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Su B, O’Connor JP. NSAID therapy effects on healing of bone, tendon, and the
enthesis. J Appl Physiol 115: 892–899, 2013. First published July 18, 2013;
doi:10.1152/japplphysiol.00053.2013.—Nonsteroidal anti-inflammatory drugs
(NSAIDs) are commonly used for the treatment of skeletal injuries. The ability of
NSAIDs to reduce pain and inflammation is well-established. However, the effects
of NSAID therapy on healing of skeletal injuries is less defined. NSAIDs inhibit
cyclooxygenase activity to reduce synthesis of prostaglandins, which are proin-
flammatory, lipid-signaling molecules. Inhibition of cyclooxygenase activity can
impact many physiological processes. The effects of NSAID therapy on healing of
bone, tendon, and the tendon-to-bone junction (enthesis) have been studied in
animal and cell culture models, but human studies are few. Use of different
NSAIDs with different pharmacological properties, differences in dosing regimens,
and differences in study models and outcome measures have complicated compar-
isons between studies. In this review, we summarize the mechanisms by which
bone, tendon, and enthesis healing occurs, and describe the effects of NSAID
therapy on each of these processes. Determining the impact of NSAID therapy on
healing of skeletal tissues will enable clinicians to appropriately manage the
patient’s condition and improve healing outcomes.

nonsteroidal anti-inflammatory drugs; cyclooxygenase; tissue repair; fracture heal-
ing; tendon healing

NONSTEROIDAL ANTI-INFLAMMATORY drugs (NSAIDs) inhibit cy-
clooxygenase (COX) enzymes in the arachidonic acid (ArA)
pathway to reduce synthesis of prostaglandins. The ArA path-
way and prostaglandins regulate and are potent inducers, re-
spectively, of inflammation. Thus NSAIDs are commonly used
to control pain and swelling associated with skeletal injuries
and chronic skeletal diseases like osteoarthritis. However,
prostaglandins and other lipid mediators produced in the ArA
pathway regulate a large number of physiological processes in
addition to inflammation, such as blood clotting, vascular tone,
stomach lining maintenance, kidney functions, ocular pressure,
and smooth muscle contraction associated with airway dilation
and parturition (40). Ongoing research also indicates that the
ArA pathway and COX activity have important functions in
skeletal biology (73). Consequently, understanding the role of
the ArA pathway and COX activity in the healing of skeletal
injuries is important to evaluate the potential negative as well
as positive effects that NSAID therapy may have in patients. In
this review, we summarize the known effects of NSAIDs on
bone, tendon, and tendon-to-bone (enthesis) healing, discuss

the potential mechanism through which NSAIDs impair bone
fracture healing, and provide some suggestions regarding the
judicious usage of NSAIDs to treat skeletal injuries.

THE ARACHIDONIC ACID PATHWAY AND NSAID EFFECTS

The ArA pathway is summarized in Fig. 1 (11). Synthesis
begins when cytosolic phospholipase A2 (cPLA2) hydrolyzes
ArA from lipid membrane stores. The now free ArA follows
one of four fates: the ArA can be 1) reinserted into the lipid
membrane through the Land’s cycle, 2) converted into prosta-
glandin H2 by cyclooxygenases, 3) converted into leukotriene
A4 by 5-lipoxygenase, or 4) undergo oxidation reactions cata-
lyzed by cytochrome P-450 (not shown). Prostaglandin H2 and
leukotriene A4 are synthetic intermediates and are rapidly
converted into secreted prostaglandins, leukotrienes, lipoxins,
and other lipid mediators by downstream enzymes. In turn, the
secreted lipid mediators activate G protein-coupled receptors to
affect intracellular cAMP or Ca2� levels and thereby affect
gene expression and cell function. Most of the ArA-derived
lipid mediators are very labile and thus signal via autocrine and
paracrine mechanisms.

