Motor fitness in Dutch youth: Differences over a 26-year period (1980–2006)

EMGO Institute, Department of Public and Occupational Health, VU University Medical Center, The Netherlands

Received 8 September 2008; received in revised form 20 March 2009; accepted 9 April 2009

Abstract

This study aimed to compare neuromotor fitness test scores of 9–12-year-old Dutch youth in 2006 with scores of same aged children in 1980. Body height, body weight and performance on neuromotor fitness test items were measured in 2050 Dutch children from 9 to 12 years in 2006 and were compared with data of 2603 same aged Dutch children measured in 1980 with the same neuromotor fitness test battery. Dutch 9–12 year olds in 2006 were significantly taller and heavier than their peers in 1980. Age- and sex-specific performance on almost all neuromotor fitness test items was significantly worse in 2006. Thus, our data suggest that neuromotor fitness of Dutch youth has significantly decreased over the past 26 years.

© 2009 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

Keywords: MOPER fitness test; Neuromotor fitness; Children; Secular trend

1. Introduction

Low physical fitness in children has been associated with impaired health indicators such as increased body fatness,1–3 several cardiovascular disease risk factors4–6 and hypertension.1,6 Therefore it is important to promote high levels of fitness in modern youth. Only a few studies have been published on changes in pediatric physical fitness.7 Physical fitness can be divided into neuromotor fitness (i.e. muscle strength, flexibility, speed of movement, and coordination) and aerobic fitness. Some studies have reported that children are not currently as physically fit as their peers in the previous decades,8–10 while others report no differences.7,11,12 Most of these studies focus on secular changes in aerobic fitness rather than neuromotor fitness. As the majority of physical activities of children involve high-intensity bursts such as jumping and sprinting, a decrease in neuromotor fitness could negatively affect children in their daily physical activity levels and in the long term their health status.13,14

In addition, because motor skill proficiency tracks through childhood15 it is plausible that children with poorer motor skills may become less active adolescents with associated poorer fitness levels. Children who are proficient at performing motor skills may participate more in the type of activities likely to increase fitness levels. Physical activity opportunities of adolescents may thus be increased if they are competent at performing many prerequisite motor skills.16 Therefore, neuromotor fitness may be just as important as aerobic fitness in maintaining overall health and function.17

The few studies on secular changes of children’s neuromotor fitness have shown little change in recent decades. In a systematic review, Tomkinson13 recently analysed secular trends of performances of children (6–12 years) on power and speed tests worldwide over the period 1958–2003. Power (jumping tests) and speed test performances (sprint running and agility running tests) remained relatively stable during the whole period, but a trend towards decline was found since the 1980s (−0.08% to −0.25% per annum). Compared to secu-
lar changes in children’s aerobic fitness, reported neuromotor changes are substantially smaller.10,18,19

Since the study of Tomkinson13 did not include data from the Netherlands, it is unknown whether secular trends in neuromotor fitness levels of Dutch youth are comparable to these documented secular changes. The present paper describes age- and sex-specific neuromotor fitness of 2050 present Dutch children aged 9–12, using the Motor performance (MOPER) fitness test. Since Leyten20 measured MOPER fitness test performance in 2603 Dutch children in 1980, data on changes in neuromotor fitness in Dutch youth over a 26-year period will be given.

2. Methods

In order to compare the MOPER fitness test scores of Dutch children in 2006 with the MOPER fitness test scores of children in 1980 permission was given to access and analyse the Leyten data.20 The study of Leyten20 concerned a random sample of 2603 9–12-year-old Dutch children from 32 primary schools throughout the Netherlands. A stratified sample of regular primary schools was selected for participation, taking into account the national level of urbanisation and social status.

Our study population enrolled in 2006 included 2050 children who volunteered to participate in the iPlay-study.21 In January 2006, 520 Dutch primary schools were randomly invited to participate in the study. Inclusion criteria for the schools were (I) being a regular primary school; (II) giving PE classes twice a week; and (III) willing to appoint a contact person for the duration of the study. The study population – children from 40 different primary schools in urban and suburban areas throughout the Netherlands – was a good representation of the Dutch population. The iPlay-study is a randomised controlled trial on injury prevention in Dutch primary school children, aged 9–12 years. Prior to the study, all parents of the children received an information letter by the research institute including a passive informed consent on the participation of their child(ren). The Medical Ethics Committee of VU University Medical Centre approved the study design, protocols and the passive informed consent procedure. In this study, all injured children or children with a physical disability were excluded.

