Mucosal immunity and upper respiratory tract symptoms in recreational endurance runners

Johanna K. Ihalainen, Moritz Schumann, Keijo Häkkinen, Antti A. Mero

Department of Biology of Physical Activity, University of Jyväskylä, Finland

Running title: Saliva and respiratory tract symptoms

Corresponding author:

Johanna K. Ihalainen, M.Sc.

University of Jyväskyla

Department of Biology of Physical Activity

P.O Box 35

40014 Jyväskylä, Finland

Tel. 358-40-8347106

Fax 358-14-2602071

Email: johanna.k.ihalainen@jyu.fi
Abstract

Purpose: The present study investigated the effects of a 12-week endurance training intervention on salivary proteins and upper respiratory tract symptoms (URS) in twenty-five young men. Methods: Saliva samples of 25 recreational male endurance runners (age 34.6 years, BMI=23.8 kg·m⁻², VO₂peak=47.2 ml·kg⁻¹·min⁻¹) were collected before (PRE) and after (POST) the training intervention, in a fasting state, as well as both before and after a maximal incremental treadmill run. The training consisted of both continuous and interval training sessions, 4-6 x per week based on the polarized training approach. Participants filled in Wisconsin Upper Respiratory Symptom Survey-21 and were retrospectively divided into two groups according to whether they reported upper respiratory tract symptoms (URS, n=13) or not (HEALTHY, n=12). Results: Basal salivary Immunoglobulin A (sIgA) levels were significantly higher (+70%, p<0.05) in HEALTHY both at PRE and POST whereas no significant differences were observed in salivary immunoglobulin M (sIgM), salivary immunoglobulin G (sIgG), lysozyme or salivary α-amylase activity (sAA). Sa-sIgA concentration at PRE significantly correlated with the number of sick-days (R=0.755, p<0.001) in all subjects. The incremental treadmill run acutely increased salivary α-amylase (sAA) significantly (p<0.05) at PRE (200%) and POST (166%) in HEALTHY but not in URS. Conclusions: This study demonstrated that subjects, who experienced URS during the twelve weeks of progressive endurance training intervention, had significantly lower basal sIgA levels both before and after the experimental endurance training period. In addition to sa-sIgA, acute sAA response to exercise might be a possible determinant of susceptibility to URS in endurance runners.

Keywords: endurance training, exercise immunology, saliva, antimicrobial proteins, health, upper respiratory tract symptoms, performance
Introduction

A high endurance training load has been associated with an increased incidence of upper respiratory tract symptoms (URS) (Gleeson 2000; Gleeson et al. 2011). Nieman (1994) has described the relationship between the risk of contracting an URS and the amount of regular exercise to be J-curved. Thus, a sedentary individual would be at moderate risk, and an individual who is moderately active would exhibit a decreased risk for contracting an URS, while athletes, who are exposed to high training loads on a daily basis are at a risk much above that of the sedentary individual (Nieman 1994). As acute respiratory infection symptoms have previously been associated with decreased performance in endurance athletes (Friman & Wesslén 2000), identifying early markers helping to avoid the onset of URS are crucial for coaching purposes.

The mucosal membranes (e.g. in the oral cavity and respiratory tract) are continuously exposed to pathogens. Thus, assessment of salivary proteins and antimicrobial proteins has been shown to represent the status of mucosal immunity (Gillum et al. 2014; Papacosta & Nassis, 2011) and is conducted in order to investigate the exercise induced changes in immune system functions (Gleeson et al. 2004). While sIgA is the most abundant antimicrobial protein found in mucus secretions including saliva, also α-amylase, lactoferrin and lysozyme provide a first line of defense against pathogens that might be present on mucosal surfaces (Marcotte & Lavoie 1998). In addition, saliva IgM and locally produced IgG are considered to play a smaller role in the protection of mucosal surfaces (Bishop & Gleeson 2009; Walsh et al. 2011).
Increases in saliva concentrations of sIgA (sa-sIgA) and other antimicrobial protein concentrations and/or increased secretion rates are associated with acute exercise whereas conversely, decreases have been reported in athletes throughout a training season, leaving the athlete susceptible for upper respiratory tract symptoms (Gleeson et al. 2012; Papacosta & Nassis, 2011). Decreased secretion rates of salivary markers and low concentrations of IgA have typically been implicated as a risk factor for subsequent episodes of URS in endurance-type activities as well as in high-intensity intermittent physical activities and high intensity resistance training (Bishop & Gleeson 2009; He et al. 2014; Papacosta & Nassis, 2013; Walsh et al. 2011). However, numerous studies have not been able to find associations between salivary markers and upper respiratory tract symptoms (Novas et al. 2003; Peters et al. 2010; Tiollier et al. 2004). In addition to the changes in resting salivary protein levels also acute response to exercise of salivary proteins have been suggested to be related to susceptibility to upper respiratory symptoms, as the possible transient activation response after exercise would increase protection in the immediate post exercise period (West et al. 2010).

