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A B S T R A C T

The immune system plays a key role in controlling infections, repairing injuries, and restoring homeostasis.
Immune cells are bioenergetically expensive during activation, which requires a tightly regulated control of the
metabolic pathways, which is mostly regulated by two cellular energy sensors: Adenosine monophosphate�acti-
vated protein kinase and mammalian target of rapamycin. The activation and inhibition of this pathways can
change cell subtype differentiation. Exercise intensity and duration and nutrient availability (especially glucose
and glutamine) tightly regulate immune cell differentiation and function through Adenosine monophosphate-
�activated protein kinase andmammalian target of rapamycin signaling. Herein, we discuss the innate and adap-
tive immune-cell metabolism and how they can be affected by exercise and nutrients.
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Introduction

The immune system protects the body against pathogens. It
plays a fundamental role in maintaining tissue homeostasis and
preventing inflammatory and metabolic diseases [1]. Immune cells
are bioenergetically expensive during activation, which requires a
tightly regulated control of the metabolic pathways. The metabolic
pathway is essential to the fate of differentiation that the immune
cell will follow. Thus, these cells are easily affected by nutritional
state, exercise volume, and hormonal activities [2].

Innate immune cells are the first line of defense against anti-
gens. They are phagocytes that consume pathogenic bacteria and
present antigen fragments to other immune cells inducing an ade-
quate immune response. Innate immune cells are also responsible
for maintenance of tissue homeostasis [3]. Mononuclear cells (i.e.,
monocytes and macrophages), granulocytes (i.e., neutrophils, eosi-
nophils, and basophils), mast cells, and natural killer cells comprise
this system. Mononuclear cells are the main innate cell population,
modulated by nutritional state and physical activity level.

Macrophages are potent phagocytes that work on pathogen
elimination, tissue repair, and antigen presentation. These cells are
very heterogeneous in gene expression and can be modulated
depending on the stimulus. The two best characterized phenotypes
are classic (M1) and alternative (M2) activation [4]. M1
(i.e., proinflammatory macrophages) is activated with lipolysac-
charide and interferon-g (IFN-g) stimulation and produces proin-
flammatory cytokines that recruite other immune cells to an
inflammation resolution. This phenotype is known to be more gly-
colytic, and thus presents a high rate of glucose and glutamine
uptake and lactate production when activated [5]. However, with
prolonged IFN-g stimulation, M1 macrophages also increase mito-
chondrial gene expression [6]. Mitochondrial respiration enhances
reactive oxygen species (ROS) production, which is necessary for
an enhanced microbicidal activity of macrophages [7].

M2 (i.e., anti-inflammatory macrophages) polarize under type
2 cytokine stimulation (interleukin [IL]-4 and -13). M2 macro-
phages prefer fatty acid oxidation to energy metabolism as
opposed to a classic activation and thus shows higher rates of mito-
chondrial mass and respiration. Oxidative phosphorylation
(OXPHOS) inhibition dramatically reduces the M2 phenotype and
alternative activation markers [8].

Adaptive immune cells respond in a highly specific manner
against antigen presentation. Upon stimulation, these cells produce
large amounts of cytokines and chemokines and improve the
immune response by proliferating. This proliferation requires pro-
tein synthesis to support DNA replication, membrane formation,
and organelles biogenesis.

Na€ıve T cells are metabolically active and require adenosine tri-
phosphate (ATP) synthesis for survival and migration. They prime
oxidase glucose and fatty acid via mitochondrial B-oxidation and
OXPHOS [9] to reach the required levels of ATP. Once activated,
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cluster of differentiation (CD) 4+ T-helper cells switch their meta-
bolic pathways to glycolysis and glutaminolysis to support rapid
cell proliferation and increased cytokine production. In a gluta-
mine-deprived medium, na€ıve CD4+ T cells, when stimulated, fail
to differentiate to T helper 1 (Th1) and increased T regulatory
(Treg) expression [9].