In 1980, children performed all MOPER fitness test items. The MOPER fitness test includes the bent-arm hang test, \(10 \times 5\) m shuttle run test, leg lift test, plate tapping test, sit and reach test, arm pull test and standing high jump test, and 6 min run test. In Table 1 the outline of the MOPER fitness test items are described. For a more extensive description of the MOPER fitness test items see Kemper and Verschuur.22

In 2006, children performed seven of the eight MOPER fitness test items. Because the iPlay-study did not focus on improvement of endurance, the ‘6 min run test’ (aerobic fitness) was not included in 2006. Validity and reliability of the MOPER fitness test have been shown to be acceptable in children aged 9–18 years.20,23

Trained instructors conducted all tests during a physical education class according to a standardised protocol that was the same in 1980 and 2006. Tests were performed barefoot to rule out bias by differences in footwear. Children were vocally encouraged to perform all test elements as good as possible.

Body height was measured in meters (m), to the nearest 0.01 m, with a portable stadiometer (Seca 214, Leicester Height Measure; Seca GmbH & Co., Hamburg, Germany) according to a standardised protocol. Body weight was measured in kilogram (kg), to the nearest 0.1 kg, with a digital scale (Seca 770; Seca GmbH & Co., Hamburg, Germany). During the body height and weight measurements children were dressed in underwear. From body height and body weight body mass index (BMI) was calculated to estimate overweight and obesity.

Data analysis was completed using application software package SPSS 14.0. All data were stratified for age (9–12 year olds) and gender. Differences between 1980 and 2006 were assessed using \(t\)-test or Kruskal–Wallis test, depending on normal distribution. Level of significance was set at

<table>
<thead>
<tr>
<th>MOPER test item</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bent-arm hang (upper body strength)</td>
<td>Maximal time that eyes were kept above a horizontal bar hanging in a bent arm position</td>
<td>s</td>
</tr>
<tr>
<td>2. (10 \times 5) m run (speed and agility)</td>
<td>Minimal time needed on a 10 times 5 m run</td>
<td>s</td>
</tr>
<tr>
<td>3. Leg lift test (trunk/leg strength)</td>
<td>Lifting both legs 10 times as quickly as possible from the horizontal to the vertical with extended knees while lying</td>
<td>s</td>
</tr>
<tr>
<td>4. Plate tapping (eye–hand coordination and arm speed)</td>
<td>Alternatively tapping with the hand of preference as fast as possible for 25 complete cycles between two discs, of which the centers lay 75 cm</td>
<td>s</td>
</tr>
<tr>
<td>5. Sit and reach (trunk flexibility)</td>
<td>Maximal reach while sitting with extended knees</td>
<td>cm</td>
</tr>
<tr>
<td>6. Arm pull (static arm strength)</td>
<td>Maximal force pulled with preferred arm on a dynamometer while standing</td>
<td>kg</td>
</tr>
<tr>
<td>7. Standing high jump (explosive leg strength)</td>
<td>Maximal standing vertical jump height</td>
<td>cm</td>
</tr>
<tr>
<td>8. 6 min run (aerobic fitness)</td>
<td>Run a maximum distance during 6 min</td>
<td>m</td>
</tr>
</tbody>
</table>
3. Results

All data were normally distributed, except for the scores on ‘bent-arm hang’ and ‘leg lift test’ (all age groups and both genders). As in 1980, only performance on ‘arm pull’ was correlated with body weight ($r = 0.55$) in 2006. Therefore, arm pull adjusted for weight (‘arm pull adjusted’ = (‘arm pull/weight’) × 100) was used in the analysis.

In 2006, 61% of the children attended a primary school located in an urban area and 39% in a rural area. Both genders were equally represented per age category in the two groups. No differences were found per age category and gender between children living in urban and rural areas.