This study was designed to examine the effects of prolonged progressive endurance training on basal levels of salivary proteins (total proteins, sa-sIgA, sa-IgM, sa-IgG, sa-Lyso, sAA) and susceptibility to URS in recreationally endurance-trained men. In addition, the acute effects of maximal endurance exercise on the salivary proteins during prolonged supervised training were studied. It was hypothesized that twelve weeks of progressive endurance training that includes continuous and interval training with a frequency of 4-6 sessions per week would lead to a suppression of salivary sIgA and lysozyme concentrations. Furthermore, we expected to observe significant differences in salivary biomarkers before the training period between the runners who suffered from respiratory tract symptoms and those who remained healthy throughout the entire training period.
Materials and methods

Subjects. Twenty-five young men volunteered for this study (age = 34.6 ± 1.3 years, weight = 77.4 ± 1.5 kg, height 1.82 ± 0.02 m, fat percentage = 16.2%± 1.2). Subjects were retrospectively assigned to either a symptom free (HEALTHY) or an upper respiratory tract symptom (URS) group, according to self-reported symptoms throughout the training period. Participants were categorized as HEALTHY if they did not report any respiratory symptoms during the entire training period (n=12) or as URS (n=13), if they reported to have at least one episode of URS symptoms. The participants were reminded about the questionnaires during the supervised training sessions to avoid the possibility of forgetting to report the symptoms. All the participants in HEALTHY group returned an empty WURSS-21 questionnaire. All subjects had a minimum of one year endurance training experience with 2-6 sessions and at least 3 h of moderate to high-intensity training per week prior to inclusion in the study. Participants who smoked, used any medication, or had a history of cardiac, hepatic, renal, pulmonary, neurological, gastrointestinal, haematological or psychiatric illness or disease were excluded from the study. Subjects were required to complete a comprehensive health-screening questionnaire and a resting ECG was reviewed by a cardiologist prior to entering the study. Subjects were informed about the potential risks and discomforts associated with the measurements and gave written informed consent prior to participation. The study was conducted according to the declaration of Helsinki, and approved by the Ethical Committee of the University of Jyväskylä, Finland.

Design. The present data stem from a larger endurance training study (Schumann et al. 2014). Following health-screening, the subjects participated in a twelve-week progressive endurance running program conducted during the winter months (average temperature -7 to -
1 °C). If unable to perform training sessions (e.g. due to upper respiratory tract symptoms) subjects were instructed to catch up on missing training sessions so that the total amount of training at POST was similar in all subjects. If the subjects were unable to catch up the training load, the overall durations of the training period was extended. Saliva samples were collected both before (PRE) and after (POST) the training intervention in a fasting state (basal) as well as before and 5 min after an incremental treadmill incremental treadmill run to voluntary exhaustion. In order to control the experimental conditions, subjects received both verbal and written instructions about the measurement preparation in an attempt to minimize physical and mental stress. Subjects were also asked to allow for at least 7-8 h of sleep on the day before each testing as well as to maintain their normal nutritional intake.