The enzymes involved in the ArA pathway have different
levels of cell-specific or controlled expression. Myeloid cells
express many components of the ArA pathway, which is
consistent with the role of many myeloid cells and the ArA
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pathway in inflammation. However, other cells such as bone-
forming osteoblasts can express ArA pathway enzymes and
produce prostaglandins (39). Only portions of the pathway may
be operable in any one cell or cell type under a specific
physiological circumstance. For instance, neutrophils have
constitutively high levels of 5-lipoxygenase while COX-2
expression can be readily induced in macrophages (13, 33).
Further, cells must be stimulated to activate the ArA pathway.
Stimuli that increase intracellular Ca2� levels activate cPLA2

and initiate ArA release from membrane stores (29). Thus lipid
mediator production is dynamically controlled as to the amount
and repertoire made depending upon the cells, growth factors,
cytokines, or other stimuli present at the site. These variables
complicate elucidation of the cells and mechanisms through
which the ArA pathway operates to affect bone and tendon
healing.

There are two cyclooxygenase isoforms: COX-1 and COX-2
(86). COX-1 is constitutively expressed in many cell types
while COX-2 is inductively expressed. Proinflammatory stim-
uli including lipopolysaccharide and tumor necrosis factor-�
are potent inducers of COX-2 expression. The prostaglandins
produced via COX-1 or COX-2 subsequently amplify or sus-

tain the inflammation response. More recent experiments indi-
cate that COX-2 activity may also be important for resolving
inflammation, and thus dysregulation of COX-2 function may
lead to chronic inflammatory conditions (20).

At therapeutic levels, most NSAIDs inhibit COX-1 and
COX-2 (99). However, COX-2-selective NSAIDs have been
developed, notably the coxibs, which include celecoxib, rofe-
coxib, and valdecoxib (19). It was postulated that since COX-2
is inductively expressed as part of the inflammation response,
preferentially inhibiting COX-2 would reduce negative side
effects of NSAID therapy such as gastrointestinal bleeding
because the homeostatic functions of COX-1 would be left
intact. This does not appear to be wholly accurate in that the
functions of COX-1 and COX-2 are both necessary for stom-
ach lining maintenance and vascular tone (98). Still, the coxibs
are effective analgesics used for a variety of acute and chronic
skeletal injuries and pathologies. Thus determining and under-
standing the effects that inhibition of cyclooxygenase activity
has on healing after an acute skeletal injury is necessary for
proper patient management.

NSAID EFFECTS ON BONE HEALING

Bone fractures are common traumatic injuries, and some
pathological conditions such as osteoporosis weaken bones,
which makes the bone more susceptible to fracture. Bone is a
highly innervated and vascular tissue. When a fracture occurs,
circulation is disrupted causing localized hypoxia and hema-
toma formation while also being extremely painful. The tissue
damage, hypoxia, blood clot, and peripheral nerves initiate an
inflammatory response, which causes tissue swelling and hy-
peralgesia (9). NSAIDs or other analgesics are often used
during this inflammatory phase of healing to reduce swelling or
manage pain, further emphasizing the importance of clarifying
the impact of NSAIDs on bone healing (12).

Fractures naturally heal through a tissue regenerative pro-
cess in which a cartilaginous callus forms around the fracture
site and is then replaced with bone (82). This natural healing
process is often referred to as endochondral ossification, as it
shares many features with fetal long bone development and
growth (97). In contrast, surgery is often performed to align,
reduce, and stabilize a fracture. When doing so, often the
hematoma and periosteum near the bone fragment ends are
surgically removed and the bone ends are rigidly fixed together
with a plate or rod. Under these circumstances, very little or no
cartilaginous callus forms and the bone heals slowly as part of
the normal bone remodeling process or through a combination
of bone remodeling and direct bone formation without a
cartilaginous intermediate (intramembranous ossification) (82).
This surgically created repair process is often called direct
bone healing or primary bone healing (82). These two path-
ways, endochondral ossification and primary bone healing,
employ distinctly different cell mechanisms and are likely
differently affected by NSAID therapy.

