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ABSTRACT

BENEKE, R., M. HÜTLER, and R. M. LEITHÄUSER. Maximal lactate-steady-state independent of performance.Med. Sci. Sports
Exerc.,Vol. 32, No. 6, pp. 1135–1139, 2000.Purpose:The maximal lactate steady state (MLSS) corresponds to the highest workload
that can be maintained over time without a continual blood lactate accumulation. MLSS and MLSS intensity have been speculated to
depend on performance. Experimental proof of this hypothesis is missing.Methods: 33 male subjects (age: 23.76 5.5 yr, height:
181.26 5.3 cm, body mass: 73.46 6.4 kg) performed an exhausting incremental load test to measure peak workload and three to six
30-min constant load tests on a cycle ergometer to determine MLSS.Results:MLSS (4.96 1.4 mmolzL21) was independent of MLSS
workload (3.46 0.6 Wzkg21) and peak workload (4.86 0.6 Wzkg21). MLSS intensity (71.16 6.7%) did not correlate with peak
workload or MLSS (P . 0.05). A positive correlation was found between peak workload and MLSS workload (r5 0.82,P , 0.001).
Conclusions:MLSS and MLSS intensity are independent of performance but subjects with higher maximum performance have higher
MLSS workloads. The combination of various fitness related effects on both, the production and the disappearance of lactate during
exercise, may explain that different MLSS workloads coincide with similar levels of MLSS and MLSS intensity.Key Words:
GLYCOLYSIS, OXIDATIVE METABOLISM, PROLONGED CONSTANT WORKLOAD, FITNESS

The maximal lactate steady state (MLSS) corresponds
to the highest workload that can be maintained over
time without a continual blood lactate accumulation

(4,6,19,21). Measurement of MLSS demands several sub-
sequent constant load tests that have to be performed with
different workloads at different days (see Fig. 2). Test by
test, the workload is increased until blood lactate concen-
tration (BLC) accumulates more or less continuously during
the constant load (4,6,22–24,51). Such an increase of BLC
indicates a higher glycolytic rate compared with the rate of
pyruvate oxidation. Thus, MLSS indicates an individual
workload intensity above which the rate of lactate produc-
tion exceeds lactate clearance (4,6,22–24,35,51).

MLSS directly indicates the upper border of exercise
intensities resulting in steady states of BLC. Determination
of the anaerobic threshold is supposed to be an indirect
measure of the latter utilizing incremental or ramp test
protocols (22,23,35,36,40,48,51). Since 1964, numerous
concepts of anaerobic threshold have been developed based
on ventilatory data, heart rate, and constant or individually
varying lactate responses (3,15,19,27,29,41,46–49,52). Se-
lected concepts of anaerobic thresholds are based on fixed
BLC levels like 4 mmolzL21 (29,36,47). On principle, this
procedure presumes that only the workload at the anaerobic

threshold is different between fit and unfit subjects. In
contrast to the latter, numerous concepts of individual an-
aerobic thresholds have been developed, which are based
on the hypothesis that the BLC at the anaerobic threshold
may decrease with increasing performance capacity
(22,27,40,46). Also a relationship between fitness and ex-
ercise intensity at the anaerobic threshold has been specu-
lated (1,17,27,39,40,46,48,49). However, an effect of spe-
cific concepts of the determination of anaerobic thresholds
on the inconsistently observed relationship between fitness
and selected anaerobic lactate thresholds cannot be excluded
(4,22,23).

Possible effects of performance capacity on the upper
border of exercise intensities resulting in a steady state of
BLC can only be evaluated utilizing constant load tests and
the direct determination of the MLSS. However, the exper-
imental proof of a possible relationship between perfor-
mance and MLSS, MLSS workload, or MLSS intensity is
missing. The aim of the present study was to analyze pos-
sible relationships between performance capacity expressed
as peak workload reached at the end of an incremental load
test and MLSS, MLSS workload, and MLSS intensity mea-
sured during constant workload.

