewed the literature for stud-
ies that have investigated the cytokine/myokine response in relation to eccentric
exercise.

In the final part of this review, we describe the satellite cell response to sin-
gle bouts of eccentric exercise. Satellite cells are undeniably required for regener-
ation of gross muscle damage where segments of myofibres are lost, for example,
after a strain injury with torn myofibres (136). Surprisingly, satellite cells seem
responsive to a variety of exercise protocols, both muscle damaging and non-
damaging exercise. We review the satellite cell response to eccentric exercise.
Non-steroidal inflammatory drugs that inhibit the activity of cyclooxygenase
enzymes in skeletal muscle can also inhibit the satellite cell response. We discuss
the evidence for this effect in humans.

1. DEFINING EXERCISE-INDUCED MUSCLE DAMAGE
Regular exercise generally makes our muscles stronger and/or more resistant to
fatigue. However, during intense exercise our muscles fatigue and weaken tem-
porarily. If the exercise is unaccustomed and/or very vigorous, we may even dam-
age the working muscles, and it may take days for the muscles to recover. This
type of muscle damage has been named ‘exercise-induced muscle damage’
(143,226). Various types of eccentric exercise (i.e., lengthening muscle actions)
have been used to induce muscle damage experimentally (49,64,86,282). Exer-
cise-induced muscle damage also occurs after long distance running
(121,272,273,310) and to some degree after traditional resistance exercise (i.e.,
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lifting weights; (94,251,281,308))—especially if the exercise is unaccustomed,
very intense and/or too frequent (69,148,194). However, exercise-induced muscle
damage does not have any established definition; it is merely characterised by a
set of signs and symptoms (49,66,159,282). DOMS is the most common symp-
tom of exercise-induced muscle damage, whereas histological evidence of disrup-
tions of the myofibrillar structure and, especially, myofibre necrosis and inflam-
mation are the ultimate signs of muscle damage (if we disregard methodological
uncertainties; discussed below).

Necrotic cells go through several stages (304), but necrotic segments of
myofibres may appear as swollen and rounded (on cross-sections). Immunohisto-
chemical staining for cytoskeletal (e.g., desmin and dystrophin) and myofibrillar
proteins (myosin) is diminished (or absent), which indicates degradation of these
proteins (71,158,166). Disruption of the sarcolemmal membrane causes influx of
extracellular proteins, such as fibronectin and albumin (72,283). Segmental
myofibre necrosis1 is manifested by inflammatory cells (particularly
macrophages) that have invaded these myofibres and accumulation of myoblasts
that originate primarily from satellite cells ((136,154,158,230,257,284); see also
Figure 1). Because necrotic cells will attract immune-competent cells through
receptors, such as toll-like receptors (50,78,184), accumulation of inflammatory
cells within myofibres is a strong sign of segmental myofibre degradation and
necrosis.

Some studies have reported signs of necrosis in voluntarily exercised mus-
cles of seemingly healthy subjects (72,74,121,135,137,226,230,310). In rare
cases, experimental subjects and patients have been diagnosed with rhabdomyol-
ysis after exercise. Rhabdomyolysis is broadly defined by severe muscle
pain/tenderness, swelling and muscle weakness, elevated blood activity of muscle
proteins such as CK (> 10,000 IU/L), and dark urine, indicating myoglobinuria
(65,146,264,271). Serious cases of rhabdomyolysis (including myoglobinuria)
have been observed after various types of exercise, but rhabdomyolysis has been
most frequently reported after extreme military training (135,262).

In experiments involving eccentric exercise, relatively little evidence of
severe myofibre necrosis exists (Table 1; see addendum). A more common finding
is accumulation of inflammatory cells, primarily monocytes/macrophages, in the
endomysium and especially in the perimysium ((92,119,129,229,283); see also
Table 1). However, in response to ‘extreme’ exercise massive leucocyte infiltra-
tion and cellular accumulation inside myofibres can be demonstrated
(60,224,230,257). These observations suggest that the leucocytes are recruited to
remove cellular debris and prepare for regeneration of necrotic segments of
myofibres (56,85). Thus, necrotic myofibre segments seem to induce a strong
chemotactic signal to recruit leucocytes; however, exercised muscle tissue may
also summon leucocytes in the absence if necrosis (Figure 1—moderate damage
versus severe damage).

Leucocytes may start to infiltrate the muscle tissue immediately after exer-
cise, but are typically detected in the extracellular space 24−48 hours after exer-
cise (25,92,119,229). They infiltrate the intracellular space ~4-7 days after exer-
cise—if some myofibres become necrotic (60,229,230). Leucocyte accumulation
therefore appears to be a gradual process regulated by the extent of damage. In
response to severe damage, leucocyte accumulation peaks in time with the pres-
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1 ‘Segmental myofibre necrosis’ implies that there are segments or parts of the fibre that are necrotic, not necessarily the whole myofibre (99,136,158).
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ence of necrotic myofibres (60,137,229,230,257). In relation to muscle function,
McCully and Faulkner (192) have reported a high correlation between gross mus-
cle damage (apparent cellular infiltrate and myofibre necrosis) and reduction in
the force-generating capacity.

Another histological characteristic of muscles following eccentric exercise is
myofibrillar disruption. Fridén et al. (102,103) provided the first evidence of mor-
phological changes in the ‘contractile machinery’ after eccentric exercise in
humans (running down stairs and eccentric cycling). No gross damage or leuco-
cytes were seen by light microscopy, but electron microscopy revealed subcellular
disorganisation of the myofibrillar structure, especially that of the Z-bands (Z-
band streaming and smearing (98)). Several subsequent studies have verified these
findings (105,106,126,182,213,250), with (154,226,229) and without (71,223,324)
simultaneous signs of inflammation and necrosis. Myofibrillar disruption is
strongly associated with structural changes to the t-tubule system and the sar-
colemma (245,289,315). Note that myofibrillar disruptions have been reported
immediately after exercise, as well as one week after exercise, whereas the greatest
disturbances are typically found after 1−4 days (103,121,213,250,325).

Whether myofibrillar disruptions indicate damage or remodelling and
incorporation of new sarcomeres is debatable (71,97,126,154,213,324,325). Sar-
comere disruption and myofibrillar disorganisation are linked to reduced force-
generating capacity (106,154,162,176,250), and sarcomeres are disrupted fol-
lowing single eccentric muscle actions (39). These findings suggest that the
myofibrillar disruption that occurs during or shortly after exercise represents
damage. The changes in myofibrillar structures observed some days into recov-
ery may, however, more appropriately be termed ‘remodelling’ (325). Minor
myofibrillar disruptions can indeed occur without significant changes in the
force-generating capacity (105,245). These findings raise the question of
whether initial damage due to mechanical forces and activation of Ca2+-depend-
ent proteinases (e.g., calpain (161,250)) are required for remodelling. Neverthe-
less, disruption of intracellular Ca2+ regulation probably links myofibrillar dam-
age with necrosis. Hence, if Ca2+ homeostasis is not re-established within a few
days after exercise, the damage to the myofibrillar structure and the cytoskeleton
may become irreparable, and segments of the myofibre become necrotic (Figure
1 and (5,98,107,245)).

Limited human research has examined changes to the extracellular matrix in
response to eccentric exercise, but intracellular and extracellular events appear to
occur simultaneously (40,73,173,250). Stauber et al. (283) reported that the extra-
cellular matrix was separated from the myofibres after exercise. More recent stud-
ies have observed increased expression of tenascin C and PIIINP2, which indicate
remodelling of the extracellular matrix (73,250). Damage to the extracellular
matrix may increase permeability of the sarcolemmal membrane, as indicated by
increased efflux of CK and myoglobin, and influx of albumin and tetranectin
(280,283,319).

