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Abstract

Skeletal muscle is the most abundant tissue in the human body and its normal physiology plays a fundamental role in health and
disease. During many disease states, a dramatic loss of skeletal muscle mass (atrophy) is observed. In contrast, physical exercise
is capable of producing significant increases in muscle mass (hypertrophy). Maintenance of skeletal muscle mass is often viewed
as the net result of the balance between two separate processes, namely protein synthesis and protein degradation. However,
these two biochemical processes are not occurring independent of each other but they rather appear to be finely coordinated
by a web of intricate signaling networks. Such signaling networks are in charge of executing environmental and cellular cues
that will ultimate determine whether muscle proteins are synthesized or degraded. In this review, recent findings are discussed
demonstrating that the AKT1/FOXOs/Atrogin-1(MAFbx)/MuRF1 signaling network plays an important role in the progression
of skeletal muscle atrophy. These novel findings highlight an important mechanism that coordinates the activation of the protein

skeletal
synthesis machinery with the activation of a genetic program responsible for the degradation of muscle proteins during
muscle atrophy.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Skeletal muscle is the most abundant tissue in the
human body accounting for∼50% of the total body
mass. It is not only the major site of metabolic activity
but it is also the largest protein reservoir, serving as a
source of amino acids to be utilized for energy produc-
tion during periods of food deprivation, and playing a
central role in nitrogen flow during some disease states.
Over the years, a large body of evidence has suggested
that in many disease states or unfavorable environmen-
tal conditions, skeletal muscle mass could be markedly
reduced, a condition that may have devastating health
consequences. In contrast, some forms of physical ac-
tivity such as resistance exercise, can produce large
increases in skeletal muscle mass. Clearly these two
contrasting situations represent both ends of a contin-
uum of mechanisms involved in balancing the forces
that regulate skeletal muscle mass. Understanding such
mechanisms could lead to a better management of the
loss of skeletal muscle.

Two recent studies have further expanded our
knowledge about the mechanisms involved in the de-
velopment of skeletal muscle atrophy. In these reports,
Sandri et al. (2004)andStitt et al. (2004)together with
their respective co-workers have provided direct evi-
dence for a role of AKT1 signaling as a modulator of
the expression of two important genes involved in the
progression of muscle atrophy, the E3 ubiquitin lig-
ases atrogin-1 or Muscle Atrophy F box (MAFbx) and
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expression of atrogin-1 (MAFbx) and MURF-1 is con-
trolled by a signaling network that comprises FOXOs
and their regulation by AKT1. These new findings are
important not only from the atrophy standpoint, but also
from the integration of cellular regulatory networks
perspective as they created a scenario in which a key
molecule that is positively involved in cellular growth
(via protein synthesis) when in its active state, also neg-
atively regulates the opposite process (protein degrada-
tion). Such interaction suggests that the dynamic reg-
ulation of skeletal muscle mass is not simply the bal-
ance between protein synthesis and degradation but is
a rather finely coordinate process.

2. Signaling networks regulating skeletal
muscle mass

The regulation of skeletal muscle mass is a rather
complex phenomenon, and several excellent reviews
have been recently published addressing this topic in
great detail (Glass, 2003; Jackman & Kandarian, 2004;
Lecker, Solomon, Mitch, & Goldberg, 1999; Rennie,
Wackerhage, Spangenburg, & Booth, 2004; Sartorelli
& Fulco, 2004). In general, muscle hypertrophy is the
result of an increase in the size of the existing muscle
fibers. Such increase is reflected by the increase in
cross-sectional area of the muscle fibers, which in turn
is a consequence of the accumulation of contractile
proteins within the fiber. In stark contrast, muscle
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2.1. Mechanisms of muscle protein synthesis and
protein degradation: effects of resistance exercise
versus inactivity and disease states