METHODS

A total of 33 male subjects (age: 23.76 5.5 yr, height:
181.26 5.3 cm, body mass: 73.46 6.4 kg) volunteered for
this study. Ten subjects were endurance athletes utilizing
cycling training with a training volume of 8–25 hzwk21. All
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other subjects did not perform endurance training on a
regular basis. Informed consent was obtained from all sub-
jects after explanation of the nature and risks involved in
participation in the experiments, which conformed to the
policy statement regarding the use of human subjects (37).

The subjects performed an incremental load test and three
to six constant load tests on a cycle ergometer (Elema
Schönander 380, Siemens, Berlin, Germany). Cycle ergom-
etry was performed at pedalling rates between 70 and 90
RPM with time intervals between testing sessions of 48–72
h. The incremental load test started with 100 W and was
increased to exhaustion by 50 W by every 3rd minute (Fig.
1). The constant load tests lasted 30 min. Workload of the
first constant load test corresponded to the BLC of 3.0
mmolzL21 measured during the incremental load test. Ac-
cording to the procedure published previously (4,6), con-
stant load tests with higher or lower workloads were applied
at subsequent days until MLSS was found and verified.
MLSS was defined as the highest BLC that increased by no
more than 1.0 mmolzL21 during the final 20 min of constant
workload (Fig. 2). The MLSS was calculated as average

value of the BLC measured at min 15, 20, 25, and 30 of the
MLSS workload (4).

Capillary blood samples (20mL) were taken from the
hyperemic earlobe (Finalgon forte®, Thomae, Bieberach,
Germany) before each test and during the final 15 s of every
3rd (incremental load test) or every 5th (constant load test)
minute. The BLC was analyzed by the enzymatic photo-
metric method (Boehringer, Mannheim, Germany). The co-
efficients of variation for repetitive analysis of the identical
samples were, 5% (5).

Data are reported as mean values and standard deviations
(SD). The relationship between variables was examined by
multiple and simple linear regression analyses. For all sta-
tistics, the significance level was set atP , 0.05.

RESULTS

Descriptive data of MLSS, MLSS-, and peak workload
expressed as absolute as well as relative values related to
body mass and also MLSS intensity as percent of peak
workload are presented in Table 1.

In a multiple stepwise regression model with MLSS as
dependent variable the latter was independent of absolute
and relative MLSS- and peak workloads or of MLSS inten-
sity. Corresponding simple plots are shown in Figure 3 to 5.
MLSS intensity did not correlate with relative peak work-
load (Fig. 6). A positive correlation was found between
MLSS workload and peak workload (Fig. 7).

DISCUSSION

With respect to fitness and endurance training, adapta-
tions of heart (33), blood (44,45), muscles (9,18,25,31,34),

Figure 2—Determination of MLSS; workload of the first constant
load test corresponds to 3.0 mmolzL21 measured at the incremental
load test. Constant workload was increased test by test until no steady
state of BLC could be observed.

Figure 1—BLC during an incremental load test; the test starts with
100 W and workload is increased every 3rd minute until exhaustion.

TABLE 1. MLSS, absolute and relative MLSS-, and peak workloads, and
MLSS intensity.

Mean 6 SD Minimum Maximum

MLSS (mmolzL21) 4.9 6 1.4 1.9 7.5
MLSS-workload (W) 248.3 6 40.5 160 310
rel. MLSS-workload (Wzkg21) 3.4 6 0.6 2.1 4.2
Peak-workload (W) 349.5 6 48.1 250 425
rel. Peak-workload (Wzkg21) 4.8 6 0.6 3.3 5.7
MLSS-intensity (%) 71.1 6 6.7 54.3 82.7

Figure 3—No correlation between MLSS and relative MLSS work-
load.
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and hormones (38) have been discussed to modify produc-
tion, distribution, and elimination of pyruvate, and conse-
quently BLC levels at given workloads. Already in 1939,
Christensen and Hansen (12) observed that at a given work-
load, highly endurance trained athletes have a lower respi-
ratory exchange ratio (RER). This indicates a reduced rate
of glucose metabolism combined with a higher rate of fat
utilization. Compared with untrained subjects, athletes with
high endurance capacity have a lower increase of cat-
echolamines and glucagon, and higher concentrations of
insulin at a given workload (38). This affects glycolysis,
gluconeogenesis, and lipolysis (2,10,26,38,50). Numerous
studies confirmed that in endurance trained athletes, muscle
glycogen decreases less than in untrained subjects
(13,26,28,42,50). Thus, at a given workload, increased en-
durance performance reduces the glycolytic rate, increases
the rate of fat oxidation, and leads to lower BLC levels.
However, the present study demonstrates that MLSS does
not indicate a given workload but an exercise intensity.