Reports from various animal models show that exercise-induced muscle
damage is linked to inflammation (88,200,274,275,296). Humans, however, can
experience symptoms of exercise-induced muscle damage, such as DOMS and
increased passive tension, without presenting classical signs of inflammation
(i.e., leucocyte infiltration) in the muscle tissue (71,180,229,230,251). Based on
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well-controlled experiments, some researchers claim that voluntary eccentric
exercise does not cause gross muscle damage (necrosis) or cellular infiltration in
the exercised muscles (71,178,179,326). This concept challenges the validity of
a series of human studies from the late 1980’s and the 1990’s (e.g.,
(60,92,119,137,226,257)). The main criticism of these classical ‘muscle dam-
age’ studies is the risk of bias resulting from repeated biopsies from the same
muscle (179). Malm et al. (180) reported no differences in leucocyte infiltration
in muscle samples obtained from eccentrically-exercised muscle and resting
muscle up to one week after exercise. Based on these observations they argued
that the biopsy procedure itself, rather than exercise, increased inflammation in
muscle. Electrical stimulation of human skeletal muscles causes significantly
more damage than voluntary exercise (71,171). For these reasons, some
researchers (71,179) also question the relevance of data from animal studies
using rather ‘non-physiological’ muscle actions to inflict massive/gross muscle
damage.

These problems arising from repeated biopsies, together with the results
from electrical stimulation of human muscle, challenge the paradigm of exercise-
induced muscle damage. Historically, this paradigm has been based on data from
animal studies, and has muscle damage and inflammation as fundamental events
(see introduction and (10,12,14,158,200)). Nevertheless, more recent studies that
have collected samples from both exercised and resting muscle provide com-
pelling evidence that eccentric exercise can lead to both accumulation of leuco-
cytes and myofibre necrosis (154,229,230). Importantly, large variations in the
individual responses to eccentric exercise were evident, and gross muscle damage
did not occur in all individuals (229,230). The literature on exercise-induced mus-
cle damage is therefore full of contradictory reports (e.g., see Table 1). Some of
this variability is simply due to non-specific nomenclature used to identify and
describe ‘muscle damage’ and inflammation.

Other confounding factors in this debate on exercise-induced muscle dam-
age include variation in exercise protocols and inconsistent measurements of
muscle function (i.e., the force-generating capacity) to assess muscle damage.
Malm et al. (180,181) andYu et al. (326) reported no signs of necrosis of inflam-
mation after submaximal, eccentrically-biased exercise (i.e., backwards cycling,
downhill running and running down stairs). Although they observed severe
DOMS after these exercise protocols, changes in other markers of muscle damage
were rather trivial compared with observations reported by others (e.g.,
(60,137,283)). Specifically, Malm et al. (181) reported that isometric strength
(torque) decreased by only 15% in the first 24 hours after exercise. Isometric
strength then returned to normal in the following 24 hours. Serum CK activity
increased, but only about six times above pre-exercise values. By contrast, in
other studies in which high-force eccentric exercise across large ranges of motion
was used, isometric/concentric force-generating capacity decreased by about 50%
after exercise. Recovery of muscle function in these other studies was also signif-
icantly slower, and plasma/serum CK activity reached more than 100 times pre-
exercise values (see Table 1). These contrasting findings raise the question of
whether it is appropriate to compare cellular responses from studies using quite
different exercise protocols.
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2. CHANGES IN MUSCLE FUNCTION REFLECT THE EXTENT OF
MUSCLE DAMAGE

To assess muscle damage directly, histological analysis of muscle tissue is
required (88). However, collecting tissue samples from humans can be unpleasant
for the subjects and demanding on resources. Histological analysis of human
muscle tissue can also be unreliable (26,115,156,316). For these reasons, proxy
markers of muscle damage such as DOMS, range of motion, swelling, and serum
CK activity are often used. But these markers do not always accurately reflect the
extent of muscle damage, and do not always correlate with each other
(100,128,210,218,219,255,280,316). By contrast, muscle function measured as
force-generating capacity (e.g., maximal concentric or isometric strength) is rela-
tively easy to measure, and is generally considered to be a reliable and valid
marker for the degree of muscle damage (49,64,88,98,245).

Studies that have both obtained biopsies and measured changes in muscle
function are summarised in Table 1 (see addendum). These studies point to an
association between changes in force-generating capacity and histological obser-
vations such as myofibrillar disruptions, signs of necrosis and leucocyte accumu-
lation. In those studies that report a minor reduction in the force-generating
capacity (< 20% of pre-exercise values; Table 1A), few or no morphologi-
cal/histological abnormalities are found. By contrast, those studies that report a
large reduction in muscle function (> 50%; Table 1C) also report inflammation
(leucocyte accumulation) and/or segmental myofibre degradation/necrosis.
Eccentrically-biased exercise (e.g., downhill running) generally causes smaller
changes in muscle function compared with isolated, eccentric muscle actions that
involve a large range of motion (Table 1 and 2; see addendum).

Eccentrically-biased exercise and isolated eccentric exercise differ with
regard to the mechanical characteristics of muscle-damaging exercise. The most
critical factors for muscle damage are high force and large strain (i.e.,
muscle lengthening beyond the optimum length for force-generation
(29,39,112,160,176,212,290,291)). Eccentric exercise that involves a large range
of motion and high force-generation is very likely to cause substantial structural
(myofibrillar) disruptions, and in turn, reduced muscle function. Other factors,
such as joint angle velocity (51,52,192,227,312) and number of repetitions
(41,162,219,221,291) may modify the degree of muscle damage. However, these
factors seem secondary to the work (strain × force [J]) done to lengthen/stretch
the muscles (38,88,167,321).

2.1 Mild exercised-induced muscle damage
Among those studies that report a relatively small reduction in the force-generat-
ing capacity (i.e., < 20%) and rapid recovery (33,71,90,181), only one study
reported accumulation of leucocytes in the tissue ((71); Table 1A; see addendum).
None of these studies observed any signs of necrosis, and plasma/serum CK
activity did not surpass ∼1,000 IU/L.

In the study by Bourgeois et al. (33), subjects exercised with a load equal to
80−85% of 1RM (i.e., traditional resistance exercise), whereas in the study of
Feasson et al. (90) and Malm et al. (181), subjects ran downhill (on a treadmill).
In the study of Crameri et al. (71), subjects completed a bout of unilateral, single
joint (knee), maximal eccentric actions. Compared with studies that have used

50 • Exercise-induced muscle damage and inflammation

EIR 18 2012



similar protocols (24,25,201), the reduction of muscle function was surprisingly
low in the study by Crameri et al. (71). Nevertheless, Crameri et al. (71) did
observe both myofibrillar disruption and accumulation of macrophages (CD68+
cells). Interestingly, the contralateral leg completed the same number of eccentric
actions, but was stimulated electrically (not shown in Table 1A). Compared with
the voluntarily exercised muscle, the electrically-stimulated muscle was clearly
damaged. Necrosis was indicated by accumulation of intracellular leucocytes
(CD68+ cells) and myofibres that did not express desmin or dystrophin. The
authors suggested that these variations may be due to differences in the pattern of
muscle activation between voluntary and electrically-stimulated muscle actions
(71).

Although increased numbers of leucocytes are not found (by immunohisto-
chemistry) within muscle fibres after these exercise protocols, it does not exclude
the possibility that there are interactions between the exercised myofibres and the
immune system. Circulating leucocytes may indeed accumulate in the micro-ves-
sels of the exercised muscles (229). Raastad et al. (251) used radionuclide imag-
ing (which involves radiolabelling of autologous leucocytes—primarily neu-
trophils—and scintigraphy). They documented an early accumulation of leuco-
cytes in muscle 1−24 hours after resistance exercise. The force-generating capaci-
ty decreased by 16% shortly after exercise and returned to normal between 28 and
47 hours after exercise, indicating only mild muscle damage. Based on this evi-
dence, we propose that the immune system immediately responds to muscle dam-
age resulting from the stress of high-force exercise. However, when muscle dam-
age is mild, blood borne leucocytes do not leave the circulation in significant
numbers (229). Although there is no accumulation of leucocytes in the muscle tis-
sue after exercise, resident stromal cells, such as macrophages, may become acti-
vated, and thereby play a role in the recovery and adaptation to exercise (246).
Evidence to support this notion awaits further experiments on human subjects.

Figure 2 (upper curve) demonstrates typical changes in the force-generating
capacity of trained subjects that have performed a bout of a heavy traditional
resistance exercise (3−8 repetition maximum) or subjects that are ‘low responder-
s’ to eccentric exercise. Typically the reduction in the force-generating capacity
after exercise is less than 20% and recovery is completed within 48 hours. We
suggest using the term ‘mild exercise-induced muscle damage’ if the reduction in
the force-generating capacity is less than 20% and/or recovery is completed with-
in 48 hours after exercise.