Salivary markers. Subjects arrived at the laboratory for the fasting measurement between 7:00 and 9:00 a.m. following an overnight fast of 12 hours. A glass of water (120 ml) was ingested 5 minutes before the saliva collection by Cotton-swab (Salivette, Sersted, Vümbrecht, Germany). The subjects were asked to rest in a seated position for 2 minutes, while keeping the cotton-swab collector in their oral cavity. Following collection, samples were centrifuged at 15 000 g for 2 minutes. Thereafter, saliva samples were stored frozen (-20°C) until analysis. All samples were analysed at the same time by immunoturbidimetry (Konelab, 20XTi, Thermo Electron Corporation, Vantaa, Finland) using commercial reagents (sa-sLyso: Instruchemie, Netherlands; others: Thermo Scientific, Vantaa, Finland). The detection limits and inter-assay coefficients of variation, respectively were 1.2 pg·ml⁻¹ and 3.1 % for sa-IgG, 0.2 g·l⁻¹ and 5.9 % for sa-sIgA, 0.1 pg·ml⁻¹ and 7 % for sa-IgM, 1.0 g·l⁻¹ and 2.2 % for salivary total protein, 4 U·l⁻¹ and 3.6 % for sa-sAA 5 µg·mL⁻¹ and 5.8 % for sa-Lyso.

The peak aerobic capacity (VO₂peak) of each subject was assessed by an incremental treadmill run to voluntary exhaustion. The initial velocity for all subjects was 9 km·h⁻¹ and increased by 1 km·h⁻¹ every 3 min, while the incline was kept constant at 0.5º. The treadmill was stopped
every 3 min for 20 s in order to collect capillary blood samples from the fingertip for the
determination of blood lactate concentrations. VO_2peak was determined as the highest 60 s
oxygen consumption value recorded (Masterscreen CPX, Carefusion, San Diego, USA). Heart
rate was measured using a Polar S810 heart rate monitor (Polar Electro, Kempele, Finland).
Time to exhaustion was defined as the maximal testing time until voluntary exhaustion.

The amount and severity of upper respiratory tract symptoms was evaluated by a shorter
version of the Wisconsin Upper Respiratory Symptom Survey (WURSS-21, Barrett et al.
2005). WURSS-21 is an evaluative illness-specific quality of life instrument, designed to
assess the negative impact of the common cold. The construct validity of this questionnaire
has been supported by measures of reliability, responsiveness, importance to patients and
convergence (Barret et al. 2005). The WURSS-21 includes 10 items assessing symptoms,
nine items assessing functional impairments and one item assessing global severity and global
change. In the present study, subjects were asked to complete the questionnaire on every day
of suffering from URS until complete resolution of the illness episode as indicated by
answering “not sick”. To calculate the symptom score, the daily illness severity scores were
summed.

The subjects were required to maintain training program and their habitual physical activity
throughout the study period. The prescribed training program has been described in detail by
Schumann et al. (2014). The prescribed endurance training consisted of both continuous and
interval training sessions, 4-6 x per week based on the polarized training approach (Muñoz et
al. 2013). Both the training intensity and volume progressively increased throughout the
twelve weeks of training. The exercises focused on running but alternative endurance training
modes such as cycling and cross country skiing were permitted for all low-intensity
continuous training sessions (i.e. the long run as well as the light run) in order to minimize the
risk of injuries. The training intensity was based on heart rate zones calculated from maximal
heart rate determined during the incremental treadmill protocol. The training program included one to two incremental (35-45 min, 65-85%), one long (70-120 min, 60-65%), one interval (20-25 min, 80-85%) and one to two light (35-40 min, 60-65%) runs. Training intensity, duration and distance were consistently controlled and recorded by heart rate monitors (RS800cx, Polar Electro Oy, Kempele, Finland), using manually pre-programmed exercise files. Two training sessions per week were supervised and the remaining training sessions were performed individually.

Statistical methods. Data are presented as mean ± SD. Before applying further statistical methods, the data was checked for sphericity, normality and the homogeneity of variances was analyzed via Levene statistics. As expected, salivary markers were non-normally distributed and rank-transformation was used before further analysis. Absolute changes were analyzed via two-way repeated analysis of variance for main (group, time) and interaction (group × time) effects. This was followed by one-way repeated measures ANOVA on both groups (HEALTHY, URS) to examine a main effect of time. If interaction was observed at p ≤ 0.05, the change from PRE to POST was compared between group and time using paired t-test. Spearman’s rank correlation coefficient was used to assess associations between salivary markers, training data and upper respiratory tract symptoms. Data was analyzed using PASW statistic 22.0 (SPSS, Chicago, IL, USA). The level of statistical significance was set at p<.05.
Results