Several recent studies have pointed towards a
unique series of signaling mechanisms associated
with exercise-induced skeletal muscle hypertrophy.
One such target of this signaling network important
for skeletal muscle hypertrophy is the activation of
the protein synthetic machinery (Bolster, Kimball, &
Jefferson, 2003; Nader, Hornberger, & Esser, 2002;
Rennie et al., 2004) (Fig. 1). Initial reports have demon-
strated that an acute bout of a resistance exercise
paradigm known to result in skeletal muscle hyper-
trophy was capable of inducing a sustained increase
in protein synthesis rates for at least 24 h following
the exercise bout (Hernandez, Fedele, & Farrell, 2000).
This increase in protein synthesis was correlated with
the activation of the phosphoinositide-3 kinase (PI3K),
the mammalian target of rapamycin (mTOR) and the
70 kDa ribosomal S6 protein kinase (S6K1/p70S6k)
(Baar & Esser, 1999; Bolster, Kubica et al., 2003;
Hernandez et al., 2000). Indeed, such modality of ex-

ercise also resulted in the activation of AKT (Bolster,
Kubica et al., 2003; Nader & Esser, 2001), however
when compared with other types of contractile activity
such as endurance exercise, the activation of AKT and
S6K1 was specific to the resistance exercise stimulus
(Bolster, Kubica et al., 2003; Nader & Esser, 2001),
suggesting that activation of the PI3K/AKT/mTOR/
S6K1 signaling network was associated with the
growth response of skeletal muscle to resistance exer-
cise. A more definite assessment of the signaling mech-
anisms involved in exercise-induced skeletal muscle
hypertrophy was provided by studies utilizing ra-
pamycin, a specific mTOR inhibitor.Bodine, Stitt et al.
(2001)have subjected the plantaris muscles of rats to
functional overload by removing the synergist muscles
(soleus and gastrocnemius). After 14 days of overload,
the plantaris muscles were∼45% larger than control.
Administration of rapamycin resulted in a complete
abrogation of this response, indicating that signaling
through mTOR is essential for skeletal muscle growth.

Opposite to the changes in protein synthesis, degra-
dation of cellular proteins is an essential process for
the maintenance of cellular homeostasis. Proper cellu-
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lar function requires an adequate quality control so as to
ensure the degradation of proteins involved in regula-
tory processes, the renewal of structural and damaged
proteins, and to prevent of the accumulation of mis-
folded proteins (Goldberg, 2003). However, in some
specific situations when protein degradation exceeds
protein synthesis, skeletal muscle wasting occurs. This
loss of muscle mass is a hallmark of conditions such
as exposure to microgravity (Adams, Caiozzo, &
Baldwin, 2003), aging (Singh, 2002), renal disease
(Mitch & Price, 2001), cancer (Baracos, 2001), crit-
ical illness (Di Giovanni et al., 2004), diabetes (Price
et al., 1996) and HIV-AIDS (Miro et al., 1997) among
others. The lack of proper interventions that could ame-
liorate the loss of muscle mass during these conditions
represents a major impediment for the proper manage-
ment of some of these diseases and remains as a high
morbidity factor.

Over the years, several studies have identified at
least four different systems involved in the degradation
of proteins during muscle atrophy. These are the lyso-
somal system (Voisin et al., 1996), the calpain system
(Huang & Forsberg, 1998), the caspase or apoptotic
protease system (Du et al., 2004; Lee et al., 2004), and
the ubiquitin proteasome system (Lecker et al., 1999).
At present, it remains unclear what the relative contri-
bution of these systems to the atrophy process are, and
which specific roles they may play during each par-
ticular disease state or context in which muscle atro-
phy develops, i.e. sepsis versus sarcopenia (Jackman &
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termed MAFbx and another gene, named MuRF-1.
Both MAFbx and Murf-1 were found to be specifically
expressed and upregulated in skeletal muscles of rats
undergoing atrophy induced by immobilization, dener-
vation and hindlimb suspension.

3. Intracellular signaling mechanisms involved
in the regulation of skeletal muscle mass: role of
AKT

As mentioned above, the increase in skeletal mus-
cle mass is, in part, a consequence of an increase in
protein accumulation due to increases in protein syn-
thesis rates (Bolster, Kimball et al., 2003; Nader et al.,
2002; Rennie et al., 2004). Protein synthesis is regu-
lated at many levels and involves several intracellular
signaling mechanisms (Bolster, Kimball et al., 2003;
Kimball, Farrell, & Jefferson, 2002; Nader et al., 2002;
Proud & Denton, 1997; Rennie et al., 2004). Among the
intracellular mechanisms controlling protein synthesis,
signaling via AKT1 appears to play a fundamental role
in this process (Glass, 2003).