2.2 Moderate exercise-induced muscle damage
Among those studies reporting a moderate reduction in the force-generating
capacity (20−50%), only one study reported signs of necrosis (229), but five
(24,25,129,229,287) of eight studies found accumulation of leucocytes in the
exercised muscles (Table 1B; see addendum). Two of the three studies that did not
report increased numbers of leucocytes also reported the smallest reduction in the
force-generating capacity.

Paulsen et al. (229) reported very high serum CK activity in some subjects,
and intracellular accumulation of leucocytes in four of eleven subjects. Although
this histological observation was very infrequent (~1% of the counted fibres), it
indicates that some degree of segmental necrosis did occur. Of note, tissue sam-
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ples that exhibited intracellular leucocyte accumulation were typically collected
from ‘high responder’ subjects who showed a substantial decline in muscle func-
tion (50−73% lower immediately after exercise, and 17−42% lower 1 week later),
indicating they had suffered severe muscle damage.

Beaton et al. (25) did not observe necrotic myofibres, but did observe
reduced immunohistochemical staining of both desmin and dystrophin, as well as
increased numbers of macrophages between myofibres 4 and 24 hours after exer-
cise. It is likely that necrosis was not evident at these early time points. The
authors suggested that these findings were related to increased activity of the
Ca2+-dependent calpain system, as mentioned in Figure 1.

Figure 2 (middle curve) demonstrates the typical recovery of the force-gen-
erating capacity in subjects that have performed unaccustomed eccentric exercise
and some subjects that have performed heavy traditional resistance exercise. We
suggest using the term ‘moderate exercise-induced muscle damage’ if the largest
reduction in the force-generating capacity is between 20−50%, and/or recovery is
completed between 2 and 7 days after exercise.
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Figure 2. Recovery of the force-generating capacity of subjects that have performed heavy
resistance exercise or maximal eccentric exercise (subjects from several studies are com-
bined: (230,248-251), as well as unpublished data). The subjects are organized so that
those who recover their force-generating capacity within 48 hours are represented as mild
exercise-induced muscle damage (34 subjects). Those who recover between 2 and 7 days
are presented as moderate exercise-induced muscle damage (17 subjects). Finally, subjects
that do not recover within one week are presented as severe exercise-induced muscle dam-
age (21 subjects). See further comments in the text. All data are gathered at the Norwegian
School of Sport Sciences by Professor Truls Raastad. Data are presented as means ± stan-
dard error of the mean.



2.2 Severe exercised-induced muscle damage
All studies reporting large loss of force-generating capacity (≥ 50% reduction)
and long-lasting recovery (> 1 week) also reported accumulation of leucocytes in
the exercised muscle tissue, and all but one found signs of segmental myofibre
necrosis (Table 1C; see addendum). All studies that assessed serum/plasma CK
activity also observed high CK activity (i.e., subjects with values > 10,000 IU/L).
Although changes in CK activity have been reported to correlate poorly with
other damage markers in some studies (100,182,280), very high CK activity does
appear to accompany severe reductions in force-generating capacity (218,229)
and evidence of severe muscle damage (137). Changes in CK activity in these
cases follow a similar time course to histological observations of severe muscle
damage (about 4 days after exercise; (60,137,230)). Thus, CK activity measure-
ments may be used to separate subjects with mild muscle damage (< 1,000 IU/L)
and severe muscle damage (> 10,000 IU/L; (66)). Considering the combination of
reduced muscle function and increased CK activity with severe soreness and mas-
sive muscle swelling after exercise, many of the subjects in these studies would
probably be diagnosed with rhabdomyolysis if they had attended an emergency
room.

Muscle samples from subjects with very severe exercise-induced muscle
damage may display a long-lasting regeneration process between 1 and 3 weeks
after exercise (137,154,230,257). Increased numbers of macrophages (or other
CD68 positive stromal cells) are present even after 3 weeks, but these cells are
primarily located in the extracellular matrix around regenerated myofibres (230).
The regeneration process therefore exceeds 3 weeks, and corresponds with
incomplete recovery of muscle function at this time point. Sayers and Clarkson
(263) have reported recovery times of 33−47 days for subjects with an immediate
reduction in muscle function of > 70% after eccentric exercise with the elbow
flexors. Foley et al. (93) observed that muscle volume of the elbow flexors
decreased by about 10% for a period from 2−8 weeks after eccentric exercise.
These two studies did not obtain muscle biopsies; but it seems very likely that
necrosis of myofibres delayed muscle recovery and caused significant atrophy of
the exercised muscles. The cross-sectional area of regenerating fibres is typically
much smaller compared with undamaged adjacent myofibres 2−3 weeks after
exercise (137,230,281).

Myofibrillar disruption was evident in several of the studies in Tables 1
(A−C) that also reported minor changes in muscle function. It appears that
myofibrillar disruption is not directly—or at least not linearly—related to the
accumulation of leucocytes. Some studies indicate that myofibrillar disruption
can occur in the absence of leucocyte accumulation (90,103,326). Other studies,
however, do show a significant correlation between myofibrillar disruption and
leucocyte accumulation (92,229). Therefore, we suggest that when intracellular
damage exceeds a certain level, leucocytes accumulate in the damaged tissue. The
factors that regulate this degree of damage could include degradation and damage
to the sarcolemma. As myofibrillar disruption worsens during the first days after
exercise (probably due to failure to re-establish intracellular Ca2+-homeostasis),
the cytoskeletal framework eventually collapses, thereby leading to sarcolemmal
damage (245). Significant leakage of intracellular proteins to the extracellular
milieu stimulates inflammation (22,79,95,295). If the remodelling process fails to
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restore the subcellular structure within a few days, further damage occurs and
eventually segments of myofibers will become necrotic (Figure 1—severe dam-
age).

Figure 2 (lower curve) displays the typical time course of changes in the
force-generating capacity for subjects who do not recover within one week after
exercise. Such changes are exclusively observed after unaccustomed eccentric
exercise and are typically observed together with high circulating CK activity,
histological signs of myofibrillar damage and leucocyte accumulation. We sug-
gest using the term ‘severe exercise-induced muscle damage’ if the greatest reduc-
tion in the force-generating capacity is larger than 50%, and/or recovery is not
completed within 7 days after exercise.

2.3 Muscle damage is dependent on the choice of exercise protocol
Unfortunately, relatively few studies investigating inflammation in muscle fol-
lowing exercise have examined changes in muscle function. However, it is possi-
ble to assess the degree of damage by considering the exercise protocols that were
used in these studies (Table 2; see addendum). For the studies summarised in
Tables 1A−C and Tables 2A and B, resistance exercise (with equal concentric and
eccentric loads) and eccentrically-biased exercise, such as downhill running (~8°)
and running down stairs (33,90,102,181,223,326), generally do not cause severe
muscle damage or significant leucocyte accumulation in the exercised muscles.
By contrast, tissue accumulation of leucocytes occurs consistently after single
joint, maximal eccentric exercise across a large range of motion
(24,25,60,137,177,283,320). Stepping exercise (i.e., isolated eccentric work for
one leg (213,224)), very steep downhill running (e.g., 16° in Fielding et al. (92))
and very long distance running (74,121) appear to induce moderate or severe
muscle damage and leucocyte accumulation (at least if the exercise is unaccus-
tomed). Studies involving eccentric cycling have produced mixed findings
(103,119,150,180,226).

Although single joint, maximal eccentric exercise across a large range of
motion usually inflicts considerable muscle damage, responses to this form of
exercise do vary. MacIntyre et al. (168,169) used an exercise protocol that con-
sisted of 300 eccentric knee-extensions. Several other more recent studies have
adopted this protocol (20,25,71,209,229). MacIntyre et al. (168) and Murphy et
al. (209) observed that force-generating capacity decreased only moderately by
20−25% immediately after exercise. In the latter study, recovery was actually
complete between 3 and 24 hours after exercise. By contrast, Paulsen et al. (229)
and Beaton et al. (25) found that force-generating capacity decreased by about
50% shortly after exercise, and was about 30% below baseline at 48 hours after
exercise. These measurements of muscle function point to differences between
studies at the cellular level, despite the similarities in exercise protocol. The rea-
sons for the rather large differences between studies are difficult to determine, but
we provide some plausible explanations below.