Anthropometrics and endurance performance of HEALTHY and URS groups are presented in Table 1. The number of the days that the subjects suffered from upper respiratory tract symptoms in the URS group varied between 4 and 28 with an average of 11 ±7 days (Table 2). The symptom scores in the URS group varied between 62 and 1520 and the average severity score per day was 36 ±31. The duration on the training intervention on average was 12 (±0.3) weeks in HEALTHY and 14 (±0.5) weeks in URS. The subjects trained on average 65 ± 8 training sessions during the entire training period and the total amount of training varied between 50 and 68 hours. The subjects ran on average a total of 455 ± 14 kilometers during the study. There were no significant differences between the URS and HEALTHY in the training load. The duration of the incremental run was 25 ± 3.5 min at PRE and 27 ± 2 min at POST in HEALTHY and 25 ± 4 min at PRE and 27 ± 4 min at POST and there were no between-groups difference. After the training \(\text{VO}_{2\text{peak}} \) improved similarly in HEALTHY (+6± 4%, \(p<.001 \)) and URS (+4 ± 4%, \(p<.01 \)), while no between-group differences were observed.

Table 1 & 2 somewhere here

Significant changes in salivary markers were not observed between PRE and POST in either of the groups. Sa-sIgA levels were significantly higher in HEALTHY compared to URS at PRE (240%, \(p<.001 \)) and POST (130%, \(p<.01 \), Figure 1). However, no significant between-group differences were observed in total salivary proteins, sa-IgG, sa-IgM, sa-Lyso or sAA. There was a significant correlation between sa-sIgA at PRE and symptom days in all the participants (\(R=-0.755, p<.01 \)). In URS, a significant correlation between the reported number of symptom days and sa-sIgA (\(R=-.719, p<.001 \)) as well as between the symptoms score and sa-sIgA levels (\(R=-.573, p<.01 \)) was observed.

Figure 1 somewhere here
Maximal endurance exercise acutely increased sAA concentrations in HEALTHY (p<.05) but not URS both at PRE and POST. In URS a significant decrease was observed in sAA to total protein ratio (p<0.05) (Table 3). Total salivary protein content increased significantly (p<.01) in both groups and both measurement points. There was a significant (p<.001) group × time interaction in acute sa-sIgA and sa-sIgA to total protein -ratio response at PRE. In HEALTHY a significant decrease (p<.01) was observed, whereas in URS significantly increased sa-sIgA levels (p<.01) were observed in response to the incremental treadmill run at PRE. A significant response in sa-sIgA concentrations was not observed in either of the groups at POST. Sa-IgM to total protein ratio decreased in URS at PRE (p<0.05) and at POST (p<0.05). Sa-Lyso concentrations increased significantly in both measurement points (p<.05) in HEALTHY and at POST in URS.

Table 3 somewhere here

Discussion

Saliva plays a key role in reducing the accessibility of microbe-susceptible cells in the oral cavity and upper digestive and respiratory tract (Gröschl 2009; Mahanonda et al, 2011). This study demonstrated that subjects, who experienced upper respiratory tract symptoms during the twelve weeks of progressive endurance training that included 4-6 training session per week based on the polarized training approach, had significantly lower basal sa-sIgA levels both before and after the experimental endurance training period. These findings were accompanied by the significant acute increase in sAA after maximal endurance exercise in HEALTHY but not URS both at PRE and POST. In addition, a significant response to maximal incremental run in salivary lysozyme in URS was only observed at POST and the sa-
IgA concentration at PRE correlated significantly with the symptom days (R=-0.755, p<.001).