CD8+ cytotoxic T cells also assume a glycolytic metabolism after
stimulation to sustain the effector functions. Inhibiting glycolysis
[10] and activity of the mammalian target of rapamycin (mTOR)
protein complex 1 (C1) [11] impaired effector cells formation and
induced a memory cell phenotype. mTORC1 is responsive to amino
acids, growth factors, and insulin, and regulates cellular anabolism
(discussed below). mTORC1 is necessary for the initial differentia-
tion of effector cells and the effector response activated by memory
T cells. However, the hyperactivation of mTORC1 prejudices cells
that transition into a memory state [12]. A memory CD8+ T cell
induced-phenotype (by mTORC1 and glycolysis inhibition) enhan-
ces the antitumor function [10,12].

B-lymphocytes have many similarities with T cells (e.g., oxida-
tive metabolism in quiescent state and glycolysis and mTOR activa-
tion when stimulated). Upon activation, these cells increase the
consumption and production of the by-products alanine and gluta-
mate [13], which is followed by an increase in glycolytic and amino
acid that metabolizes enzymes up to 3 d after stimulation [14].

These results suggest that both T and B cells present a metabolic
flexibility to adapt into different states of activation. Glucose is the
main substrate required during cell stimulation; however, emerg-
ing ideas indicate that amino acids also play an important role in
cell function.

Immunonutrition

Glucose

Glucose is the first substrate that cells metabolize to generate ATP
rapidly. Moreover, glycolysis provides fast energy and produces nico-
tinamide adenine dinucleotide (NAD)+, which is converted to NAD-H
and used by many enzymes and cofactors that support biosynthetic
growth pathways [15]. To maintain the glycolysis flux, immune cells
increase the expression of glucose transporter 1 to increase glucose
uptake and reduce pyruvate to lactate despite oxygen (i.e., Warburg
effect) [16] and maintain NAD+ levels. Similarly, a large amount of
glutamine is required to support the tricarboxylic acid (TCA) cycle.

T cells that are activated in a low-glucose medium reduce cyto-
solic Ca2+ signaling, which leads to a defective activation [17]. Mac-
rophages also require glycolysis for efficient phagocytosis and
cytokine production. Furthermore, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; glycolytic enzyme) is sensitive to glycoly-
sis in T cell and can act by binding to RNA and inhibiting the tran-
scription of some cytokines such as IL-2 and IFN-g. High rates of
glycolysis impair GAPDH binding to IL-2 and IFN-g messenger
RNA, which increases the transduction of these cytokines. On the
other hand, low levels of glucose allow GAPDH to inhibit these
proinflammatory cytokines [18] and decrease T effector function.

Glutamine

Glutamine is the most abundant amino acid in the body, and it
is essential for protein synthesis in all cell types. However, gluta-
mine has a fundamental role in the metabolism of immune cells.
During activation, immune cells quickly switch from oxidative to
glycolytic metabolism and redirect glucose to glycolysis. At this
point, glutamine is converted to a-ketoglutarate in a process called
glutaminolysis and enters directly into the TCA cycle to maintain
this pathway. Furthermore, glutamine is a nitrogen donor and is
essential for purine and pyrimidine nucleotide synthesis. Gluta-
mine also supplies glutathione, which facilitates the transport of
amino acids [19].

A great deal of research has been undertaken to investigate the
role of glutamine in immune cells. Culturing T lymphocytes in a glu-
tamine-free medium completely abolished cell proliferation, activa-
tion, and IL-2 production [20], which replaced the medium with
glutamate (glutamine-driven metabolite) or other amino acids, and
did not restore T-cell functions [20]. These results demonstrated
that T-cell proliferation is dependent on the presence of glutamine.
Furthermore, activating T cells in a low glutamine-concentration
medium induced FOXP3hi CD4 T (Treg marker) expression [21].
These FOXP3hi cells increased endogenous glutamine production to
sustain cell functions, and blocking glutamine synthetase (GS;
enzyme responsible for glutamine synthesis) abolished Treg cell
resilience and proliferation [21].

Macrophages also require sufficient amounts of glutamine for
proper activation. The M1 phenotype upregulates glucose and glu-
tamine uptake to supply glycolysis and proinflammatory cytokine
production, but M2 macrophages maintain an intact TCA cycle,
which favors fatty-acid oxidation. However, a-ketoglutarate
from glutaminolysis is essential to support an anti-inflammatory
macrophage phenotype. Glutamine deprivation has been shown
to impair M2 markers’ gene expression in mice macrophages.
The phenotype was restored with the addition of a
cell-permeable analog of a-ketoglutarate [22]. Furthermore, gluta-
minolysis is also required during M1 activation to precipitate lipo-
lysaccharide-induced endotoxin tolerance.