2.4 Low and high responders make interpretations difficult
The differences between studies (Table 1 and 2; see addendum) are a challenge for
understanding the physiology and/or pathology behind exercise-induced muscle dam-
age. The inter-individual variation in each study is also problematic, especially in stud-
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ies with low subject numbers. Large inter-individual variation in response to eccentric
exercise is commonly reported (54,58,67,113,131,211,218,229,263,265,268). Individ-
uals are sometimes characterised as ‘low’, ‘medium/moderate’ or ‘high’ respon-
ders, based on changes in muscle function (229,265), CK activity (58) and signs
of necrosis and regeneration (230). The factors contributing to this interesting
phenomenon are uncertain. One possibility is that so-called ‘low-responders’
show less impairment of muscle function because they have recently (i.e., within
some months (220)) performed high-force eccentric work using the same mus-
cle(s) (commonly referred to as the ‘repeated-bout effect’ (194)). Other contribut-
ing factors to the large variation in individual responses may include:
age (53,138,155,183), gender (63,263,287), certain genetic factors
(62,81,82,130,323) and training status (10,87,105,229,308), as well as flexibility
(57,195), eccentric peak and end-range torque (265) and angle of peak torque (cf.
the joint angle-torque relationship (207)). In combination with wide variation in
exercise protocols and challenges with the biopsy analyses (26), this unpre-
dictable inter-individual variability may explain much of the diverse findings and
debate on the aetiology of exercise-induced muscle damage. Future studies on
exercise-induced muscle damage should consider these factors. The most impor-
tant action would probably be to carefully evaluate the number of subjects need-
ed. Probably no more than one third of individuals are likely to be ‘high’ respon-
ders who display a clear local inflammatory reaction—even when using maximal
voluntary eccentric exercise across a wide range of motion (72,229,230).

We would like to emphasise that using traditional statistics such as means
and standard deviations to describe and illustrate the response to eccentric exer-
cise can mask important and interesting observations, because of large inter-indi-
vidual variations. We recommend to report individual data and classifying sub-
jects as ‘low’, ‘moderate’ and ‘high’ responders, because this will allow for better
presentation and interpretation of the data (229,265). Therefore, studies on exer-
cised-induced muscle damage should be designed (with power estimations) for
detecting different responders.

2.5 Inconsistencies between animal studies and human studies
The data summarised in Tables 1 and 2 (see addendum) suggest that a certain
level of damage is required to initiate a detectable inflammatory reaction with leu-
cocyte accumulation in exercised muscle tissue. This level of damage seems
rather high, because it is mainly unaccustomed maximal eccentric exercise that
induces extensive muscle damage and inflammation. By contrast, more applied
modes of exercise, such as traditional resistance exercise, cause less or no gross
muscle damage and inflammation.

Somewhat surprisingly, the relationship between the degree of muscle dam-
age and inflammation (leucocyte accumulation) in animals seems even less clear.
In experiments with rodents, leucocyte accumulation is evident after passive
stretches and isometric actions that supposedly do not cause damage
(147,164,243), and also after low mechanical impact exercises, such as swimming
(208) and level running (252). Hence, there appears to be important differences
between humans and (caged) mice with respect to exercise-induced muscle dam-
age. Although the sequence of events is similar in humans and animals after mus-
cle damaging exercise, the time course seems much faster in animals. For exam-
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ple, in humans, plasma/serum CK activity and histological abnormalities seem to
peak after 4−7 days (67,154,210,229,230), whereas in typical animal models,
these events occur 1−3 days after exercise (13,37,100,153,192,193,204). These
observations suggest that caution is advised when comparing data on inflammato-
ry reactions to exercise-induced muscle damage between humans and animals.

Summary
Exercised-induced muscle damage is characterised by a set of symptoms and signs
(‘damage markers’). These markers typically include DOMS, increased passive ten-
sion, decreased range of motion, increased levels of circulating proteins such as CK
and myoglobin, and decreased force-generating capacity (muscular strength), as
well as histological evidence of myofibrillar disruption, cellular infiltration, and
necrosis. The presence and severity of the different symptoms/signs varies widely
between studies. A troubling fact is the relatively weak association between these
damage markers (219,229,255,280,316). For example, DOMS does not reflect histo-
logical observations of myofibrillar disruptions or accumulation of inflammatory
cells. However, as others have suggested (88,316), changes in muscle function appear
to be the best marker for the degree of exercise-induced muscle damage. Although the
capacity to activate the exercised muscles may change in the recovery phase
(27,42,244), reduced force-generating capacity seems to reflect myofibrillar disrup-
tion, inflammation and necrosis better than any other markers of muscle damage.
Based on our review of the literature, we suggest the following scheme for assess-
ing the extent of muscle damage:
• ‘mild exercise-induced muscle damage’ corresponds with a decline in force-
generating capacity of no more than 20% (during the first 24 hours), and/or full
recovery within 48 hours;
• ‘moderate exercise-induced muscle damage’ corresponds with a 20−50% decline
in force-generating capacity, and/or full recovery between 48 hours and 7 days;
• ‘severe exercise-induced muscle damage’ corresponds with a decline in force-
generating capacity of more than 50%, and/or that recovery of force-generating
capacity exceeds 1 week.
We further suggest that muscle function should be assessed as concentric

actions at a slow velocity, e.g., 30−60°/s, and across a large range of motion. Peak
torque, total work and angle of peak torque should be reported. Isometric contrac-
tions may also be used, but exercise-induced changes in the angle of peak torque can
easily over- or underestimate the changes in peak torque when only one joint angle
is tested (49,245). Baseline levels of force-generating capacity should be carefully
established (≥ 1 familiarisation session), and muscle function should be monitored
repeatedly (daily) until full recovery. Note, we advise caution about merely evaluat-
ing the immediate reductions in force-generating capacity (217), because this meas-
urement may reflect muscle fatigue rather than muscle damage (88).

3. CYTOKINE RESPONSES TO EXERCISE-INDUCED MUSCLE
DAMAGE

Researchers in exercise immunology have used various exercise protocols to
investigate cytokine responses to muscle damage. These protocols include down-
hill running, eccentric actions of the leg or arm muscles, and traditional resistance
exercise. Most studies have reported that these modes of exercise increase plasma
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IL-6 concentration for several hours after exercise (see Table 3). Some studies
have also reported that the plasma concentrations of interleukin-1 receptor antag-
onist (IL-1ra), monocyte chemotactic protein (MCP)-1 and granulocyte-colony
stimulating factor (G-CSF) increase in the hours after exercise. Changes in the
plasma concentrations of IL-8, IL-10, IL-12 and soluble tumor necrosis factor α
receptor 1 (sTNF-αR1) are more variable. The plasma concentrations of IL-1β,
IL-2, IL-5, IL-13, IL-15, IL-17, TNF-α, leukemia inhibitory factor (LIF) and
interferon (IFN)-γ do not change at all following exercise. In skeletal muscle, fol-
lowing resistance exercise, mRNA expression of IL-1β, IL-6, IL-8 and TNF-α
increases for up to 24 hours after exercise (see Table 4). IL-6, IL-8 and MCP-1
mRNA expression also increases for several hours after downhill running and
eccentric actions of the quadriceps. Changes in IL-10 mRNA are more variable,
while IL-2, IL-5 and IL-12 mRNA expression does not change after exercise. No
research to date has investigated alterations in the anti-inflammatory cytokines
IL-4 and IL-13 in skeletal muscle following acute exercise.

Exercise-induced muscle damage and inflammation • 57

EIR 18 2012

Table 3. Summary of systemic cytokine responses to eccentric and resistance exercise. 