In the present study we did not determine whether the cause of the symptoms were a local inflammation or infections and that is why upper respiratory symptoms were used to cover both causes. Nevertheless, the subjects who reported upper respiratory tract symptoms during the training period had lower sa-IgA levels at both PRE and POST. This is in line with previous studies performed in elite athletes (Gleeson & Bishop 2013). Neville et al. (2008) showed a significant reduction (28%) in sa-IgA concentrations, occurring during the 3 weeks prior to URS episodes and a return to baseline two weeks later, which might explain the difference between our groups at POST. Moreover, sa-IgA concentrations correlated significantly with the number of sickness days, which is in line with the study by Neville et al. (2008). While we are aware that lower sa-IgA concentrations at POST might be also attributed to the inadequate recovery from an URS episode commenced just before the POST measurements (Neville et al. 2008), none of the participants in the present study had symptoms during the final 10 days prior to the POST measurements. Interestingly, the lower sa-IgA levels or the missed training days in URS did not seem to affect endurance performance adaptations as both groups increased VO2peak and time to exhaustion to a similar extent. However, it should be kept in mind that the overall training volume was matched between the subjects also in the case of sickness which is also shown by the longer training duration in URS (14±0.5 weeks) than in HEALTHY group (12±0.3 weeks).

In the present study a total of 19 episodes of URS symptoms in 13 subjects were recorded during the entire training period. Previous studies have shown that athletes utilizing high training loads with high intensities seem to be more susceptible to respiratory tract symptoms
compared to athletes training with a lower training volume and/or lower intensity, especially
during endurance training (Spence et al. 2007). In the present study, however, the amount of
training did not differ between the groups. Furthermore, despite a progressive increase in
training load throughout the twelve weeks of training, there were no significant changes in
salivary proteins, which might indicate that the training load was not high enough to have an
effect on salivary biomarkers. Previous studies (Francis et al. 2005) have reported large
within and between subject variations in sa-sIgA concentrations. It should be noted that in the
present study the incidence of upper respiratory tract symptoms was relatively small and the
URS group was not homogenous regarding the number of days with reported symptoms. On
the other hand, the salivary sIgA concentrations in URS were consistently low among all
subjects, while in HEALTHY the deviation was notably higher. This in turn may provide
some evidence for low salivary sIgA concentrations as a risk factor for the development of
upper respiratory tract symptoms, however, notable inter-individual differences exist. It has
been shown that the upper respiratory tract symptoms are most common during winter months
(Makinen et al. 2009). In the present study the training was conducted during the winter
months where the average temperatures typically vary between -1 and -7 °C. Training in cold
environment could have affected salivary proteins and upper respiratory symptoms but this
cannot be confirmed based on the present study design.

In the present study a significant acute increase was observed in salivary total protein
concentrations in both groups after the incremental treadmill run both before and after the
training. In agreement with a study of Chicharro et al. (1998), this transient increase might be
attributed to β-sympathetic actions on the salivary glands. However, to the best of our
knowledge limited data exists regarding the use of acute exercise-induced changes in salivary
immunoglobulins and antimicrobial proteins as predictors of upper respiratory tract
symptoms. The acute effects of exercise on sa-sIgA concentrations are not consistent in the previous literature (Papacosta & Nassis 2011). Papacosta & Nassis (2011) reported that typically high intensity endurance exercise of less than 30 min in duration leads to an increase in sa-IgA concentrations. Fahlman et al. (2001) reported a significant transient reduction in sa-sIgA after high-intensity exercise which was not related to URS incidences. Interestingly, Nieman et al. (2006) reported higher incidence of upper respiratory tract symptoms after ultra-marathon in those subjects who exhibited a larger pre- to post exercise reductions in sa-sIgA secretion but an observed reduction (10 %) in sa-sIgA concentration was not related to URS. The present study observed significantly different response to maximal treadmill run until voluntary exhaustion in sa-sIgA concentration between the URS and HEALTHY groups at PRE, in HEALTHY a significant decrease was observed, whereas in URS sa-sIgA concentrations increased. Interestingly, however, at POST the response in sa-sIgA remained statistically unaltered following the incremental treadmill run in both groups, which might indicate that the training affected the exercise response. However, in the present study significant associations between the acute sa-sIgA response and URS during 12 weeks of endurance training were not observed. Typically studies have reported that salivary IgG remains to be unaffected by acute exercise, whereas saliva IgM has previously been shown to respond simultaneously with salivary sIgA concentrations (Bishop & Gleeson 2009). In the present study, however, incremental treadmill running did not have a significant effect on concentrations of sa-IgG or sa-IgM before or after the training. However, IgM to total protein ratio significant decreased in URS group, whereas in HEALTHY significant changes were not observed.

