Strength Training Modes

Nautilus: the Concept of Variable Resistance
By Nautilus Sports/Medical Industries

Since the inception of the NSCA Journal, several articles have presented various viewpoints explaining the Nautilus concepts of high-intensity exercise. It seems that a few strength coaches remain who still do not understand these guidelines and their implications for a properly executed conditioning regimen. The following discussion is designed to clarify the general principles of strength training.

Exercise is a process through which the body receives a message. This message alerts the body that its physical well-being is endangered. The body's interpretation of this message is that a modification or adaptive change is required in order to meet the demands of the environment and avoid physical insult. Exercise can and should be performed in a manner that is quite safe.

The improvement by the body as an indirect result of exercise is contingent upon several conditions. First, the necessary stimulus must occur. Second, the body must be provided adequate rest and nutrition to allow growth to occur.

The most important factor in exercise is intensity. Intensity is defined as the momentary percentage of maximum effort.

Activities that are perceived by the individual as easy are of low intensity. Low intensity activities can be continued almost endlessly, but they will not meaningfully stimulate the body to improve muscular strength. Since being easy, the body perceives no justification for demanding enhanced strength.

Low-intensity activity, if carried to extremes, does consume significant quantities of the body's nutrients. These nutrients are not immediately replaced simply through eating. Their replacement requires time and rest as the body can process ingested nutrients only so fast.

Exercise, therefore, must be hard, or difficult, and it must be limited in quantity. It must be intense enough to provide the growth stimulus, yet its duration must be such that it does not prevent the growth it stimulates by consumption of those needed nutrients at the cellular level.

Researchers at Nautilus have examined the relationship between intensity and exercise duration and frequency since the late 1930's. Nautilus began with one important truth: Most exercise is not performed with the required intensity to produce the necessary stimulus for eliciting growth.

Nautilus then began a careful examination of the relationship between the intensity and the rest required for maximum benefit.

A dramatic difference in the rate of beneficial results was noted when training subjects reduced the number of properly performed sets (of approximately 20 exercises) from four sets to two sets (three times weekly, every other day). Even more dramatic was the rate increase noted later when the same subjects reduced from two sets to one set of twenty exercises. Even faster improvements were seen with one set of fifteen exercises and then only ten to twelve exercises performed. Most of these comparisons were noted with the only meaningful exercise tool that existed then: the barbell. And it was well understood that as intensity increased, the quantity or duration of work was required to decrease.

Concurrent with the evaluation of the optimal number of sets per exercise, the relationship between angle of flexion (Figure 1) and lever arm was noted.

At 30° flexion, the effective lever is 6" long. The effective resistance is 100 lbs. X 6" = 600 lbs.

At 90° flexion, the resistance is 1200 lbs. (100lbs. X 12").

At 150° flexion, resistance, again, is 600 lbs.

In the sequence above, assume that the barbell weighs 100 lbs. Since the first frame depicts the arm in a nearly straightened position, resistance is at or near zero.

Assume that the distance from the elbow to the barbell handle is 12". If so, then effective leverage is the length of a line drawn perpendicular from the line of gravity acting upon the barbell handle to a vertical line through the elbow.

The successive frames illustrate changing resistance resulting from a random lever. A random lever is responsible for the disproportionate resistance variation found in most conventional exercise tools. A random lever makes balanced resistance and full-range exercise an impossibility.
J cognize and the length of the daily work-
out (duration). Nautilus monitored
the workouts of thousands of trainees in
order to establish the minimum and
maximum limits of optimal rest
between workouts (frequency). It was
found that forty-eight hours rest is
minimally required for complete re-
cover between workouts. Seventy-
two hours rest was often superior for
advanced trainees. At ninety-six
hours rest slight atrophy and weaken-
ing was noticeable. It is therefore
reasonable to assume that the body re-
quires a minimum of forty-eight hours
rest between properly executed work-
outs.

Note the body in the preceding
sentence. Many strength coaches
favor the split routine—upper body
on Monday, Wednesday, Friday; lower
body on Tuesday, Thursday, Sat-
urday. The body exercises as a
unit, eats as a unit, sleeps and rests as
a unit. The required forty-eight hours
rest pertains to the entire body, not
just isolated body parts.