The serine-threonine kinase AKT family (also
known as protein kinase B, PKB) is composed of
three members: AKT1 (PKB-�), AKT2 (PKB-�) and
AKT3 (PKB-�). These three isoforms share >80%
homology and they are expressed in a tissue specific
manner: AKT1 and AKT2 isoforms are predominantly
expressed in skeletal muscle, thymus, brain, heart and
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n selecting proteins for their degradation, the ubi
in E3 ligases atrogin-1(MAFbx) and MuRF-1 (Bodine,
atres et al., 2001; Gomes, Lecker, Jagoe, Navon,
oldberg, 2001). Both ligases have been identified
e specifically expressed in skeletal muscle.Gomes e
l. (2001)have identified atrogin-1 as a gene that
pregulated 7–9-fold in muscles from food-depri
ice and subsequently found that atrogin-1 exp

ion was also elevated in muscles from animals
xperienced muscle atrophy due to diabetes, ca
nd renal failure. In another study,Bodine, Latres e
l. (2001)have identified the same gene which t
ung, and expression of the AKT3 isoform predo
nates in the brain and testes (Coffer & Woodgett
991; Jones, Jakubowicz, & Hemmings, 1991; Jones
akubowicz, Pitossi, Maurer, & Hemmings, 199).
hosphorylation and activation of AKT is known to o
ur, for example, in response to insulin, IGF-1 and o

igands of the receptor tyrosine kinase type sugge
n important role of AKT in mediating mitoge

nduced cellular functions (Alessi et al., 1996). After
eceptor binding, such ligands are known to recrui
ctivity of phosphoinositide-3 kinase (PI-3K) whi

n turn leads to the formation of phosphatidyl-inos
hosphates (PIPs). AKT is then targeted to the pla
embrane and becomes phosphorylated at Thr308 by
hosphoinositide-dependent kinase (PDK)-1 (Alessi
t al., 1997). Phosphorylation of another site in AK
er473, is believed to be the target of the integrin-link
inase (ILK) or a yet unknown putative kinase hy
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thetically named PDK-2 (Hannigan et al., 1996). Both
phosphorylation sites in AKT are required for full
kinase activity (Alessi et al., 1996, 1997; Anderson,
Coadwell, Stephens, & Hawkins, 1998; Andjelkovic et
al., 1997; Hannigan et al., 1996; Walker et al., 1998).

It remains to be determined, however, what role the
different AKT isoforms may play in the cell. Recent ge-
netic approaches have begun to elucidate the specific
functions of the different AKT isoforms. AKT1−/−
mice are viable but they display a somatic growth-
deficient phenotype suggesting that this isoform may
be directly involved in cellular growth control (Cho,
Thorvaldsen, Chu, Feng, & Birnbaum, 2001). Accord-
ingly, overexpression of an active form of AKT1 results
in a hypertrophic phenotype as judged by an increase
in organ size (Matsui et al., 2002; Shioi et al., 2002).
In skeletal muscle specifically, expression of a consti-
tutive active form of AKT1 results in both in vitro and
in vivo muscle hypertrophy, and prevents atrophy of
denervated muscles (Bodine, Stitt et al., 2001). A dis-
tinct phenotype, however, is observed in the AKT2−/−
mice, these mice are also viable but instead develop a
phenotype that resembles type II diabetes, implicating
this isoform in the regulation of glucose metabolism
(Cho, Mu et al., 2001). These results suggest that the
different AKT isoforms may not have redundant roles
but they are associated with specific cellular functions.