Reference Exercise mode 
Immediately 

post-exercise 
1−−−−4 h after 

exercise 

4−−−−24 h after 

exercise 

≥≥≥≥ 24 h after 

exercise 

(145,235,236,

239,277,294) 

Downhill 

running 
↑↑↑↑ IL-1ra, IL-6, 

IL-8, G-CSF, 

MCP-1 

↑↑↑↑ IL-1ra, IL-6, 

IL-12p40, 

MCP-1 

↑↑↑↑ IL-6, IL-7, IL-

8, IL-10, MCP-1, 

MIP-1�

↑↑↑↑ IL-1ra 

↓↓↓↓ IL-8 ↓↓↓↓ IL-8 

↔↔↔↔ IL-10, IL-

12p40 

↔↔↔↔ IL-10 ↔↔↔↔ IL-2, IL-4, IL-

5, IL-12p70, IL-

13, IL-17, IFN-γ,

IL-1�, TNF-α, G-

CSF 

↔↔↔↔ IL-6, G-CSF 

(43,297) Eccentric 

cycling 
↑↑↑↑ IL-1ra, IL-6, 

sTNF-αR1 

↑↑↑↑ IL-1ra, IL-6, 

sTNF-αR1 

↑↑↑↑ IL-1ra, IL-6, 

sTNF-αR1 

↔↔↔↔ TNF-α ↔↔↔↔ TNF-α ↔↔↔↔ TNF-α
(77,228,256,3

22) 

Eccentric 

exercise of the 

quadriceps 

↑↑↑↑ IL-6, MCP-1, 

G-CSF, M-CSF 

↑↑↑↑ IL-6, MCP-

1, G-CSF 

↑↑↑↑ G-CSF 

↔↔↔↔ IL-1ra, IL-

8, IL-10, TNF-

α, G-SCF, M-

CSF, sTNF-

αR1 

↔↔↔↔ IL-6, MCP-1, 

M-CSF 

(61,124,234,2

42) 

Eccentric 

exercise of the 

elbow flexors 

↑↑↑↑ IL-6 

 

↑↑↑↑ IL-6, IL-10, 

G-CSF, sTNF-

αR1 

↑↑↑↑ G-CSF, IL-10 ↑↑↑↑ IL-6, IL-10, G-

CSF 

 

↓↓↓↓ IL-8, IL-10 ↓↓↓↓ IL-8 ↓↓↓↓ IL-8 ↓↓↓↓ IL-8, TNF-α

↔↔↔↔ TNF-α, IL-

1ra, IL-8, IL-10, 

G-CSF 

↔↔↔↔ TNF-α, IL-

1ra, IL-8, IL-

10 

↔↔↔↔ IL-1ra, IL-6, 

IL-8, IL-10, TNF-

α, sTNF-αR1 

↔↔↔↔ IL-1ra, IL-6, IL-

8, IL-10, TNF-α,

sTNF-αR1 

(35,36,214,21

5,276,305) 

Resistance 

exercise 
↑↑↑↑ IL-6, IL-8, IL-

10 

↑↑↑↑ IL-6, IL-8, 

IL-10 

↑↑↑↑ IL-6, IL-10, M-

CSF 

↓↓↓↓ IL-1� ↓↓↓↓ IL-1�

↔↔↔↔ IL-6, IL-10, 

IL-15  TNF-α, LIF 

↔↔↔↔ IL-6, IL-

10, TNF-α
↔↔↔↔ IL-15 ↔↔↔↔ IL-6, IL-10, IL-

15, TNF-α,



3.1 Cytokines as mediators of exercise-induced muscle damage
As described previously, exercise induces systemic and local cytokine responses
in skeletal muscle. Over the past decade or so, considerable attention has focused
on the biological role of cytokines derived from muscle (so-called ‘myokines’) in
regulating metabolism in skeletal muscle and adipose tissue (237). Less is known
concerning the role of cytokines in regulating inflammatory responses and adap-
tation to exercise-induced muscle damage. To examine whether cytokines are a
cause or a by-product of exercise-induced muscle damage, a small number of
studies have investigated the relationship between cytokine responses and mark-
ers of muscle damage. Three studies report that plasma cytokine concentrations
correlate with plasma CK activity and myoglobin concentration after exercise
(43,124,216). Other research has investigated the relationship between cytokines
and muscle damage more directly by comparing cytokine responses to concentric
versus eccentric actions, submaximal versus maximal eccentric actions and single
versus repeated bouts of eccentric exercise.

3.1.1 Eccentric versus concentric muscle actions
Several studies have examined cytokine responses to eccentric exercise, which
causes greater muscle damage than concentric exercise. Bruunsgaard et al. (43)
demonstrated that serum IL-6 concentration and CK activity are higher after
eccentric cycling compared with concentric cycling (Table 5; see addendum).
Clarkson et al. (59,129) have also reported greater strength loss and gene expres-
sion of both IL-1R and MCP-1 after eccentric actions compared with concentric
actions of the quadriceps. However, others have reported no differences in the
plasma cytokine responses to level running versus downhill running, despite high-
er plasma CK activity and myoblobin concentration after downhill running
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Table 4. Summary of intramuscular cytokine mRNA responses to eccentric and resistance exercise. 

Reference Exercise mode Cytokine 
1−−−−4 h after 

exercise 

4−−−−24 h after 

exercise 

≥≥≥≥ 24 h after 

exercise 

(36,45,80,139,165,215,246,253,303) Resistance exercise IL-1�
IL-2 

IL-5 

IL-6 

IL-8 

IL-10 

IL-15 

TNF-α
LIF 

↑↑↑↑
↔↔↔↔
↔↔↔↔
↑↑↑↑
↑↑↑↑
↔↔↔↔

↑↑↑↑, ↔↔↔↔

↑↑↑↑

↑↑↑↑
↑↑↑↑

↑↑↑↑
↑↑↑↑
↑↑↑↑

↑↑↑↑

↔↔↔↔

↑↑↑↑
↔↔↔↔
↔↔↔↔

(45,116) Downhill running IL-1�
IL-6 

IL-8 

TNF-α
TGF-�

↔↔↔↔
↑↑↑↑
↑↑↑↑
↔↔↔↔

↔↔↔↔
↑↑↑↑
↔↔↔↔
↔↔↔↔

↔↔↔↔
↑↑↑↑

↑↑↑↑
↑↑↑↑

(59,129,177,203,256) Eccentric exercise of the 

quadriceps 
IL-1β
IL-6 

IL-8 

MCP-1  

TNF-α

↑↑↑↑
↑↑↑↑
↑↑↑↑
↑↑↑↑
↔↔↔↔ ↑↑↑↑

↑↑↑↑
↔↔↔↔

↑↑↑↑
↔↔↔↔

(172) Electrical stimulation of 

gastrocnemius 

IL-1�
TNF-�
MCP-1 

 ↔↔↔↔
↔↔↔↔
↑↑↑↑



(235,236). Variation in exercise protocols, training status of study participants,
and sampling times may account for some of these inconsistent findings.

3.1.2 Submaximal versus maximal eccentric exercise
As a variation to research comparing eccentric and concentric exercise, other
studies have compared muscle damage and cytokine responses to submaximal
and maximal eccentric exercise, which cause differing degrees of muscle damage.
Malm et al. (181) observed that loss of strength was greater 1 d after downhill
running at a gradient of 8° versus 4°, but they detected no changes in serum or
muscle cytokines after either exercise trials. In another study, muscle damage (as
demonstrated by loss of muscle strength) was greater after maximal versus sub-
maximal eccentric actions of the elbow flexors, but cytokine responses were sim-
ilar between the two trials (234).

3.1.3 Repeated bouts of eccentric exercise
Several studies have investigated whether adaptations to repeated bouts of eccen-
tric exercise are associated with alterations in cytokine responses. However, this
research has also produced equivocal findings (Table 5; see addendum). The
results of two studies indicate less muscle damage, smaller changes in circulating
IL-6, IL-8 and MCP-1, and greater changes in circulating IL-10 and macrophage
inflammatory factor (MIF)-1β in the days following two bouts of eccentric exer-
cise (124,277). In contrast with these observations, other groups have found no
difference in plasma IL-6 concentration following repeated bouts of eccentric
actions of the knee extensors/flexors, despite evidence of less muscle damage
(77,322). Once again, these discrepant findings may be due to differences in exer-
cise protocols, training status of study participants, and sampling times. Two stud-
ies have reported that MCP-1 gene expression in m. vastus lateralis is higher fol-
lowing a repeated bout of eccentric actions (129), but lower after electrically-
stimulated muscle actions (172) performed four weeks after an initial bout of the
same exercise. As discussed previously, this discrepancy may reflect differences
in the pattern of muscle fibre recruitment between voluntary and electrically-stim-
ulated muscle actions.

3.2 Experimental considerations for examining the role of cytokines in muscle
damage

Research to date has examined muscle cells and leucocytes as potential sources of
cytokines during exercise; however, the dominant cellular source of circulating
cytokines remains uncertain, for two main reasons. First, in vitro cell culture
methods do not take into account the complex array of interactions between
humoral factors produced by multiple organs during exercise. Although certain
types of cells may generate large amounts of cytokines in vitro, cytokine synthesis
in vivo may depend on the presence of other inhibitory (or stimulatory) factors in
the local or systemic environment. Second, molecular analysis of isolated RNA or
protein extracts is often performed using homogenised muscle, which makes it
difficult to identify specific cell sources of cytokines.