Numerous animal studies have demonstrated a consistent
negative effect of NSAID treatment on endochondral ossifica-
tion during fracture healing (25). The negative impact appears
to be caused by inhibition of COX-2 and not COX-1 since
fracture healing appears to be normal in COX-1 knockout mice
and because healing is impaired in COX-2-selective, NSAID-
treated animals and in COX-2 knockout mice (84). Indeed

Fig. 1. Arachidonic acid metabolism and signaling. Summarized are 3 of the 4
major arachidonic acid metabolic pathways: the Land’s cycle, conversion into
prostaglandins which requires cyclooxygenase activity, and conversion into
leukotrienes and lipoxins via 5-lipoxygenase activity. Not shown is cyto-
chrome P-450 metabolism of arachidonic acid. Enzyme or enzymatic pro-
cesses are shown in red text, substrates and products are shown in black text,
and G protein-cell surface receptors are shown in green text. Known effects of
receptor activation on downstream cyclic adenosine monophosphate (cAMP)
or intracellular calcium levels are shown at the bottom. COX-1, cyclooxygen-
ase-1; COX-2, cyclooxygenase-2; 5-LO, 5-lipoxygenase; FLAP, 5-lipoxygen-
ase activating protein; PGH2, PGD2, PGE2, PGF2a, and PGI2, are prostaglan-
dins H2, D2, E2, F2a, and I2, respectively; TXA2: thromboxane A2; 5-HpETE,
5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 5-HETE, 5S-hydroxy-
6E,8Z,11Z,14Z-eicosatetraenoic acid; LTA4, LTB4, LTC4, LTD4, and LTE4

are leukotrienes A4, B4, C4, D4, and E4, respectively; LXA4 and LXB4,
lipoxins A4 and B4; DP1, EP1-EP4, FP, and IP, prostaglandin receptors; TP,
thromboxane A2 receptor; BLT1 and BLT2, leukotriene B4 receptor; CysLT1
and CysLT2: cysteinyl leukotriene receptors; ALXR: lipoxins receptor.
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treatment of rats with celecoxib can cause healing failure
(nonunions) in 30% or more of treated animals, and the
nonunion rates increase with increasing celecoxib dose or
length of treatment (85). Further, celecoxib doses that can
inhibit fracture healing (1.5, 4, and 10 mg/kg) in rats are not
sufficient to eliminate pain caused by the fracture. Cottrell et al.
(26) measured pain in rats after fracture of the right femur as
differential weight bearing between the affected right hindlimb
and the control left hindlimb. Rats treated with morphine,
acetaminophen, or SCIO-469 (a p38 kinase-� inhibitor) had
significantly better pain relief over the first 14 days of fracture
than did rats treated with 4 or 10 mg/kg of celecoxib. Further,
the 4 and 10 mg/kg doses of celecoxib caused significant
inhibition of fracture healing in rats whereas acetaminophen
and SCIO-469 had no apparent negative effect on fracture
healing (8, 27, 85). In contrast, nonselective NSAID therapy
appears to delay rather than stop fracture healing. The delay
effect caused by NSAIDs such as ibuprofen and indomethacin
likely relates to the level of COX-2 inhibition caused by the
NSAID. In rats, doses of indomethacin sufficient to inhibit
most COX-2 activity cause gastrointestinal bleeding and death
within days (1, 80). Since fracture healing outcomes require
weeks to achieve, animals receiving doses of nonselective
NSAID over this period of healing that would inhibit most
COX-2 activity would also develop gastrointestinal bleeds and
die. Thus it may not be possible to assess the role of COX-2 in
fracture healing using nonselective NSAIDs.