Saliva α-amylase is an antimicrobial protein and its secretion is stimulated by the activity of the sympathetic nervous system. It has previously been suggested that sAA might be sensitive
to exercise-induced stress as it is locally secreted in the salivary gland by the stimulation of
the autonomic nervous system and could be a predictor of plasma noradrenalin under
physiological or psychological stress (Allgrove et al. 2008). Interestingly, in the present study
the acute response of sAA to the incremental treadmill run was blunted in the URS. Whereas
the incremental run increased sAA significantly in HEALTHY at PRE and POST and when
sAA to total protein ratio was used a significant decrease in sAA was observed. Importantly,
there were no significant differences in the time to exhaustion or maximal oxygen
consumption between the two groups, which might cause the different sAA response (Kunz et
al. 2015). Previous studies have suggested that high intensity exercise increases sAA, whereas
submaximal exercise does not affect sAA (Ali & Pruessner 2012). In addition, it has been
suggested that sAA (as a marker of sympathetic nervous activity) might be related to
difficulties in the regulation of the exercise-induced stress response (Ali & Pruessner 2012;
Rohleder & Nater 2009). The increased saliva alpha-amylase activity after exercise may
improve the protective effect of saliva, since the enzyme is known to inhibit bacterial
attachment to oral surfaces and a lack of this response might lead to a higher risk of
developing URS.

A significant acute increase in sa-Lyso was observed following the incremental treadmill run
before and after the training, both in HEALTHY and at POST in URS. The results of previous
studies investigating the effects of exercise on sa-Lyso concentrations are controversial.
Allgrove at al. (2008) reported an acute increase in sa-Lyso after an incremental cycling test
to exhaustion, while Inoue et al. (2004) showed a significant decrease in salivary lysozyme
concentrations following intensive exercise in elite swimmers. Lysozyme is part of the innate
immune system that has a wide variety of antimicrobial activities. Allgrove et al. (2008)
suggested that an acute elevation in sa-Lyso after an exercise bout might be mediated by the
perturbations in sympathetic nervous system activity and secretion of glucocorticoids. The increase in sa-Lyso is typically considered as a temporary enhancement in immune function that may increase protection in the periods immediately post exercise but the significance of this change needs further investigation (West et al. 2015).

This study confirmed the findings of previous studies that salivary sIgA could be a useful marker to predict upper-respiratory tract symptoms and to screen illness-prone runners before prolonged endurance training. In this study, no significant between-group differences were observed in other salivary markers (sa-IgM, lysozyme, sa-IgG or sAA) in the fasting state, whereas, our findings suggest that the lack in acute response to exercise, especially in sAA might predict a higher incidence of upper respiratory symptoms. Nevertheless, more research is needed on the use of acute responses to exercise in salivary proteins, especially sAA and lysozyme, as a marker of increased susceptibility to URS.

Acknowledgements

The results of the current study do not constitute endorsement of the product by the authors or the journal. This project was partly funded by Finnish Sport Research Foundation and the Department of Biology of Physical Activity, University of Jyväskylä. The authors would like to thank the subjects and research assistants. The authors would also like to thank Dr. Laura Karavirta (Polar Electro Oy) for assisting in the collection and analysis of heart rate based training data.

Conflict of interest statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the manuscript.

Table 1. Anthropometrics and endurance performance of HEALTHY and URS (**p<0.01, ***p<0.001 difference between PRE and POST).