To clarify the role of cytokines in muscle damage and adaptation in greater
detail, more complex experimental procedures are required. Analysis of the circu-
lating concentrations of cytokines is arguably insufficient to examine the role of
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cytokines in muscle damage for two reasons. First, most cytokines are produced
locally within skeletal muscle during exercise. Second, with the exception of IL-
6, these cytokines are not released into the circulation (285). Regular muscle sam-
pling in the first few hours and days after exercise provides the most direct evi-
dence as to whether cytokines regulate muscle damage and regeneration. Howev-
er, due to the invasive nature of muscle biopsies, most studies to date have collect-
ed no more than four biopsy samples at various time points after exercise. Varia-
tion in the time points for muscle sampling, coupled with different exercise proto-
cols, makes it difficult to obtain a clear understanding of the time course of
inflammatory responses to exercise-induced muscle damage. As discussed previ-
ously, some researchers have also questioned whether the biopsy procedure itself
causes more inflammation than exercise (180,181).

Another alternative approach is to modulate or block cytokine activity prior
to muscle damage, and then examine subsequent muscle regeneration. These pro-
cedures are obviously difficult to implement in human studies. Several studies
have examined muscle regeneration following freeze injury in mice lacking
cytokine activity. Compared with wild-type mice, recovery of muscular isometric
strength is lower between 7−28 days post-injury in CCR2-/- mice (314), at 12 days
post-injury in mice depleted of TNF-α or its receptors (313), and at 14 days post-
injury in MCP-/- mice (317). These findings indicate that rather than causing mus-
cle damage, cytokines such as TNF-α and MCP-1 and their receptors are required
for successful muscle regeneration to occur. Conversely, whether over-expression
of these cytokines and their receptors increases muscle injury is currently
unknown. MCP-1 deficiency causes more rapid recruitment and activation of neu-
trophils (through increased expression of neutrophil chemoattractants) and delays
recruitment of macrophages in injured muscle tissue. These effects delay the for-
mation of new muscle fibres and increase lipid accumulation and necrosis in
regenerating muscle tissue (270,317). The mechanisms through which TNF-α
deficiency impairs muscle regeneration are less clear, but may also involve a
decline in infiltrating neutrophils and macrophages (240) and/or the expression of
myogenic regulatory factors (313). In contrast with TNF-α and MCP-1, IL-6 defi-
ciency does not appear to alter muscle regeneration, even though IL-6 expression
in muscle increases following injury (313) and IL-6 regulates the proliferation
and differentiation of myoblasts (17,267). Taken together, these findings do not
necessarily exclude IL-6 as a regulatory factor in muscle regeneration, but suggest
that other factors such TNF-α and MCP-1 and their receptors play more impor-
tant roles. Few studies have reported any change in TNF-α mRNA expression in
muscle after exercise, so its role in human skeletal muscle remains uncertain. IL-6
may be more active in regenerating tendon tissue (8). The research described
above implicates TNF-α and MCP-1 and their receptors in muscle regeneration
following acute muscle injury. They may play a different—and potentially nega-
tive—role in chronic diseases that involve muscle wasting.

Summary
In comparison with cellular inflammatory responses to exercise-induced muscle
damage, much less is known about changes in local cytokine responses and their
functional significance. Most studies have only collected muscle biopsies at one
or two time points after exercise, which precludes any detailed assessment of the

60 • Exercise-induced muscle damage and inflammation

EIR 18 2012



role of cytokines during different phases of muscle inflammation and regenera-
tion. Definitive evidence exists that muscle cells produce a variety of cytokines
and chemokines in vitro, whereas it is more likely that various cell types synthe-
sise cytokines in muscle following exercise. The results of studies that have used
freeze or crush injury in animal muscle to investigate the role of cytokines are not
necessarily applicable to humans, because this type of injury is generally more
severe and localised than exercise-induced muscle damage. Although cytokines
and chemokines regulate a variety of metabolic, endocrine and immunological
functions, it remains unclear whether they are a cause or by-product of exercise-
induced muscle damage. Until we gather more precise information about their
functional role in exercise-induced muscle damage, there seems little rationale for
athletes to attempt to attenuate cytokine responses to exercise through nutritional
or pharmacological means.

4. SATELLITE CELL RESPONSE TO ECCENTRIC EXERCISE
Muscle cells are multi-nucleated, and can be five orders of magnitude larger than
mononucleated cells (44,114). Because adult muscle nuclei (myonuclei) do not
divide, new myonuclei must come from other sources when required. Satellite
cells serve this role as so-called stem cells of skeletal muscle or myogenic precur-
sor cells during both skeletal muscle adaptation and regeneration (55,118). Dur-
ing muscle hypertrophy, the growing myofibre may require additional myonuclei,
because the area of the cytoplasm that each myonucleus can control is traditional-
ly regarded as fairly constant (6,278). However, hypertrophy can proceed without
satellite cell activity, probably because existing myonuclei are able to control
larger areas of cytoplasm when stimulated (28,190,191).

Satellite cells are situated beneath the basal lamina, but in contrast to regular
myonuclei, they are located outside the plasma membrane (sarcolemma). In
response to an appropriate stimulus, satellite cells are activated, and then prolifer-
ate. Some activated satellite cells help to replenish the satellite cell pool. Other
satellite cells migrate to areas where they differentiate and fuse with existing
myofibres or produce new fibres. Exercise can stimulate satellite cells to re-enter
the cell cycle and proliferate, as shown in several human training studies lasting
2−3 months (see summary in (174)). Interestingly, satellite cells may become
activated and proliferate after a single bout of exercise that induces neither hyper-
trophy nor damage to myofibres (71,72,174,202). In this situation, although the
satellite cells are activated, they do not necessarily fuse with myofibres to become
myonuclei (no increase in number of myonuclei) or accumulate to generate new
myofibres. This ‘low threshold’ activation of satellite cells may primarily serve to
replenish the satellite cell pool, because a reduced satellite cell pool would dimin-
ish the regeneration potential of the muscle (261).

4.1 Satellite cell response to a single bout of eccentric exercise
Human studies investigating the skeletal muscle satellite cell responses to a single
bout of eccentric exercise are summarised in Table 6. Figure 3 demonstrates the
quantitative satellite cell responses in these studies. The proportion of satellite
cells increases quickly within the first 24 hours after exercise and may remain ele-
vated for 8 days or more.
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In Figure 3, the relative satellite cell responses (normalised to pre-exercise
values) observed in the studies from Table 6 are shown together. This figure
shows that the observed responses are highly variable, even at similar time points
and despite similarities between the exercise protocols. The satellite cell response
does not appear to correlate with the stress and damage to the exercised muscle.
For example, the study that reported the most damage after exercise (230) also
reported the smallest increase in the number of satellite cells. When gross muscle
damage does occur—as demonstrated in Paulsen et al. (230) and Crameri et al.
(71)—the satellite cells leave their location and migrate as myoblasts to areas of
need for regeneration (136,266). Note, however that in humans, the signs of
severe damage and necrosis are first observed after about 4 days (71,137,230),
while a strong satellite cell response is evident after only 24 hours (Figure 3). Fur-
ther research is warranted to clarify the function and time course of changes in
satellite cell activity in response to exercise-induced muscle damage.

4.1.1 Satellite cell identification
Satellite cells were first identified in 1961 using electron microscopy (185).
Today, specific antibodies are generally used to identify and quantify satellite
cells. Most human studies have used an antibody against NCAM (also known as
CD56 and Leu19 (266)) to identify satellite cells (see Table 6). Because NCAM is
a cell surface glycoprotein expressed on the membrane of satellite cells, this anti-
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Table 6: Human studies investigating the satellite cell (SC) response to a single bout of eccentric exercise in young, healthy 

subjects. 