Almost simultaneously with the de-
velopment of the proper method and
protocol, came the evolution of a new
tool: the Nautilus machine.

Nautilus, as noted earlier, realized
that exercise must be hard. The bar-
bell could provide the hardest form of
resistance training known to man be-
fore 1948. Attempts toward intense
exercise before the barbell included
gymnastics, Indian clubs, and calis-
thenics. But with changeable plates,
the barbell became the tool of choice.

One of the first clues gained by
Nautilus researchers was the impor-
tance of intensity. This was a direct
result of studying the effects of per-
forming heavy barbell squats. The bar-
bell squat was the single best exercise
for increasing muscular mass
throughout the entire body. It was
also a hated exercise. Many weight
enthusiasts were quick to spread
rumors about the supposed dangers of
squatting. It so happens that its
effects, the rumors, and its low popu-
larly ratings as an exercise were all
related to one factor: barbell squats
were brutally hard. Squats were so
hard that most people preferred to
spread rumors about their supposed
dangers to justify excluding them
from their exercise programs.

Any exercise performed improper-
ly is dangerous. Though squats were
indeed one excellent exercise, squats
and all other conventional barbell
movements worked only part of the
muscle(s) involved.

The accompanying diagram depicts
a simple barbell curl performed for
the brachial biceps. It shows that
although the barbell may weigh 100
pounds in the starting position, the
effective resistance upon the biceps is
zero, or nearly zero, due to the lack of
what is known as lever, or moment
arm. Only as the elbow approaches
90° flexion is any meaningful resist-
ance imparted to the biceps muscle.
And as the movement moves in either
possible direction away from 90°, the
resistance falls off disproportionately
to the muscle’s potential strength.
Such deficiencies in quality resist-
ance exist in all barbell and conven-
tional machine exercises.

Now certainly, the biceps is much
stronger than zero in the fully ex-
tended position of the elbow. And if
the resistance provided by the barbell
is not perfectly balanced to the
strength potential of the muscle, then
it follows that the resistance used will
be limited by what the subject can
handle in his weakest position.

Nautilus realized that the barbell,
especially in the performance of
squats, was an efficient tool for in-
creasing strength and muscular size
because it provided high-intensity
work. Nautilus at the same time,
however, realized that the barbell pro-
vided the required intensity to only a
very small part of the working muscle.

PROBLEM: What would be the
effect if a device could be designed to
require hard muscular work from the
entire length of a muscle as opposed
to a small fraction of that length?
Nautilus first reflected upon this
question in 1948, and since then the
Nautilus machine has evolved to what
it is today.

The key to overloading the muscle
through the entire range of movement
lies in matching the resistance offered
by the machine to the capabilities of
the muscle. Nautilus calls this “bal-
lanced resistance.”

Every muscle that produces joint
rotation possesses an ideal and uni-
que strength curve. Nautilus cams are
designed specifically for each
machine to “balance” or match the
“ideal and unique” strength curve of
that movement’s agonists.

Many years ago, the noted phy-
siologist A. V. Hill showed that a frog
muscle, removed and kept alive in a
laboratory solution, was strongest
when stretched to 120 percent of rest-
ning length. Countless writers have
since taken Hill’s work with an iso-
lated muscle and extended his con-
clusions, incorrectly, to muscles in
the body. Unless the biomechanical
linkages allow it, muscles in the bu-

(Continued, page 50)
Strength Training Modes

(From page 49) man body do not express their greatest strength when stretched to 120 percent of resting length.

In fact, an ideal strength curve can be plotted for every muscle based on the angle of insertion and the joint articulation. As the moment arm increases, expressed strength increases. As moment arm decreases, expressed strength decreases. The Nautilus cam perfectly balances this ideal strength curve by changing its radius in direct relation to several impinging factors including the changing biomechanical moment arm.

The unique value of the Nautilus cam to the athlete is its ability to reverse the disproportional strength development seen with conventional equipment. Ongoing research at the Lake Helen laboratory consistently shows the inefficient and unnatural strength curves produced by conventional training tools. The marked weakness expressed by the muscle at the extremes of the range of motion is reversed by Nautilus training. The strength curve, where classically peaked midway through movement (in arm flexion, for example), tends to rise and flatten. This translates to the muscle being conditioned to its biomechanical maximum at each and every point. No other existing tool can perform that task.