An intriguing aspect of AKT signaling is the wide
range of cellular functions that this kinase mediates,
which range from the modulation of glycolysis through
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The FOXO sub-family of transcription factors be-
longs to a group of evolutionarily conserved transcrip-
tion factors of∼90 members (Birkenkamp & Coffer,
2003). Three mammalian isoforms have so far been
identified and relatively well characterized: FOXO-1,
FOXO-3a and FOXO-4 (Biggs, Cavenee, & Arden,
2001; Biggs, Meisenhelder, Hunter, Cavenee, &
Arden, 1999). (Note: More recently, a fourth member,
FOXO-6, has been identified. This isoform will not be
discussed further as it has been shown to have a dif-
ferent mode of regulation, and is not relevant for the
purpose of the present review.) (Jacobs et al., 2003)
FOXOs are predominantly located in the nuclear com-
partment where they are active, this means unphospho-
rylated and DNA bound. Phosphorylation and inactiva-
tion of FOXOs is carried out in part by AKT on at least
two conserved residues (seeFig. 2 inset). This results
in their release from DNA and further binding to 14-3-3
proteins. Phosphorylated FOXOs bound to 14-3-3 are
then transported to the cytoplasmic compartment where
they remain sequestered by 14-3-3 proteins, phospho-
rylated and transcriptionally inactive, and are therefore
prevented from nuclear import (Birkenkamp & Coffer,
2003a). Conversely, upon inactivation of AKT, FOXOs
become dephosphorylated and both FOXOs and 14-3-
3 are imported back to the nucleus where FOXOs can
exert their transcriptional activity (Fig. 2). FOXOs are
both exported and imported by active mechanisms de-
scribed in detail elsewhere (Van Der Heide, Hoekman,
& Smidt, 2004).
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ibition of glycogen synthase kinase 3-� (GSK3-�)
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995), which acts as a repressor of the eukaryotic

iation factor 2B (eIF-2B) by decreasing its capa
or ribosome recycling and thereby reducing pro
ynthesis at the initiation step (Jefferson, Fabian,
imball, 1999).
Another important function of AKT is the regulatio

f gene transcription through inactivation of FOX
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nterman, & Cohen, 1999) (Fig. 2).
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Fig. 2. Mechanism of FOXOs regulation by AKT. (1) Activation of AKT1 leads to the (2) inactivation of FOXOs causing their (3) release from
DNA and (4) binding to 14-3-3. (4) FOXOs-14-3-3 complexes are (5) exported from the nucleus and once dephosphorylated, likely by inhibition
of AKT 1, (6) are imported back to the nucleus. Inset: Putative AKT phosphorylation sites in FOXOs. Phosphorylation of FOXOs by AKT results
in their inactivation thereby preventing their nuclear import and maintenance of their cytoplasmic localization. This effect is presumably due
to the phosphorylation in the Ser residue that blocks the nuclear localization signal. (DBD = DNA-binding domain, NLS = nuclear localization
signal, NES = nuclear export signal).

responses of skeletal muscle to various stimuli and
may play a role in the progression of muscle atro-
phy.

3.1. Regulation of muscle atrophy: novel roles of
AKT signaling to FOXOs and regulation of
Atrogin-1(MAFbx) and MuRF-1 gene expression

Two recent studies have broadened our under-
standing of the atrophy process in skeletal muscle.
These studies began to dissect a novel function of the
AKT1/FOXOs signaling network. AKT1, apart for its
well-characterized role in hypertrophy, is now shown
to be an effector of anabolic signals that actively
prevent muscle atrophy by inhibiting the activity of
FOXOs, which in turn, appear to control the expression
of atrogin-1(MAFbx) and MuRF-1. Such studies relied
on very elegant experimentation to systematically
study the interaction between AKT1 signaling and
FOXOs in the progression of atrophy in vivo and in
vitro.

In the first report,Sandri et al. (2004)have estab-
lished a model of in vitro atrophy in which differen-
tiated myotubes were either deprived of nutrients or
induced to atrophy by treatment with the synthetic
glucocorticoid dexamethasone + T3 (referred as dex-
amethasone). Following 6 h of nutrient deprivation, a
60% reduction in myotube diameter was observed to-
gether with a 2.5-fold increase in atrogin-1(MAFbx)
mRNA. Similarly, dexamethasone treatment resulted
in a 40% reduction in myotube size together with a
∼3-fold increase in atrogin-1(MAFbx) mRNA. These
two conditions are in agreement with the in vivo re-
sponse to either treatment (Jagoe, Lecker, Gomes, &
Goldberg, 2002; Lecker et al., 2004), which suggests
that the muscle culture system is a valid model to study
skeletal muscle atrophy. Not surprisingly, during these
two catabolic states in which myotube atrophy occurs,
an inhibition of AKT1 phosphorylation was observed
indicating that during myotube atrophy, there is a de-
crease in the activity of signaling molecules involved
in protein synthesis.