Reference 

 

Exercise mode 

(thigh muscle if not 

indicated) 

Subjects’ 

training status 

Sampling 

time points 

Measure of SC 

given: 

Context and 

comments 

Crameri et al. (72) Eccentric exercise:  

50 one-leg ’drop down’ 

jumps 

8x10 reps at 30°/s 

8x10 reps at 180°/s 

Sedentary 2 d

4 d

8 d

NCAM 

% MN 

First study to show 

increased SC 

number with single 

bout of exercise 

Dreyer et al. (84) 

 

Max eccentric: 

6x16 reps at 60°/s 

No resistance 

training 

1 d NCAM 

% MN /fibre 

Larger SC response 

in younger than in 

older subjects 

Crameri et al. (71) Max eccentric:  

10x10 reps at 30°/s 

11x10 reps at 180°/s 

No regular 

training 

4 d

8 d

NCAM, Pax7 

% MN  

Larger response 

with electrical 

stimulation. 

No baseline data 

given 

O’Reilly et al. (225) 

 

Max eccentric: 

30x10 reps 180°/s 

No resistance 

training 

4 h

1 d

3 d

5 d

NCAM 

% MN, /fibre 

Association with 

HGF response 

McKay et al. (196) Max eccentric: 

3.14 rad/s 

30 x 10 reps 

No resistance 

training 

4 h

1 d

3 d

5 d

Pax7 

% MN 

Association with 

IL-6 signalling 

Mikkelsen et al. 

(202) 

Max eccentric: 

10x10 reps at 30°/s 

10x10 reps at 120°/s 

Well trained 5 h 

28 h 

8 d

NCAM, Pax7 

% MN, /fibre 

SC response 

reduced by NSAID 

infusion 

McKay et al. (197) Max eccentric: 

3.14 rad/s 

30 x 10 reps 

No resistance 

training 

1 d NCAM, Pax7 

% MN, /fibre 

Compared with 

FACS, similar 

results 

Paulsen et al. (230)  Max eccentric  

(elbow flexors): 

14x5 reps at 30°/s 

Physically active 1 h – 7 d 

(combined) 

NCAM 

% MN, /fibre 

Biopsies from m. 

biceps brachii 

NB: To quantify satellite cells, the number of positive cells is expressed relative to fibre number (per fibre) or as a proportion of 

the total number of myonuclei (MN), the latter calculated as (NCAM+ cells / [myonuclei + NCAM+ cells] × 100) or (Pax7+ cells / 

[myonuclei + Pax7+ cells] x 100). 



body marks the outer border of satellite cells. The transcription factor Pax7 is tra-
ditionally used to identify satellite cells in cell culture. Pax7 is a transcription fac-
tor that is expressed in the nuclei of satellite cells; thus, Pax7 antibodies only label
the nucleus of the satellite cell. Lindström and Thornell (163) reported that 94%
of all human satellite cells are both NCAM and Pax7 positive.

4.2 The role of the COX-pathway and NSAIDs in satellite cell activation
signalling

Many factors are proposed to control satellite cell activity, yet the precise regula-
tory mechanisms in human skeletal muscle are not fully understood (9,30,327).
Animal studies have identified several factors that influence satellite cells at dif-
ferent stages of their activity (for detailed reviews see (30,327)). Among these
factors, the cyclooxygenase (COX) pathway is one of the most important
(31,32,199). Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit this path-
way. In relation to muscle soreness and/or muscle damage, athletes often use
NSAIDs, which highlights the importance of understanding their effect on muscle
regeneration (7,91,328).

COX2 inhibitors and the non-selective NSAID ibuprofen reduce hypertro-
phy of mice and rat skeletal muscle (222,279). In humans, NSAIDs attenuate the
satellite cell response to exercise (174,202), which is discussed in more detail
below. How NSAIDs or prostaglandins exert their effect on satellite cells is not
known.
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Figure 3: Satellite cell response to a single bout of maximal exercise. The satellite cells were
identified by antibodies against NCAM on muscle cross sections from biopsies obtained at
different timepoints after exercise. Eccentric exercise was used in all studies except from
Mackey et al. 2007 (36 km run). Biopsies were obtained from m. vastus lateralis except from
Paulsen et al. 2010 (m. biceps brachii). The number of NCAM+ cells is expressed as pro-
portion of total myonuclei (filled symbols) or per muscle fibre (open symbols) and shown as
percentage of pre-exercise values.



4.2.1 COX and prostaglandins
The primary function of the COX enzymes is to generate prostaglandins.
Prostaglandins (e.g., PGE and PGF) are ubiquitous lipid compounds derived from
membrane phospholipids. They regulate smooth muscle tissue, acting as vasodila-
tors to enhance blood flow in a wide range of tissues including the kidneys. They
also sensitise nociceptors (pain response), regulate inflammation and fever, and
protect the mucus layer in the gastrointestinal tract (104). Among the various
COX enzymes, COX1 and COX2 are the most common (83,104). COX1 is con-
stitutively expressed in several cell types, and synthesises prostaglandins that are
important for homeostasis. COX2 is induced during cell injury, inflammation and
mechanical stretch, and it synthesised prostaglandins that mediate inflammation
and pain. Traditional NSAIDs inhibit both COX1 and COX2 isoforms (120).
COX2 selective inhibitors have been developed to reduce the adverse effects of
traditional NSAIDs on the gastrointestinal tract and the kidneys, while maintain-
ing their analgesic and anti-inflammatory effects (34,309).

4.2.2 COX expression and prostaglandin response to exercise in healthy
human muscle

Several studies have investigated the expression of the different COX isoforms in
human skeletal muscle, although mainly at the mRNA level. COX1 mRNA is
highly expressed in human skeletal muscle (COX1v1 and COX1v2), but it does
not respond to exercise or NSAIDs (47,203,318). By contrast, COX2 mRNA is
expressed at very low levels at rest, and is either unchanged (47,203) or induced
with exercise (45,46,318) and some NSAIDs (47,203). COX3, which constitutes
three different splice variants of COX1, is also expressed at very low levels (318).
COX1 protein expression remains unchanged with exercise and NSAID treatment
(47). COX2 protein is less abundant in skeletal muscle. Immunohistochemical
studies have identified both COX1 and COX2 in human skeletal muscle
(288,293). However, it is uncertain whether the antibodies used in these studies
are specific for the COX enzymes, particularly because COX2 protein expression
in human skeletal muscle is very low (47,293). The level of prostaglandins in
skeletal muscle increases with resistance exercise, as indicated by the presence of
PGF2α in muscle homogenate (300), and PGE2 efflux from muscle using micro-
dialysis (142). By contrast, PGE2 does not seem to change following the first
hours after eccentric exercise (230).

4.2.3 Effect of NSAIDs on healthy human muscle
4.2.3.1 Muscle function and DOMS following exercise
The effects of NSAIDs on DOMS and recovery of muscle function following
exercise have been widely investigated during the last decades (see reviews
(4,18,19)). Research on the use of NSAIDs to relieve DOMS has yielded conflict-
ing results. Likewise, the evidence for the effects of NSAIDs on circulating CK
activity is inconclusive. Considering the widespread use of NSAIDs among ath-
letes (110,198,311), the effects of NSAIDs on adaptation to exercise training are
important to consider. Whether short-term NSAID therapy affects muscle adapta-
tion to training in humans is largely unknown. The discussion below focuses on
healthy young humans, but this issue is just as relevant to the elderly and clinical
patients who may consume NSAIDs regularly for medicinal purposes.
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4.2.3.2 Cellular effects of NSAIDs on human muscle
The cellular effects of exercise combined with NSAIDs on skeletal muscle are not
well known. Bourgeois et al. (33) demonstrated that consuming the NSAID
naproxen for 48 hours following knee extensor exercise did not affect the number
of total leucocytes in m. vastus lateralis (leucocyte common antigen, CD45+
cells). However, muscular strength returned to baseline more rapidly in response
to naproxen compared with the placebo treatment. Treatment with the COX2 spe-
cific inhibitor diclofenac for a total of 27 days before and after 20 min step exer-
cise reduced histological abnormalities in muscle (foci of inflammation or necrot-
ic fibres), DOMS and plasma CK activity (224). Animal studies point to a nega-
tive effect on skeletal muscle regeneration and adaptation (31,152,204,222,279),
whereas evidence from human studies is sparse.