In humans, retrospective studies support the conclusion that
NSAID therapy can impair fracture healing. In perhaps the
most compelling retrospective study, Burd et al. (14) examined
data collected from a randomized, prospective trial to compare
localized radiation therapy to indomethacin (a nonselective
NSAID) therapy on the incidence and severity of heterotopic
ossification after hip fracture surgery to determine whether
NSAID therapy affects fracture healing. Heterotopic ossifica-
tion is the formation of bone at sites outside of the normal
skeleton and occurs through a mixture of intramembranous and
endochondral ossification (6, 51, 64). Heterotopic ossification
commonly occurs following hip fractures and can reduce hip
mobility depending upon the extent of bone formation. To
prevent heterotopic ossification after hip fracture surgery, pa-
tients are treated with localized radiation or with a 6-wk course
of NSAID therapy (64, 95). Burd et al. (15) performed a
randomized, prospective study to determine whether localized
radiation or NSAID therapy was more effective at reducing
heterotopic ossification after hip fractures (15). The study
found that localized radiation or 6 wk of postoperative NSAID
treatment both effectively reduced heterotopic ossification.
However, many of the patients in this study also suffered
additional long bone fractures coincident with their hip frac-
tures. When the healing outcomes for those patients who
suffered additional long bone fractures were compared be-
tween those who received localized radiation or no heterotopic
ossification prophylaxis (74 patients) versus those that received
indomethacin therapy (38 patients), 29% of the indomethacin-
treated patients developed a nonunion while only 7% of pa-
tients that did not receive indomethacin developed a nonunion
(14). Further, 11 of the 72 long bone fractures in the 38
indomethacin-treated patients developed nonunions while only
5 of the 118 long bone fractures in the comparator group of 74
patients developed nonunions. These data were statistically

significant and clearly indicate that NSAID therapy is detri-
mental for fracture healing. Other retrospective studies support
this conclusion (25, 44). In addition, NSAIDs inhibit hetero-
topic bone formation, which often develops through an endo-
chondral ossification mechanism (71, 81). Thus it is not nec-
essarily surprising that bone healing which requires endochon-
dral ossification would be inhibited by NSAID treatment.

The mechanism by which inhibition of COX-2 impairs
endochondral ossification during fracture healing remains un-
known. There are three favored possibilities that are not mu-
tually exclusive. First is that COX-2 function is necessary for
mesenchymal cell differentiation into osteoblasts and for os-
teoblast function (105). Since COX-2 knockout mice form and
grow skeletons, a definitive role for COX-2 in osteoblast
differentiation is difficult to envision. Indeed, NSAID treat-
ment impaired mesenchymal stem cells from differentiation
into chondrocytes but had no effect on mesenchymal stem cell
differentiation into osteoblasts (75). However, prostaglandins
produced by COX-2 can stimulate osteoblast activity and
prostaglandins or other lipid mediators made via COX-2 may
be important for homing of mesenchymal cells to the fracture
site. Second, prostaglandins are known to promote angiogen-
esis and angiogenesis is necessary for endochondral ossifica-
tion (30, 53, 68). Thus inhibition of COX-2 may impair callus
angiogenesis or limit fracture site circulation that impairs
healing. Third, inhibition or loss of COX-2 appears to prevent
terminal differentiation of chondrocytes in the fracture callus
(28). In rats treated with celecoxib, cartilage forms at the
fracture site but has an abnormal morphology (84). Gene
expression analysis showed that fracture calluses in celecoxib-
treated rats failed to express Type X collagen, which is the
hallmark gene for chondrocyte terminal differentiation (hyper-
trophy) (28). Failure of the chondrocytes to terminally differ-
entiate would impair endochondral ossification and prevent
healing. Another possibility is that inhibition of COX-2 alters
the inflammatory response such that expression of growth
factor or other genes necessary for endochondral ossification is
dysregulated, which impairs healing. To test this possibility
without directly inhibiting COX-2, fracture healing was as-
sessed in rats treated with SCIO-469, a p38 kinase-� inhibitor
(27, 69). p38 kinase regulates several aspects of inflammation,
and inhibition of p38 kinase-� can impair inflammation (83)
However, fracture healing proceeded normally in rats treated
with SCIO-469, suggesting that the inflammation response per
se may not be essential (27).

