Muscle capillary supply and fiber type characteristics in weight and power lifters

PER A. TESCH, A. THORSSON, AND P. KAISER
Department of Environmental Medicine, Karolinska Institutet, and
Department of Clinical Physiology, Karolinska Hospital, S-104 01 Stockholm, Sweden

In prolonged heavy exercise the capillary supply of the exercising muscle seems to be of utmost importance to provide the muscle with adequate O2 and blood borne energy substrates (16). Similarly endurance athletes have been found to possess increased skeletal muscle capillary density (1, 4, 14). Also, augmented capillarization has been demonstrated as a response to increased physical activity (2, 20).

In contrast to endurance exercise, strength activities, comprising a single or a few maximal contractions such as in weight lifting, can be effectively executed without increased demand on central and peripheral circulation. It is therefore less likely that capillary proliferation occurs as an adaptive response to strength training. Hypertrophy of individual muscle fibers is a typical response to muscle overloading and has been demonstrated in competitive weight and power lifters (8, 11, 12, 17, 21). Therefore capillary supply, expressed as capillaries per unit muscle cross-sectional area, would, instead, be expected to decrease in these athletes as a response of their training.

Likewise, endurance and strength athletes differ with regard to the relative contribution of fast-twitch (FT) and slow-twitch (ST) fibers and to the cross-sectional area of muscle fibers (11, 21). Regardless of physical activity level of an individual, the FT fiber is typically larger in diameter and surrounded by a lower number of capillaries than the ST fiber (1, 4, 14).

With this background in mind, the purposes of this study were to compare elite weight and power lifters, endurance athletes, and untrained individuals with respect to capillary density, fiber type distribution, and fiber size of vastus lateralis muscle.

MATERIALS AND METHODS

Subjects were national elite weight and power lifters (n = 8). Their individual characteristics are described in Table 2. The exercises carried out by these athletes were comprised of heavy slow-speed contractions (power lifters) and combinations of heavy slow- and fast-speed contractions (weight lifters). For comparison, endurance athletes (EA, n = 8), including five road-racing cyclists and three runners, and combat pilots (n = 8) recruited from the Swedish Air Force and regarded as “nonathletes” (NA) were studied (Table 2). The lifters were significantly heavier and tended to be shorter than both endurance athletes and nonathletes. Athletes were examined when in peak condition. All weight/power lifters (WL/PL) admitted that they had been using anabolic steroids in periods for some years before this investigation. After being informed of the purpose and the potential risks associated with the experiments, consent was given by the subjects. The protocol was approved by the Human Ethics Committee at the Karolinska Institute.

Muscle tissue specimens were obtained from vastus lateralis muscle using the percutaneous needle biopsy technique (3) at a site 13–16 cm proximal basis patella and at a muscle depth of approximately 2 cm. Biopsies were mounted in embedding medium and frozen in isopentane cooled with liquid N2 and stored at −80°C until analyzed. Serial transverse sections (10 μm) were cut in a microtome at −25°C. Stainings were undertaken for ATPase activity (19) after preincubation at pH 10.3 (9), NADH-tetrazolium reductase (18), and amylase-periodic acid-Schiff (1, 2).
For classification, fibers were identified as FT and ST fibers (9). The percentage of each fiber type was calculated from sections containing at least 200 fibers; an average of 552 (range 285-920) fibers were used for calculation. Muscle fiber area was determined on NADH-tetrazolium reductase-stained fibers using a cutting and weighing procedure (24). At least 10 fibers of each fiber type, subjectively rated as representative for the entire transverse sections, were selected for analysis. Mean muscle fiber area was calculated as absolute FT area: %FT = absolute ST area. %ST = absolute FT area. The relative muscle area occupied by FT muscle fibers was calculated according to a formula described elsewhere (23). Capillary density (cap. mm\(^{-2}\)) and capillaries per fiber (cap. fib.\(^{-1}\)) were determined from magnified photographs of amylase-periodic acid-Schiff stainings (2).

Means ±SD and ±SE were calculated and differences between groups were tested for significance using independent Student's t test. Significance was set at the 0.01 level of confidence.