During 30-min constant workload at 80% of peak oxygen
uptake, which covered the upper range of exercise intensi-
ties of MLSS in the present investigation, in subjects with
low and high endurance capacity, plasma concentrations of
epinephrine, norepinephrine, glucagon, and insulin, and the
availability of glucose were independent of performance

(14). This underlines and extends other results concerning
glucose and fat metabolism at given exercise intensities
(7,20,26,32). The latter also seems to support the present
results, and the concept of MLSS, which is based on the
theory that MLSS indicates an exercise intensity above
which metabolism changes qualitatively. According to this
theory, the duration of aerobic exercise up to MLSS inten-
sity is limited by stored energy. Above MLSS intensity,
contributing to the energetic needs of exercise, pyruvate
production exceeds lactate clearance; muscular creatine
phosphate concentration, muscle and blood pH decrease
(4,6,22–24,35,51), which causes the termination of exercise.

This theory also seems to be supported by concepts pre-
scribing endurance training. According to the latter, MLSS
intensity corresponds to heavy-intensity endurance training
(6,53). Such a training session normally lasts 30–60 min. If
several training sessions per week are intended, the glyco-
gen should not be depleted by more than 50%. A higher
level of depletion needs up to 3 d for repletion (8,16,43).
Muscle and liver glycogen provides more or less 95 kJ of
aerobic energy per kg body mass (11). At MLSS, the RER
is near 1, which indicates glycogen as the dominant fuel.
The corresponding glycogen cost for 45 min exercise at a

Figure 6—No correlation between MLSS intensity and relative peak
workload.

Figure 7—Correlation between MLSS workload and peak workload.

Figure 4—No correlation between MLSS and relative peak workload.

Figure 5—No correlation between MLSS and MLSS intensity.
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MLSS workload of 3.4 Wzkg21 and a working efficiency of
approximately 20% depletes muscle and liver glycogen by
more or less 50%. Due to the nonlinear relationship between
workload intensity and maximum performance time (21),
single bouts of higher constant workloads result in less
glycogen depletion. For example, after 30 min constant
workload at an intensity that is 10% higher than the above-
mentioned MLSS workload, the glycogen is depleted by
approximately 35%. In spite of the latter, in the present
study, at workload intensities slightly above MLSS inten-
sity, numerous subjects terminated the tests between the
20th and the 30th minute of constant workload, indepen-
dently of fitness. On principle, the latter indicates qualitative
changes of metabolism with respect to limiting factors of
exercise.

In conclusion, the present study is the first designed to
investigate possible relationships between MLSS, corre-
sponding workload, and performance. MLSS and MLSS
intensity were not correlated with performance. Thus, pre-
viously published speculations that higher performance re-

duces the BLC at anaerobic threshold, and thus at the
MLSS, and increases the corresponding workload intensity
(1,17,23,27,30,39,40,46,48) could not be verified. This sup-
ports the hypothesis that an inconsistently observed rela-
tionship between selected anaerobic lactate thresholds and
performances (23,24,30) may be an effect of the specific
concepts of the determination of anaerobic thresholds rather
than an effect of different fitness levels (4,22,24). At given
workloads, high performance athletes have lower BLC lev-
els than subjects with low fitness. However, the present
study demonstrates that MLSS indicates an exercise inten-
sity but no given workload. The combination of various
fitness related effects on both, the production and the dis-
appearance of lactate during exercise, may explain that
different MLSS workloads can be performed at similar
levels of MLSS and MLSS intensity.

Address for correspondence: Ralph Beneke, P.D., M.D., M.P.E.,
FACSM, Dept. of Sports Medicine—Free University Berlin, Clayallee
229, D-14195, Berlin, Germany.
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