Based upon the above findings, we hypothesize that COX-2
has a critical function in chondrocyte differentiation during
fracture callus formation and endochondral ossification, and
that inhibition of COX-2 with NSAIDs disturbs chondrocyte
differentiation leading to delayed or failed healing. Our current
model is that COX-2 expression is necessary for differentiation
of the chondrocytes into hypertrophy and that inhibition of
COX-2 with NSAIDs would impair hypertrophic differentia-
tion (Fig. 2). Chondrocytes can express COX-1 and COX-2
(10, 24, 42, 70). However, mesenchymal stem cell differenti-
ation into callus chondrocytes appears to be independent of
cyclooxygenase activity since chondrocytes are evident in
fracture calluses of COX-1 knockout and COX-2 knockout
mice (84). Once differentiated, the callus chondrocytes elabo-
rate an extracellular matrix that becomes calcified as the
chondrocytes progress into hypertrophy. Chondrocyte hyper-
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trophy is essential for bone formation because it is during
hypertrophy that chondrocytes secrete angiogenic factors nec-
essary for osteoclast recruitment and resorption of the calcified
matrix made by the hypertrophic chondrocytes and subsequent
definitive bone formation by osteoblasts (43, 50, 87, 102). We
have established that inhibition of COX-2 impairs chondrocyte
hypertrophy in the fracture callus (28). Consistent with our
observations, inhibition of COX-2 with NS398 impairs bone
morphogenetic protein-2-induced differentiation of mouse
chondrocytic ATDC5 cells into hypertrophic chondrocytes
(100). Exogenous prostaglandin treatment can also promote
chondrocyte expression of cartilage matrix proteins (45, 55,
62). However, exogenous prostaglandin effects may be limited
to a specific phase as chondrocytes progress through hypertro-
phy since prostaglandins, particularly PGE2, can inhibit Type
X collagen expression in chicken chondrocytes (61). Thus
many studies support the proposed model. Potential differential
effects of prostaglandins, NSAIDs, or cyclooxygenase activity
in fetal, articular, growth plate, or cultured chondrocytes could
yield results specific for those chondrocyte populations but
different from that observed during fracture healing. An im-
portant but still untested aspect of the model is whether COX-2
has cell-autonomous or cell-dependent effects on callus chon-
drocyte function.

While NSAIDs appear to impair endochondral ossification,
the effects of NSAID therapy on intramembranous ossification
and primary bone healing are less clear. Prostaglandins pro-
duced by COX-1 or COX-2 can promote osteoblast and oste-
oclast activity in vitro as well as in vivo, clearly suggesting that
NSAIDs can affect intramembranous ossification and primary
bone healing (48, 76, 94, 101, 104). Bone ingrowth into porous
metal implants used to simulate bone healing into arthroplastic
devices, such as artificial hips and knees, was impaired in
rabbits treated with NSAIDs but not in dogs (23, 91). In-

tramembranous bone formation into bone harvest chambers
implanted into rabbit tibias was inhibited by treatment with
rofecoxib (a COX-2-selective NSAID) or naproxen (46). Sub-
sequent studies showed that administration of rofecoxib for 2
wk after implantation of the chamber was not as detrimental to
intramembranous bone formation into the chamber as was 6 wk
of rofecoxib treatment (47). In contrast, even short-term ad-
ministration of celecoxib can impair fracture healing in rats
(85), suggesting a distinct difference between NSAID effects
on intramembranous vs. endochondral ossification.

The intramembranous ossification models measure osteo-
blast activity, but primary fracture healing also relies upon
osteoclast activity. NSAID effects on osteoclast activity are not
clear (35, 56). Mouse studies have demonstrated that without
COX-2, osteoclast differentiation in vitro is impaired, but
paradoxically the mice have reduced cortical bone mass (74,
103). Retrospective clinical studies have correlated NSAID
therapy with improved bone mineral density in women (but not
men), suggesting that NSAIDs may reduce osteoclast activity
(16, 67, 77). Which NSAID is used, the dose, and duration of
treatment likely account for much of the discrepancies between
in vitro, animal, and clinical studies.