Nautilus learned that full-range exercise possessed nine undeniable requirements. Without direct resistance, rotary resistance, variable resistance, balanced resistance, resistance throughout the full range of possible motion, stretching, pre-stretching, negative work potential, and positive work potential, full-range exercise is an impossibility.

A Nautilus machine is merely a logical barbell. The most important factor in exercise for skeletal muscle and its supportive structure is the intensity of muscular work. And intensity is dependent upon the quality of the resistance provided by the tool. Note the word provided for it remains up to the trainer and his coach to make proper use of the resistance provided by the tool being used. Poor form or style of performance in exercise will compromise the resistance quality of any tool.

In order to build the Nautilus machine, a clear understanding of the requirements of exercise was necessary. The requirements of full-range exercise as manifested in a Nautilus machine and the Nautilus training principles are directly linked to observations and evaluations of the effects of conventional exercise, and specifically the barbell squat. In fact, early articles referred to the first Nautilus machine, the pullover, as the “upper body squat.” To the squat, the barbell, and extensive research, Nautilus owes many insights that are now accessible to all strength coaches.

Please do not hesitate to phone (with no obligation other than an open mind) Nautilus Sports/Medical Industries—Research Division for guidelines, principles, and details for planning the best conditioning program that can be applied to your present equipment and specific sport. (Nautilus phone number: 904/228-2884). ©

Viewpoint

(From page 39) Returning to my original displeasure with Yessis’ “studied” opinion that I “don’t understand what actually takes place in skill execution,” I never disputed the need for, or the occurrence of, an eccentric contraction prior to maximal concentric contraction. In fact, during Yessis’ visit to Lake Helen, we spent more than one hour discussing the details of the eccentric phase. I am totally confused as to how he can tell our readers that I do not understand or advocate eccentric pre-contraction. I did say, however, that I have never heard, in contemporary neuroscience, of a “speed of eccentric to concentric switching phenomenon” as Yessis describes it. The brain takes many factors into account in computing the optimal point of terminating the eccentric phase and beginning the concentric phase. Among these are body weight, velocity, and possibly acceleration-deceleration of eccentric movement, and centrally-represented concentric strength. No one, in any published report that I’ve ever seen on the use of eccentric pre-contractions, has ever posited a mysterious central nervous system “speed of switching phenomenon.”

In the category of “let’s break our athletes’ bones so that they can learn to withstand bone-shattering forces” (or examine our ability to withstand 90 mph collisions by running our automobile into brick wall at 90 mph), Nautilus is vehemently opposed to the concept, espoused by Yessis (right side of p. 34) that athletes should be trained in such a criminal manner to supposedly prepare them to withstand potentially detrimental forces. To employ the overload principles here is to suggest that athletes should be subjected to forces even more dangerous than those experienced during performance. This is obviously not morally right, but is it at least physiologically justifiable? We feel strongly that it is not, in light of existing evidence.

Again calling upon a private definition, Yessis tells us that “strength . . . is exhibited in a slower manner and so can be considered aerobic . . .” (p. 34). Everyone I’ve ever spoken to or read in the field has considered strength and force as relatively synonymous, and maximal force/strength is absolutely not related to aerobic power. If you do more than 60-90 seconds worth of repetitions, you (on the average) have nearly exhausted your anaerobic capacity to fuel muscular contractions with ATP. You then begin to demand ATP from aerobic processing. Skeletal muscles generally have at least five seconds worth of stored ATP and phosphocreatine, and that means that any strength movement of five or fewer seconds is not only not aerobic, it’s not even anaerobic (according to the Mathews and Fox system)! It is mistakes such as this, and the double confusion over watts and foot-pounds per second, that cast serious doubt on the Yessis arguments.

My final point is that I was not sufficiently clear in decrying worldwide reliance on “what the other guy is doing.” I by no means meant to imply that we cannot learn from others. I did mean to warn against blind faith by awe-struck observers of Russian or East German athletes. We need to bring our coaches to realize the critical importance of analyzing cause and effect. We should not stand in automatic awe of the Russians, or East Germans, or everyone with an M.D. or Ph.D. after his name. We are all humans and make mistakes. Remember that if nothing else. ©