G.A. Nader / The International Journal of Biochemistry & Cell Biology 37 (2005) 1985–1996 1991

Consistent with the inhibition of AKT1 phosphory-
lation, and because FOXOs are downstream targets of
AKT1, phosphorylation of FOXOs decreased accord-
ingly during myotube atrophy. Such decrease in phos-
phorylation was accompanied by an increased content
of FOXO1 and FOXO3a proteins in the nuclear com-
partment, suggesting that upon AKT inhibition, de-
phosphorylation of FOXOs caused their re-localization
to the cell nucleus where they can modulate the ex-
pression of target genes. Conversely, treatment with
the anabolic agent IGF-1, which is known to increase
AKT1 phosphorylation, resulted in increased phos-
phorylation of FOXO1 and FOXO3a and suppressed
atrogin-1(MAFbx) mRNA expression providing
further support to the role of AKT1 in the regulation of
FOXOs.

The actions of IGF-1 are likely mediated by several
effectors, thus in order to determine whether AKT1
activity was sufficient to mediate the effects of IGF-1
on the phosphorylation and inhibition of FOXOs and
atrogin-1(MAFbx) expression, a constitutively active
(c.a.) AKT construct was transfected into the myotubes
treated with dexamethasone. Similar to IGF-1 treat-
ment, c.a.AKT prevented the dexamethasone-induced
dephosphorylation of FOXOs and consequently
blocked the induction of atrogin-1(MAFbx), demon-
strating that the activity of AKT 1 is sufficient to
inactivate FOXOs and reduce atrogin-1(MAFbx)
expression. In addition, these results provided ev-
idence suggesting that IGF-1 signaling via AKT1
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signaling effects on atrogin-1 (MAFbx) expression
are mediated at least by FOXO3a, and that FOXO3a
plays a key role in the progression of atrophy as it is
sufficient to induced reductions in myotube size, block
IGF-1 inhibition of atrogin-1(MAFbx) expression and
dexamethasone-induced atrophy.

Further experiments aimed at testing the role of
AKT1 activity on atrogin-1(MAFbx) expression in
vivo were carried out using c.a.AKT1 together with an
atrogin-1(MAFbx) promoter-reporter construct termed
3.5AT1. In adult mouse skeletal muscle, atrogin-
1(MAFbx) gene expression during food deprivation
was shown to be due to an increased transcription as
determined by an increase in luciferase activity of the
3.5AT1 construct. In this condition, co-transfection of
c.a.AKT1 and3.5AT1 reporter showed that c.a.AKT1
completely blocked the increase in atrogin-1(MAFbx)
promoter activity previously shown to occur during
food deprivation, which demonstrates that AKT1 ac-
tivity is sufficient to downregulate atrogin-1(MAFbx)
expression during food deprivation-induced atrophy of
adult skeletal muscle.

Finally, to further validate the in vitro results in vivo
of FOXO3a as mediator of the effects of AKT1 activity
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In another study,Stitt et al. (2004)have undertaken a
similar approach to expand the knowledge about AKT1
signaling on the activities of FOXOs and the regula-
tion of both E3 ligases atrogin-1(MAFbx) and MuRF-
1. Similarly, they have found that AKT1 exerts control
over both atrogin-1(MAFbx) and MuRF-1 expression
by modulating the activity of FOXO1. In this study,
dexamethasone treatment of culture myotubes for 24 h
resulted in∼50% reduction in myotube diameter and
a net loss of contractile protein content. An upregu-
lation of both atrogin-1(MAFbx) and MuRF1mRNA
was detected concurrent with dexamethasone-induced
myotube atrophy. Interestingly, the upregulation of
atrogin-1(MAFbx) expression was more dramatic than
that of MuRF-1.