RESULTS

Values (±SD) for %FT and %FT area in WL/PL were 59 ± 6 and 70 ± 6%, respectively. Similar values were obtained in NA. %FT area was significantly greater than %FT (P < 0.001) in WL/PL but not (NS) in NA. Mean fiber area and FT/ST area averaged 93 ± 26 µm\(^2\). 100 and 1.68 ± 0.25, respectively, in WL/PL. These values were significantly greater (72%, P < 0.01; 54%, P < 0.001) than the values obtained in NA. Capillaries per fiber was equal in WL/PL (2.06 ± 0.74 cap. fib.\(^{-1}\)) and NA (2.16 ± 0.34), whereas capillary density was 54% (P < 0.01) lower in WL/PL (199 ± 29 cap. mm\(^{-2}\)) than in NA (306 ± 29). Compared with the values obtained in EA, %FT and %FT area in WL/PL were higher (P < 0.001). EA exhibited significantly (P < 0.01) smaller mean fiber area and FT/ST area compared with WL/PL. Capillaries per fiber was 51% greater (NS), and capillary density was 102% greater in EA than in WL/PL. For detailed information see Table 3.

DISCUSSION

In accordance with previous reports, muscle fiber hypertrophy and selective FT hypertrophy were noticed in high-caliber WL/PL. The main finding of the present study, however, was the reduced capillary density observed in the trained muscles of lifters. Thus, whereas the number of capillaries surrounding a muscle fiber was the same in WL/PL and NA, capillaries per square millimeter were lower in the former.

Capillary density. The present study apparently shows that heavy resistance training does not alter capillaries per fiber characteristics. Since the number of capillaries per fiber remains unchanged and fiber hypertrophy occurs as a response to training, capillaries per square millimeter are reduced. This finding is consistent with the suggestion, based on studies of myocardial capillary concentrations, that all types of hypertrophy are accompanied by lower capillary density (13). In contrast to our results, it was recently proposed that heavy resistance training performed by bodybuilders could induce capillary growth (22). Whereas capillary density was of the same magnitude, capillaries per fiber were increased in the athletes compared with values reported for untrained

TABLE 1. Characteristics of weight and power lifters and information on best performance at time of examination

<table>
<thead>
<tr>
<th>Subj No.</th>
<th>Age, yr</th>
<th>Ht, cm</th>
<th>Wt, kg</th>
<th>Best Performance, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Squat</td>
</tr>
<tr>
<td>Weight lifters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23</td>
<td>171</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>29</td>
<td>178</td>
<td>96</td>
<td>163</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>180</td>
<td>96</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>183</td>
<td>112</td>
<td>174</td>
</tr>
<tr>
<td>Power Lifters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>164</td>
<td>77</td>
<td>237.5</td>
</tr>
<tr>
<td>2</td>
<td>34</td>
<td>104</td>
<td>80</td>
<td>305</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>178</td>
<td>104</td>
<td>267.5</td>
</tr>
<tr>
<td>4</td>
<td>28</td>
<td>165</td>
<td>85</td>
<td>325</td>
</tr>
</tbody>
</table>

TABLE 2. Physical characteristics of three subject groups examined

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>Age, yr</th>
<th>Ht, cm</th>
<th>Wt, kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet lifters</td>
<td>8</td>
<td>26.8 ± 4.4</td>
<td>172.9 ± 7.8</td>
<td>91.3 ± 12.7*</td>
</tr>
<tr>
<td>Endurance athletes</td>
<td>8</td>
<td>21.8 ± 2.5</td>
<td>180.8 ± 3.1</td>
<td>68.1 ± 4.9*</td>
</tr>
<tr>
<td>Nonathletes</td>
<td>8</td>
<td>26.0 ± 4.0</td>
<td>182.4 ± 6.0</td>
<td>75.9 ± 5.2</td>
</tr>
</tbody>
</table>

Values are means ± SE; n, no. of athletes. WL/PL, weight/power lifters. Significantly different from values obtained in endurance athletes (\(P < 0.01\)) and nonathletes (\(P < 0.01\)).