Mean body height, body weight and BMI stratified for age and gender are shown in Table 2. Compared to 1980, children were significantly taller and heavier in 2006 (except for height of 9-year-old boys and 12-year-old girls). Prevalence of overweight and obesity in 2006 was 13% and 3% for boys and 15% and 3% for girls, respectively. Because only mean body height and body weight per age category were available from the study of Leyten,20 no individual BMI could be calculated. The estimated BMI’s from the means showed a higher BMI in 2006 than in 1980 in all categories.

Results on the MOPER fitness test items from 1980 and 2006 are presented in Table 3 and Fig. 1. On all MOPER tests items for all categories (age × gender) performance was significantly worse in 2006 than in 1980, except for ‘arm pull adjusted’ (girls) and ‘standing high jump’ (boys and girls). Since individual scores on ‘bent-arm hang’ and ‘leg lift test’ for 12 year olds in 1980 were not available we could not statistically test differences between 1980 and 2006 for this age category. Median scores on ‘bent-arm hang’ and ‘leg lift test’ are presented in Table 4 and show a decrease on ‘bent-arm hang’ and an increase in ‘leg lift test’ in all categories.

4. Discussion

The aim of this study was to compare the neuromotor performance on MOPER fitness test of Dutch children aged 9–12 with same aged children over a 26-year period (1980–2006). Because the MOPER fitness test includes more items of neuromotor fitness than just power and speed tests, this study gives a rather complete insight into the changes in neuromotor fitness in present youth. Compared to 1980, neuromotor performance on MOPER fitness test items in 2006 was significantly worse on almost all test items for boys and girls of all ages. This finding is of importance because children with poorer motor skills may become less active adolescents with associated poorer fitness levels.16 Children who are proficient at performing motor skills may
Table 3

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent-arm hang (s)</td>
<td>18.3 (14.6)</td>
<td>21.5 (16.9)</td>
<td>8.8 (9.4)</td>
<td>8.0 (9.7)</td>
</tr>
<tr>
<td>× 5 m run (s)</td>
<td>19.2 (1.1)</td>
<td>20.2 (1.9)</td>
<td>18.4 (1.3)</td>
<td>19.4 (1.7)</td>
</tr>
<tr>
<td>Leg lift test (s)</td>
<td>14.2 (2.3)</td>
<td>18.0 (5.6)</td>
<td>13.7 (2.1)</td>
<td>18.4 (6.7)</td>
</tr>
<tr>
<td>Plate tapping (s)</td>
<td>16.5 (2.0)</td>
<td>16.0 (1.7)</td>
<td>15.7 (2.1)</td>
<td>16.4 (1.8)</td>
</tr>
<tr>
<td>Arm pull adjusted (kg/kg weight)</td>
<td>70.2 (13.4)</td>
<td>59.9 (15.4)</td>
<td>75.9 (14.9)</td>
<td>70.6 (14.9)</td>
</tr>
<tr>
<td>Standing high jump (cm)</td>
<td>30.9 (4.6)</td>
<td>34.2 (6.3)</td>
<td>34.2 (4.8)</td>
<td>38.7 (6.6)</td>
</tr>
</tbody>
</table>

Scores on MOPER fitness test items in 2006 are within the range of test items scores found in other studies. The prevalence of overweight and obesity among the study population in 2006 are comparable to the results from a national study on the prevalence of overweight and obesity among a representative selection of Dutch youth during 2002–2004. Besides differences in performance on MOPER fitness test items between 1980 and 2006, the present study also indicates that today’s youth are significantly taller and heavier. Because individual data of body height and body weight were not available from the study of Leyten, no statistical comparison of individual BMI between study populations in 1980 and 2006 could be made, however the estimated mean values suggest the same trend.

International studies suggest a negative association between BMI and performance on neuromotor fitness tests. This corresponds with our findings. For boys and girls in the 2006 data, higher BMI was correlated with lower performance on ‘bent-arm hang’, 20% × 5 m run’, ‘leg lift test’, ‘vertical high jump’ and ‘arm pull adjusted’ ($r = 0.19–0.45$). There was no association between BMI and performance on ‘plate tapping’ and ‘sit and reach’ ($r = 0.00–0.03$).