NSAID EFFECTS ON TENDON AND LIGAMENT HEALING

NSAIDs are commonly used to treat pain and swelling
associated with minor as well as major tendon and ligament
injuries. Multiple criteria need to be met for successful tendon
and ligament healing, and thus, how NSAID therapy impacts
each criterion is important to understand the overall impact of
NSAID treatment on healing. First, tendon and ligament me-
chanical strength must be reestablished. Second, tendons must
be able to glide freely through the tendon sheath for full range
of movement. Third, ligament healing must be sufficient to
prevent joint laxity. Finally, in those cases where the tendon or
ligament insertion into the bone has been disrupted, this spe-
cialized junction (enthesis) must be reestablished with func-
tionally equivalent mechanical strength. These varied pro-
cesses complicate optimizing treatments to heal ligament, ten-
don, and enthesis injuries. The role of inflammation and the
ArA pathway in these healing events remains to be defined.
Similarly, how NSAIDs affect each of these processes as well
as ultimate healing outcomes are not yet clearly described.

In order to reestablish tendon and ligament strength, tendon
cells must proliferate at or migrate to the injury site and secrete
collagen for the repair process (60). In culture, NSAID treat-
ment has repeatedly been shown to inhibit proliferation and
migration of tendon cells, but increase collagen synthesis (63,
92, 93). Consistent with effects on proliferation and collagen
synthesis, NSAID treatment was shown to decrease DNA
synthesis and increase protein synthesis in human tendon
fibroblasts, which suggests a negative effect on tendon cell
proliferation following injury but a positive effect on collagen
deposition (2). In contrast, animal studies examining the effects
of NSAID therapy on healing tendon and ligament strength
have been varied. Some studies reported no significant differ-
ence in the strength of healed tendons after NSAID use (3, 66,
90), while others demonstrated a lower load-to-failure and
reduced tensile strength of healed tendons (31, 36). In contrast,
several studies have shown that NSAIDs may enhance the
biomechanical properties of healing tendons and ligaments.

Fig. 2. Model of COX-2 function during fracture healing. During fracture
healing, mesenchymal cells recruited to the fracture site can differentiate into
chondrocytes in the absence of COX-2. However, COX-2 activity is required
for the chondrocytes to progress into hypertrophy during which the hypertro-
phic chondrocytes secrete angiogenic and osteoclastogenic factors necessary
for endochondral ossification. Whether COX-2 functions cell autonomously, in
a cell-dependent manner via prostaglandin signaling, or using a combination of
both remains to be determined. VEGF, vascular endothelia growth factor;
Cyr61, also called CCN2; RANKL, receptor activator of nuclear factor
kappa-B ligand.
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Indomethacin treatment significantly improved the tensile
strength of healing rabbit plantaris longus tendons that had
been transected although a slight but significant decrease in the
amount of soluble collagen was also seen (17). Similarly,
piroxicam treatment improved medial collateral ligament
(MCL) healing after transection when given 1 to 6 days
postoperatively (52). Indomethacin or celecoxib treatment in-
creased tensile stress at failure of healed rat Achilles tendons
that had been previously transected, although the cross-sec-
tional area of the tendon was decreased (38). These experi-
ments suggest that NSAID treatment could be used to mini-
mize thickening of healed tendons in certain clinical situations
and that the potential negative effects of NSAIDs on tendon
cell proliferation may be balanced by the positive effects of
NSAIDs on collagen synthesis.

Inflammation, regeneration, and remodeling occur during
tendon and ligament healing and the cells and molecular
processes involved at each phase will respond differently to
NSAID treatment and inhibition of cyclooxygenase. Thus
NSAIDs impact tendon healing in different ways depending
upon the initiation and duration of treatment. When rats were
given parecoxib (a COX-2-selective NSAID) for the first 5
days after Achilles tendon transection, there was a decrease
in force-at-failure and maximum stress. However, rats
treated from days 6 –14 with parexocib showed a 16%
decrease in cross-sectional area but a 29% increase in
maximum stress (96).