TABLE 3. Muscle fiber type distribution, fiber size, and capillary density in weight and power lifters, endurance athletes, and nonathletes

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>%FT</th>
<th>%FT Area</th>
<th>Mean Fiber Area, (\mu m^2)</th>
<th>FT/ST Area</th>
<th>cap-fib (^{-1})</th>
<th>cap-mm(^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL/PL</td>
<td>8</td>
<td>59 ± 6*</td>
<td>70 ± 6*</td>
<td>93 ± 26‡</td>
<td>1.68 ± 0.20§</td>
<td>2.06 ± 0.74</td>
<td>199 ± 29*‡</td>
</tr>
<tr>
<td>EA</td>
<td>8</td>
<td>40 ± 11‡</td>
<td>46 ± 11</td>
<td>65 ± 11</td>
<td>1.31 ± 0.22</td>
<td>3.11 ± 0.73§</td>
<td>401 ± 61‡</td>
</tr>
<tr>
<td>NA</td>
<td>8</td>
<td>61 ± 10</td>
<td>68 ± 9</td>
<td>54 ± 13</td>
<td>1.09 ± 0.17</td>
<td>2.16 ± 0.34</td>
<td>306 ± 29</td>
</tr>
</tbody>
</table>

Values are means ± SD; n, no. of athletes. FT and ST, fast-twitch and slow-twitch fibers, respectively; cap-fib \(^{-1}\), capillaries per fiber; cap-mm\(^{-2}\), capillaries per mm\(^2\); WL/PL, weight/power lifters; EA, endurance athletes; NA, nonathletes. Significantly different from values obtained in endurance athletes (\(P < 0.001\), \(P < 0.01\)) and nonathletes (\(P < 0.01\), \(P < 0.001\)).
positive correlation between %FT fibers in vastus lateralis muscle and strength improvement in squat in physically trained individuals. Such a high relative proportion of FT fibers may be required for success in weight and power lifting events, since none of the successful lifters possessed larger mean fiber area and greater FT/ST area ratio than in WL/PL, a surprisingly high FT/ST area ratio was observed in endurance athletes. A closer examination of these individuals revealed the presence of a difference between cyclists and runners in that the former possessed larger mean fiber area and greater FT/ST area ratio. On average, 70% of vastus lateralis muscle was occupied by FT fibers in WL/PL, perhaps reflecting the importance of a large relative quantity of FT myofibrillar protein of the contracting muscle for high tension development, such as in competitive lifting. This assumption is in agreement with a recent observation showing a positive correlation between %FT fibers in vastus lateralis muscle and strength improvement in squat in physical education students subjected to a 7-wk strength training program (7). Confirming numerous reports, a high relative proportion of ST fiber was demonstrated in athletes involved in endurance exercise (4, 6, 11, 14, 15).

Fiber size. Mean fiber area was 72% larger in WL/PL than in NA. This difference does not imply a correspondingly greater total muscle mass of the lifters as indicated by the smaller difference in body weight. Instead, it is suggested to be the result of specific hypertrophy of the quadriceps muscle. Earlier Häggmark et al. (12) found a linear relationship between mean fiber area and the cross-sectional area of the vastus lateralis muscle measured by computed tomography, which lead them to suggest the biopsy method and subsequent histochemical procedures to be used as a reliable method to examine for muscle hypertrophy in humans. From the present study it is also apparent that the hypertrophy, to a high extent, is due to selective FT hypertrophy; i.e., a large FT/ST area ratio, which confirms previous observations on strength trained athletes (8, 11, 21, 24). The fact that %FT area was significantly greater than %FT in WL/PL but not in NA is further support for this assumption. Evidently weight lifting stimulates fiber growth in the FT more than ST fibers and this may relate to the recruitment pattern used during lifting. Although lower than in WL/PL, a surprisingly high FT/ST area ratio was observed in endurance athletes. A closer examination of these individuals revealed the presence of a difference between cyclists and runners in that the former possessed larger mean fiber area and greater FT/ST area ratio. From the literature there are reasons to believe that the diameter of individual fibers are larger in cyclists than in middle-distance runners (5, 11). Supporting this thesis is the demonstration that mean fiber area increased as a response to 8 wk of a moderately intense endurance training program on cycle ergometer (2).

In summary, the present data suggests that the adaptive response to long-term weight and power lifting exercise, contrary to endurance exercise, does not include increased skeletal muscle capillarization. As a consequence of the muscle fiber hypertrophy, heavy resistance training results, rather, in reduced capillary density. Also, although selective FT fiber hypertrophy was implied in these athletes, neither fiber type distribution nor the relative area occupied by either of the fiber types were different from the values obtained in nonathletes.

This study was supported by grants from the Swedish Air Force and the Karolinska Institutet's Fonder.

Received 12 November 1982; accepted in final form 26 July 1983.

REFERENCES

9. Engel, W. K. The essentiality of histo- and cytochemical studies