Trappe et al. (301) reported that ingestion of ibuprofen for 24 hours follow-
ing one session of intense eccentric exercise suppressed the increase in mixed
muscle protein synthesis rates that normally occurs following exercise. The pro-
tein synthesis rate measured 24 hours after exercise, increased by 76% in the
placebo group, whereas it remained unchanged in the ibuprofen group. Ibuprofen
also suppressed the PGF2α response to exercise (300). Mackey et al. (174)
showed that ingestion of NSAIDs in humans attenuates the satellite cell response
to endurance exercise. In this study, satellite cell number remained unchanged 8
days after a 36-km run in athletes who consumed NSAIDs after exercise. By con-
trast, satellite cell number was elevated by 27% 8 days after exercise in athletes
who consumed placebo. This finding points towards a negative effect of NSAIDs
on satellite cell proliferation in vivo in humans. This is consistent with reports
from animal models that COX enzyme activity is necessary for satellite cell activ-
ity and muscle regeneration.

We have also shown that infusion of NSAIDs before, during and for 4.5
hours after eccentric exercise (a total of 7.5 hours) reduces the satellite cell prolif-
eration observed 8 days after exercise (202). A moderate dose of ibuprofen (400
mg/d) during 6 weeks training does not, however, alter muscle hypertrophy,
strength or soreness (149). The few human studies using COX2 specific inhibitors
have not observed any effect on satellite cells (230) or mixed muscle protein syn-
thesis (48). Burd et al. (48) administered celecoxib (600 mg) for 24 hours follow-
ing a single session of heavy eccentric exercise. Treatment with celecoxib did not
alter mixed muscle protein synthesis following exercise (0.06 to 0.11 %/h) com-
pared with the placebo treatment (0.07 to 0.09 %/h). Following eccentric exercise
of the elbow flexors, Paulsen et al. (230) observed that treatment with celecoxib
(400 mg/d) for 7 days did not suppress the increase in numbers of satellite cells or
inhibit myofibre regeneration after exercise, when compared to a placebo treated
group.

Animal and cell culture studies mainly show that NSAIDs negatively affect
satellite cells, hypertrophy and regeneration of skeletal muscle. Results from stud-
ies on young, healthy humans indicate either a negative effect (301) or no effect
(203) of traditional NSAIDs on muscle protein synthesis (300). Two studies
report negative effects of NSAIDs on satellite cells (174,202). Hypertrophy is not
reduced following moderate (400 mg/day) doses of ibuprofen (149). Furthermore,
COX2 specific inhibitors do not alter muscle protein synthesis (48) or satellite
cells (230).
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4.3 Inflammation in skeletal muscle: friend or foe?
Current evidence suggests that in healthy young individuals, reducing inflamma-
tion by use of NSAIDs may interfere with muscle regeneration or hypertrophy. In
contrast, NSAIDs may be beneficial under conditions of excessive or prolonged
inflammation. For example, in the elderly, low-grade systemic inflammation may
contribute to the loss of muscle mass (termed ‘sarcopenia’). In this context,
NSAIDs may benefit maintenance of muscle mass (254). Low-grade systemic
inflammation that accompanies ageing has attracted a lot of attention during
recent years. Levels of inflammatory markers, such as IL-6 and CRP increase
slightly with ageing, and these higher levels are correlated with disability and
mortality in humans (23,117,231). During 12 weeks of resistance training in eld-
erly people, ibuprofen (3 × 400 mg/day) promoted gains in quadriceps muscle
volume and strength (299).

In many chronic disease states, systemic inflammation may contribute to
loss of muscle mass (termed ‘cachexia’). In animal models of diseases like cancer
(125,189) and arthritis (111), NSAIDs help to maintain muscle mass. In these
studies, indomethacin (inhibiting COX1 and COX2) and COX2 specific NSAIDs
reduce the negative effects of arthritis on body mass, muscle mass and muscle
gene expression. Similarly, ibuprofen and indomethacin help to preserve muscle
mass in tumor-bearing mice with reduced muscle mass (189).

Summary
Satellite cells are necessary to repair muscle damage. Animal studies show that
the COX pathway is essential for this, and that NSAIDs inhibit repair and regen-
eration. Likewise, in healthy young humans, NSAIDs seem to reduce the capacity
to repair muscle damage, since the number of satellite cells is reduced. The bio-
logical significance of these findings is that consumption of NSAIDs to alleviate
soreness and expedite muscle repair after damage may be contraindicated.
Inflammation (or at least a functional COX-pathway) may be necessary for mus-
cle adaptation and regeneration in young, healthy people. Consequently, inhibit-
ing inflammation using NSAIDs may have negative effects on skeletal muscle.
Evidence from human studies indicates that consumption of large doses of tradi-
tional NSAIDs may negatively affect skeletal muscle in healthy young humans,
whereas moderate doses of NSAIDs or COX2 selective inhibitors have apparently
no effect. Contrary to this, inhibition of inflammation using NSAIDs may be ben-
eficial in elderly or in individuals with chronic diseases that cause muscle atro-
phy. The recommendations on use of NSAIDs are therefore likely to differ
between subjects, and it seems important to consider health, age and training sta-
tus of individuals when considering the use of NSAIDs.

CONCLUSIONS

Currently there is no common definition or accepted way to measure the degree of
exercise-induced muscle damage. However, both animal and human studies have
repeatedly demonstrated that severe exercise-induced muscle damage encompass-
es myofibrillar disruptions, local inflammation with leucocyte accumulation, seg-
mental myofibre necrosis, and subsequent regeneration involving satellite cell
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activation. In humans, the extent of damage and inflammation varies consider-
ably, in contrast to more consistent findings in animal models. There is reasonably
solid evidence that unaccustomed, isolated, maximal eccentric actions over large
range of motion are necessary to inflict severe exercise-induced damage, includ-
ing necrosis. Still, some subjects do not display severe damage even after such
‘extreme’ protocols. Exercise protocols that are closer to exercise used in regular
athletic training (e.g., traditional resistance exercise) generally cause minor dam-
age, although some myofibrillar disturbances seem to occur to some degree. Irre-
spective of the exercise protocol, changes in muscle function (force-generating
capacity) seem to be the best marker for the overall level of damage. Thus, if the
reduction in muscle force-generating capacity is less than 20% after exercise and
recovery is complete in the following 48 hours, the degree of damage is likely to
be minor and signs of classical inflammation (i.e., leucocyte accumulation in the
muscle tissue) are hardly detectable or absent. Nevertheless, local cytokine pro-
duction may still occur. By contrast, reductions of muscle force-generating capac-
ity that surpass 50% and prolonged recovery requiring more than one week, indi-
cate severe exercise-induced muscle damage. Consequently, we recommend that
investigations of exercise-induced muscle damage should always monitor muscle
function until full recovery.

The cytokine response to exercise seems robust, but complex. The circulat-
ing concentrations of various cytokines increase during and after exercise, yet the
cellular sources of these cytokines are difficult to ascertain. Myofibres have the
potential to produce cytokines, but with the exception of IL-6, there is no evi-
dence that other cytokines are released from skeletal muscle into the circulation
during exercise. Leucocytes also seem an unlikely major source of circulating
cytokines following exercise-induced muscle damage. In the exercised muscles,
the increased mRNA expression of cytokines is poorly supported with evidence of
increased protein expression. One exception is MCP-1, but this chemokine
appears to be produced by stromal cells (macrophages) and satellite cells, rather
than by myofibres. Most evidence indicates that the cytokine response to exercise
is not necessarily an acute inflammatory response to muscle damage. Instead,
cytokines may play a greater role in mediating glucose metabolism and muscle
regeneration.

Satellite cells are activated by various types of exercise, both damaging and
apparently non-damaging exercise. Thus, the threshold for satellite cell activation
is rather low, and the satellite cell response does not seem to be directly related to
muscle damage markers. However, only if the initial muscle damage induces a
necrotic process in segments of myofibres will the satellite cells leave their posi-
tion and migrate to the area of damage as (differentiated) myoblasts. The COX
pathway by which prostaglandins are synthesised is associated with the satellite
cell response, because blocking this pathway in animals reduces the regeneration
and growth of skeletal muscle. Although COX2 is essential in animal muscles,
selective COX2 inhibitors do not always inhibit muscle regeneration in humans.
This could be linked to the fact that both the mRNA and protein levels of COX2
are very low in human skeletal muscle. Non-selective NSAIDs (blocking both
COX1 and COX2) can inhibit satellite cells and may affect muscle regeneration
and adaptation in young healthy individuals; yet when combined with resistance
training, NSAID supplementation facilitate muscle hypertrophy in elderly people.
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