In addition to reestablishment of mechanical strength, suc-
cessful tendon healing also requires the tendon to be able to
glide freely. Adhesion formation between the tendon and its
surrounding sheath or other soft tissue can severely reduce
range of motion. Szabo and Younger (88) have shown that
NSAID treatment decreases adhesion formation and therefore
increases range of motion. Four weeks of indomethacin treat-
ment reduced adhesion formation after flexor digitorum pro-
fundus tendon transection. Injectable and oral ibuprofen sig-
nificantly decreased the amount of peritendinous adhesions
formed after flexor tendon repairs in primates, but also de-
creased the breaking strength of completely divided and re-
paired extensor tendons (57, 58). In contrast, in a rabbit flexor
tendon repair model, ibuprofen treatment for 12 wk increased
range of motion, but 6 wk of ibuprofen or rofecoxib treatment
or 12 wk of rofecoxib treatment did not (89). Lack of rofecoxib
efficacy in increasing range of motion and failure of 6 wk of
ibuprofen therapy to increase range of motion suggest that
adhesion formation or permanence may be mediated by COX-1
during the later stages of healing. However, additional research
is needed to understand the role of cyclooxygenase activity in
adhesion formation and its potential to affect tendon healing.

Equally important to the process of ligament healing is the
ability to minimize joint laxity. Joint laxity increases the risk of
ligament rerupture, so understanding how to minimize laxity is
crucial to improved patient outcomes. To our knowledge, only
one study has been conducted to evaluate the effect of NSAIDs
on joint laxity following ligament injury. In this retrospective
study, patients given ketorolac for 6 wk after bone-patellar
tendon autograft anterior cruciate ligament reconstruction had
a significant increase in anterior-posterior laxity at 6 wk post-
surgery when compared with non-ketorolac patients (65). This
finding suggests that NSAID therapy may increase joint laxity
after a ligament injury or repair, but more research must be

conducted to confirm this conclusion and determine whether
the laxity is maintained or reduces with time.

In those cases where the tendon or ligament insertion into
the bone has been disrupted, this specialized junction (enthesis)
must be reestablished with functionally equivalent mechanical
strength. Studies examining this final step of the healing
process are discussed later.

The complex processes required for successful tendon and
ligament healing make it very difficult to determine whether
the effects of NSAIDs are beneficial or detrimental. To com-
plicate matters, few clinical studies have been performed to
measure effects of NSAID therapy on tendon healing. A
prospective study followed 70 adult patients with severe,
painful Achilles tendinopathy who were given either piroxicam
or placebo (5). Results were based on residual symptoms, such
as pain, tenderness, swelling, range of motion, muscle strength,
and an overall assessment of efficacy. No significant differ-
ences were seen between the treated and untreated groups. In a
retrospective study of 34 patients who were treated with
indomethacin for 6 wk after a distal bicep tendon repair, no
incidence of rerupture or significant difference in range of
motion between the injured and uninjured arms was found (4).
No comparator group was examined. Thus the available clin-
ical data and the common experience of many people using
over-the-counter NSAIDs to self-treat minor tendon and liga-
ment strains does not support a detrimental effect of NSAID
therapy on tendon healing.

Clarification of the relationship between cyclooxygenase
activity, prostaglandins, and tendon biology will help deter-
mine the effects of NSAIDs on tendon healing. Some research
has begun to delve into this complicated process. Previous
studies uncovered a phenomenon of exercise-induced collagen
synthesis in which collagen synthesis was dramatically upregu-
lated in the hours following vigorous exercise (54, 59). When
healthy runners were given indomethacin 72 h before running
a marathon, they showed a complete blunting of the exercise-
induced collagen synthesis effect in their patella tendons when
compared with their placebo-dosed counterparts (21). The
study concluded that use of NSAIDs reduced prostaglandin E2

production, which significantly decreased collagen synthesis in
response to weight-bearing activity. Although it is difficult to
tell if there is a functional detriment to the decrease in collagen
synthesis since the study only examined one episode of exer-
cise, these findings may provide insight into the role of pros-
taglandins in tendon healing and demonstrate a possible neg-
ative effect of NSAIDs in this process.