An increase in BMI may both reflect an increase in fat mass as well as in fat-free mass. An increase in fat mass has a negative effect on fitness measures that require moving, lifting and supporting of the body against gravity. However, an increase in fat-free mass should enhance performance on power and strength measures. When all overweight and obese children in the present study were excluded from the analysis, almost all differences in performance on MOPER fitness test items between 1980 and 2006 remained significant. This finding suggests that increased BMI cannot fully explain the inferior performance in 2006.

Tomkinson reported a downward trend in neuromotor fitness of children worldwide since the 1980s. Changes in neuromotor fitness were calculated using performance on power and speed tests. On speed test performance, Tomkinson reported a decline of 0.08–0.09% per annum for children in the 1980s and 1990s. Results from the present study (mean decline of 0.13% per annum on ‘10 × 5 m run’) showed that changes in speed tests performance in Dutch youth are greater than those documented by Tomkinson. A possible explanation for this difference might be that Tomkinson combined performance on sprint running tests and agility sprint running tests to calculate speed performance. Sprint running tests only administer speed, while agility sprint running tests administer both speed and agility. If performance on both speed and agility has decreased through the years, decrease of performance on agility sprint running tests (as in ‘10 × 5 m run’ in the present study) will be greater than on sprint running alone.

Tomkinson’s calculated performance on power tests, included performance on vertical high jump tests. Contrary to his results from – i.e. a decline of 0.01–0.029% per annum
Fig. 1. Mean differences in performance on MOPER fitness test items of 9–12-year-old Dutch boys and girls between 1980 and 2006 (1980 = 100).

Table 4

<table>
<thead>
<tr>
<th>Age</th>
<th>Boys</th>
<th>Girls</th>
<th>Boys</th>
<th>Girls</th>
<th>Boys</th>
<th>Girls</th>
<th>Boys</th>
<th>Girls</th>
<th>Boys</th>
<th>Girls</th>
<th>Boys</th>
<th>Girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bent-arm hang</td>
<td>15</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>17</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10.5</td>
<td>6</td>
</tr>
<tr>
<td>Leg lift test</td>
<td>13.7</td>
<td>16.7</td>
<td>13.4</td>
<td>16.3</td>
<td>13.9</td>
<td>16.4</td>
<td>13.5</td>
<td>16.3</td>
<td>13.7</td>
<td>16.7</td>
<td>13.4</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Since individual data on ‘bent-arm hang’ and ‘leg lift test’ for 12 year olds were not available, median scores could not be calculated.

5. Conclusion

Current results suggest that present 9–12-year-old Dutch youth are physically not as fit as same aged children were in 1980. Although BMI increased, this did not account for most differences in neuromotor fitness between 1980 and 2006 in 9–12-year-old Dutch youth. As the majority of physical activities of children involve high-intensity bursts such as jumping and sprinting, this decrease in neuromotor fitness may negatively affect children in their daily physical activity levels and in the long term their health status.13,14

Practical implications

- This observed decrease in neuromotor fitness of present Dutch youth, may negatively affect their daily physical activity levels and in the long term their health status.
• To prevent poor fitness levels of present Dutch youth, an active lifestyle during childhood should be encouraged to obtain good physical fitness during childhood and adolescence.

• To prevent further declines in fitness levels regular screening and treatment of inadequate neuromotor fitness in youth is recommended.

Acknowledgements

We would like to thank C. Leyten for providing original data from his study, making comparison with fitness test performances in 1980 possible. The iPlay-study is supported by data from his study, making comparison with fitness test performances in 1980 possible. The iPlay-study is supported by a grant from the Netherlands organisation for health research and development (ZONMW), grant number 62200033.

References

34. Leyten C. De MOPER fitheithest, onderzoeksverslag 9 t/m 11 jarigen [The MOPER fitness test, research paper 9 to 11 year olds]. Haarlem: De Vrieseborch; 1982. p. 78–83.