<table>
<thead>
<tr>
<th></th>
<th>HEALTHY</th>
<th>URS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Age (years)</td>
<td>34.5 ± 7.78</td>
<td>34.7 ± 5.84</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.81 ± 0.07</td>
<td>1.82 ± 0.06</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>76.9 ± 6.85</td>
<td>77.9 ± 8.29</td>
</tr>
<tr>
<td>BMI (kg·m⁻²)</td>
<td>23.7 ± 2.06</td>
<td>23.2 ± 2.31</td>
</tr>
<tr>
<td>PRE VO_{2peak} (ml·kg⁻¹·min⁻¹)</td>
<td>46.6 ± 6.02</td>
<td>47.9 ± 5.55</td>
</tr>
<tr>
<td>POST VO_{2peak} (ml·kg⁻¹·min⁻¹)</td>
<td>49.3 ± 5.63***</td>
<td>49.7 ± 5.84**</td>
</tr>
</tbody>
</table>
Table 2. Individual number of sick days, severity scores and average severity score per day in URS group.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Number of sick days</th>
<th>Symptom score</th>
<th>Average symptom score per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>330</td>
<td>11.8</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1040</td>
<td>104</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>172</td>
<td>27.8</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>71.0</td>
<td>11.8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>159</td>
<td>39.8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>62</td>
<td>15.5</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>184</td>
<td>20.4</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>300</td>
<td>33.3</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>1520</td>
<td>84.4</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>351</td>
<td>23.4</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>75.0</td>
<td>15.0</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>119</td>
<td>7.44</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>783</td>
<td>78.3</td>
</tr>
</tbody>
</table>
Table 3. Acute responses in salivary proteins and concentration to total protein ratio after the incremental treadmill run to exhaustion before (PRE) and after (POST) the training intervention. * = significant difference to pre value, # = significant time×group interaction (*p<0.05, **p<0.01, # p<0.05, ## p<0.01, ### p<0.001).

<table>
<thead>
<tr>
<th></th>
<th>HEALTHY</th>
<th>URS</th>
<th>HEALTHY</th>
<th>POST</th>
<th>URS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before</td>
<td>After</td>
<td>Before</td>
<td>After</td>
<td>Before</td>
</tr>
<tr>
<td>sProtein (mg/l)</td>
<td>710 ± 140</td>
<td>1400 ± 300*</td>
<td>490 ± 130</td>
<td>1900 ± 510**</td>
<td>630 ± 110</td>
</tr>
<tr>
<td>sIgA (mg/l)</td>
<td>150 ± 45</td>
<td>74 ± 21##</td>
<td>49 ± 9.3</td>
<td>89 ± 18###</td>
<td>110 ± 32</td>
</tr>
<tr>
<td>sIgM (mg/l)</td>
<td>27 ± 7.1</td>
<td>7 ± 1.6*#</td>
<td>16 ± 3.5</td>
<td>10 ± 3.2#</td>
<td>20 ± 4.0</td>
</tr>
<tr>
<td>sIgG (mg/l)</td>
<td>21 ± 5.7</td>
<td>15 ± 4.8</td>
<td>15 ± 2.6</td>
<td>23 ± 10</td>
<td>23 ± 6.3</td>
</tr>
<tr>
<td>sIgG (g/100g protein)</td>
<td>2.7 ± 0.5</td>
<td>1.0 ± 0.2</td>
<td>5.7 ± 2.0</td>
<td>1.7 ± 2.6</td>
<td>3.2 ± 0.7</td>
</tr>
<tr>
<td>a-amylase (U/ml)</td>
<td>69 ± 15</td>
<td>210 ± 54*</td>
<td>79 ± 28</td>
<td>200 ± 100</td>
<td>71 ± 15</td>
</tr>
<tr>
<td>a-amylase U/100g protein</td>
<td>14 ± 4.5</td>
<td>13 ± 2.6</td>
<td>18 ± 5.8</td>
<td>10 ± 3.1*</td>
<td>14 ± 3.0</td>
</tr>
<tr>
<td>Lysozyme (mg/l)</td>
<td>3.7 ± 1.0</td>
<td>15 ± 3.1**</td>
<td>3.9 ± 1.5</td>
<td>9.7 ± 2.8</td>
<td>8.7 ± 5.4</td>
</tr>
<tr>
<td>Lysozyme (g/100g protein)</td>
<td>0.6 ± 0.2</td>
<td>0.8 ± 0.2</td>
<td>2.8 ± 2.1</td>
<td>0.7 ± 0.2</td>
<td>0.9 ± 0.5</td>
</tr>
</tbody>
</table>
Figure 1. Fasting salivary sIgA, total salivary proteins, IgM, α-amylase, IgG and lysozyme in HEALTHY and URS. #=significant difference between the groups. (## p<0.01, # ## p<0.001).