NSAID EFFECTS ON TENDON-TO-BONE HEALING

The enthesis is the specialized junction between a tendon or
ligament and bone (34). The enthesis progressively changes
from tendon, to fibrocartilage, to calcified fibrocartilage, and
finally bone (7). However, these four zones are not recreated
following surgical repair but rather the tendon is joined to the
bone through alternating layers of fibrovascular scar tissue (18,
41, 49, 78). This process requires chemotactic factors to guide
inflammatory cells to the wound to initiate angiogenesis and
scar formation, mitogenic factors to increase cell proliferation
and scar matrix deposition by fibroblasts, and remodeling of
collagen types I and III within the scar tissue to increase
mechanical strength (41, 49). How NSAIDs affect each of
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these processes individually within the context of enthesis
repair is not yet known. However, animal studies have shown
that overall, NSAIDs appear to inhibit proper enthesis repair.
Cohen et al. (22) showed that celecoxib and indomethacin
treatment of an acute supraspinatus repair in rats resulted in
inconsistent regrowth of a fibrocartilage zone between the
tendon and the bone, whereas control specimens showed fibro-
cartilage formation by 4 wk and improved collagen fiber
organization by 8 wk. Parecoxib and indomethacin treatment
were shown to significantly lower the maximum pull-out
strength and stiffness of Achilles tendons in rats that were
reattached through a bone tunnel in the distal tibia (32).
Additionally, celecoxib or indomethacin therapy reduced fail-
ure loads for rotator cuff repairs in rats (22). Histological
analysis showed that there were substantial differences in
collagen organization and maturation, which may have con-
tributed to the decreased failure load of the treated animal.
Similar conclusions were made when several different NSAIDs
produced detrimental effects on healing strength at the bone-
tendon junction of rat patellar tendon (37).

NSAID therapy likely affects inflammation after surgical
repair of the enthesis, but NSAID therapy could also be
directly affecting scar formation and remodeling. For instance,
NSAIDs can impair osteoclast activity, and inhibition of oste-
oclast activity can enhance healing of rabbit anterior cruciate
ligament repairs (79). Of note, Rodeo and colleagues (78)
demonstrated that the strength of the interface between tendon
and bone increases the most during the first 4 wk after surgery,
which should be a consideration when using NSAIDs during
the early stages of postsurgical recovery. These findings are not
entirely surprising: since tendon-to-bone healing requires bone
growth, it is possible that NSAIDs affect tendon-to-bone heal-
ing through a similar mechanism as fracture healing, since both
processes require extensive bone metabolism.

CONCLUSIONS

NSAIDs are readily available, over-the-counter medications
that are commonly used and prescribed to manage pain and
swelling associated with skeletal injuries. Despite this, the
available experimental and clinical evidence indicates that
NSAID therapy can impair bone fracture healing and tendon-
to-bone (enthesis) healing. The effects of NSAIDs on bone and
enthesis healing is likely affected by the NSAID used, the
initiation, and duration of therapy. For instance, ibuprofen had
an apparent less deleterious effect on bone healing than rofe-
coxib in rabbits, which was attributed to the shorter half-life of
ibuprofen producing daily periods when cyclooxygenase was
not inhibited (72). Considerably less is known of how NSAIDs
affect tendon healing. In contrast to fractures, NSAID therapy
may have a beneficial effect on tendon healing by decreasing
adhesion formation while producing no net negative effect on
tensile strength. However, these conclusions are not without
exception and are subject to other aspects of patient health
associated with impaired healing, such as advanced age, dia-
betes, and smoking. Consequently, the prescribing physician’s
assessment of patient health, the type of injury, and injury
severity must be weighed against the benefits and potential
drawbacks of using NSAIDs.
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