In agreement with the previous report, addition
of IGF-1 to cultured myotubes for 24 h could pre-
vent dexamethasone-induced atrophy and the upregu-
lation of both atrogin-1(MAFbx) and MuRF1. These
results demonstrate that IGF-1 could exert a pow-
erful anti-atrophy effect, presumably by activating a
signaling network comprising PI-3K and AKT1. In-
deed, the effects of IGF-1 were mediated by PI-3K and
AKT1 signaling, as myotubes stably transfected with
vectors containing either c.a.AKT1 or c.a.PI-3K con-
structs and treated with dexamethasone were refractory
to dexamethasone-induced increase in both atrogin-
1(MAFbx) and MuRF-1 mRNA.

To further understand the mechanism by which ac-
tivation of AKT1 inhibited the expression of atrogin-
1 ere
c of
F ents
w the
a 1
w and
( of
a

de-
t sone
f rip-
t der
t di-
a O1
t cted
w ct.
A las-
m sis-

tent with the previous knowledge that AKT1 mod-
ulates FOXOs localization and that AKT1 is regu-
lated by PI-3K, specific inhibition of PI-3K resulted
in the nuclear translocation of w.t.FOXO1 but had
no effect on c.a.FOXO-1 demonstrating that nuclear
translocation of at least FOXO1 is PI-3K dependent
and could be mediated by AKT1 activity. Then to deter-
mine whether FOXO1 could modulate the expression
of atrogin-1(MAFbx) and MuRF-1, w.t.FOXO1 and
c.a.FOXO1 were transfected in myotubes and treated
with dexamethasone, IGF-1 or a combination of both.
Surprisingly, neither w.t.FOXO1 nor c.a.FOXO1 af-
fected the baseline expression of atrogin-1(MAFbx)
or MuRF-1. Similarly, dexamethasone had no effect
on the expression of atrogin-1(MAFbx) or MuRF-1
in the presence of either construct. IGF-1, however
failed to block the dexamethasone-induced changes in
gene expression of both atrophy genes in the presence
of c.a.FOXO1 but it could still block gene expression
in the presence of w.t.FOXO1. These results indicate
that while FOXO1 is not sufficient to induce transcrip-
tion of atrogin-1(MAFbx) and MuRF-1, inactivation of
FOXO1 is required for IGF-1 to block dexamethasone-
induced expression of atrogin-1(MAFbx) and MuRF-1.

Finally, to validate the previous findings in an
in vivo model of atrophy, denervated muscles were
injected with IGF-1 and its effects on muscle mass,
together with atrogin-1(MAFbx) and MuRF-1 expres-
sion, were determined. IGF-1 injection of denervated
muscles partially ameliorated atrophy (10% loss
v les).
I -1
w the
e as
c ings
i ate
d the
m 1.

4
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dis-
c s in-
v hy.
T
S ed
(MAFbx) and MuRF-1, a series of experiments w
arried out to test: (a) if the phosphorylation
OXO3a and FOXO1 was modulated after treatm
ith IGF-1 and/or dexamethasone, (b) whether
bility of AKT1 phosphorylation to inhibit FOXO
as responsible for its cytoplasmic localization

c) whether FOXO1 could control the expression
trogin-1(MAFbx) and MuRF-1.

Phosphorylation of FOXO3a and FOXO1 was
ected upon IGF-1 treatment, however, dexametha
ailed to induce the dephosphorylation of the transc
ion factors in the IGF-1 treated myotubes. In or
o test whether IGF-1-induced AKT1 activity me
ted the lack of effect of dexamethasone on FOX

ranslocation to the nucleus, myotubes were transfe
ith either a w.t.FOXO1 or a c.a.FOXO1 constru
s expected, w.t.FOXO1 was predominantly cytop
ic but the c.a.FOXO1 was mainly nuclear. Con
ersus 30% loss in the saline-treated musc
mportantly, the muscle sparing effect of IGF
as nicely correlated with a marked reduction in
xpression of both atrogin-1(MAFbx) and MuRF-1
ompared with the saline treated group. These find
ndicate that administration of IGF-1 could amelior
enervation-induced atrophy concomitant with
arked inhibition of atrogin-1 (MAFbx) and MuRF-

. Summary and perspectives for future
esearch

The specific goal of the present review was to
uss recent findings describing the mechanism
olved in the regulation of skeletal muscle atrop
he elegant investigations ofSandri et al. (2004)and
titt et al. (2004)and their co-workers have improv
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our understanding of the mechanisms involved this
process. Their data identifies AKT1 as a key regula-
tor of atrogin-1(MAFbx) and MuRF-1 expression via
FOXOs during the progression of skeletal muscle atro-
phy. This is a new function of AKT1 in skeletal muscle
that complements its previously known role as a me-
diator of muscle hypertrophy, and highlights its role
as a nodal point for the integration of both anabolic
and catabolic signals that lead either to the increase
or decrease in skeletal muscle mass. This central role
of AKT1 represents an important mechanism which
ensures that the cell manages its energy utilization in
an efficient manner as it would be wasteful for a cell
to spend energy synthesizing proteins at the same time
that proteins are wasted away by degradative processes.
Therefore, the notion of AKT-1 as a “coordinator” of
both processes of protein synthesis and protein degra-
dation seems biologically sound.

However, despite these exciting new findings, a few
simple but important questions have emerged. For ex-
ample, during certain catabolic conditions such food
deprivation and denervation, a decrease in AKT1 activ-
ity seems to take place concomitant with the occurrence
of muscle atrophy. Given the importance of AKT1 sig-
naling in the maintenance of skeletal muscle, it will
be important to identify which signals are suppressing
AKT1 activity during the occurrence of muscle atro-
phy. We have also learned that FOXOs are important
factors mediating the expression of atrophy associated
genes such as atrogin-1(MAFbx) and MuRF-1. How-
e rent
F uld
p x),
F at-
r
i fer-
e nc-
t onal
r t
a n-
d F-
1 1,
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a
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f

Another important aspect regarding the functions
of FOXOs is that the amount of atrophy induced by
c.a.FOXO3a was more pronounced than that produced
by atrogin-1(MAFbx) expression alone (Sandri et al.,
2004). It is not clear why this happened, but it seems
logical to speculate that FOXO3a may regulate a larger
subset of genes involved in atrophy in addition to the
regulation of atrogin-1(MAFbx) and MuRF-1 as dele-
tion of either gene could only partially ameliorate the
progression of denervation-induced atrophy in vivo by
56 and 36%, respectively (Bodine, Latres et al., 2001).
Thus, it is plausible that FOXO-induced skeletal mus-
cle atrophy is mediated by an “atrophy transcriptional
program” involving several other genes in addition to
atrogin-1(MAFbx) and MuRF-1 (“atrogenes”) (Lecker
et al., 2004). In addition, a recent report byLee et al.
(2004)demonstrated that inhibition of PI-3K lead not
only to the expression of atrogin-1(MAFbx) but it also
resulted in an increase in caspase-3, a protease believed
to disassemble the contractile apparatus by cleaving
actomyosin (Du et al., 2004) suggesting that AKT1
signaling to FOXOs may represent only a partial as-
pect of the signaling involved in the atrophy process.
Altogether, these studies suggest that skeletal muscle
atrophy may involve several steps including the coop-
erative degradation of muscle proteins by the various
degradative systems.

Much has been learned about the mechanisms in-
volved in the regulation of skeletal muscle mass. This
information is valuable for the development of pharma-
c orat-
i ould
h e that
r sla-
t he
“
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ver, some differences may exist between the diffe
OXO isoforms. For example, while FOXO3a co
otently induce the expression of atrogin-1(MAFb
OXO1 failed to induce the expression of neither

ophy related gene in vitro (Stitt et al., 2004). This is
ntriguing and suggests the possibility that the dif
nt FOXO isoforms may have specific and/or dual fu

ions as transcriptional activators and/or transcripti
epressors on various gene targets (Van Der Heide e
l., 2004). In addition, the fact that FOXO1 failed to i
uce the expression of atrogin-1(MAFbx) and MuR
is surprising as in vivo overexpression of FOXO
hich results in significant muscle atrophy, induces
pregulation of at least atrogin-1(MAFbx) and ot
trophy related genes (Kamei et al., 2004). In this re-
pect, future investigations should involve the stud
OXOs independently in the absence of the other

orms.
ological and therapeutic therapies aimed at ameli
ng the devastating effects that muscle atrophy c
ave in health and disease. However, the challeng
emains for both scientists and clinicians is the tran
ion of this important molecular information from t
bench to the bedside”.
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