However, M2-like macrophages increased the expression of GS
compared with M1-induced phenotype, and when GS was inhib-
ited in M2 macrophages, the cells started to express M1 markers
and assumed M1 metabolism [23]. In addition, the authors
observed that monocytes cultured in a low-glutamine medium
increased GS activity in a feedback mechanism and consequently
enhancedM2markers. These data suggest that glutamine availabil-
ity can control macrophage-induced phenotypes, and keeping the
balance between M1 and M2 activation is essential to maintain a
proper resolution of infections.
Amino acids

Branched chain amino acids (BCAAs) are composed of leucine,
isoleucine, and valine that are classified as essentials amino acids.
Essential amino acids are not synthesized by cells, but must be sup-
plied in the diet. However, BCAAs are necessary to regulate muscle
synthesis protein via mTOR and inflammatory responses [24].

Leucine transport inside the cell is dependent on glutamine
efflux through the complex Slc7a5 (LAT1) and Slc3a2. Whereas
LAT1 transports leucine across the membrane intracellularly in
lymphocytes, Slc3a2 is responsible for the extracellular exit of glu-
tamine [25]. Inside the cell, leucine is required for mTORC1 activa-
tion and T-lymphocyte proliferation [26]. A leucine antagonist
promotes similar effects to mTORC1 inhibition, such as reducing
cytokine production and cell cycle arrest [26].

In macrophages, leucine can improve mitochondrial respiration
and ATP production [27]. Leucine modulates the energetic status of
the cell, which is used for protein synthesis or degradation, and the
amino group can be transferred to a-ketoglutarate, which leads to
energy production [28]. Papathanasius et al [29] blocked branched
chain-amino transferases (enzymes responsible for catabolism of
BCAA) in human macrophages, which resulted in low oxygen con-
sumption and glycolysis.
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AMPK andmTOR pathways regulating immune fate

Adenosine monophosphate�activated protein kinase (AMPK)
and mTOR are two important metabolic regulators that work in
opposing ways to orchestrate cellular response. The balance between
these enzymes is a key controller of cellular homeostasis (Fig. 1).

AMPK is a complex kinase that it is activated under catabolic
conditions when the AMP:ATP ratio is increased. At this point,
AMPK increases the catabolic processes that generate ATP (i.e.
OXPHOS) and decreases the anabolic processes that consume ATP
(i.e., amino acid synthesis). Activated immune cells require high
amounts of substrates to keep ATP at an appropriate level for pro-
liferation and cytokine production. Glucose and glutamine depriva-
tion have been observed to result in AMPK activation in stimulated
T cells [30].

Recent studies have demonstrated that AMPK is a key meta-
bolic regulator of T cells, allowing for metabolic plasticity to adapt
to an energy stress that is found in an inflammatory microenvi-
ronment [31]. In CD8 T cells, AMPK knockout causes several
defects in the generation of memory [30]. Memory CD8+ T cells
play a key role in mounting a quick and efficient response to
infections and as a tumor suppressor [32]. Furthermore, T lym-
phocytes from AMPKa1-KO mice presented higher sensitivity to
metabolic stress, but exhibited normal cytokine production when
stimulated [33]. These results clarified the notion that AMPK is
essential for ATP homeostasis, but not required for cell-effector
function, and can occur because activated AMPK switches off
almost all anabolic pathways, including mTOR, which is indis-
pensable to cell activation and proliferation. mTORC1 is primor-
dial to immune-cell activation and proliferation. In T cells, mTOR
signaling is essential for effector cell differentiation (Th1 and
Th17) [34]. Suppressed mTORC1 activation in a mouse model led
to low macrophage numbers in bone marrow, impaired mono-
cyte-to-macrophage differentiation, and inhibited the macro-
phage phagocytosis ability [35]. However, constant activation of
mTOR can be detrimental because of increased reactive oxygen
species and further induction of cell senescence. Furthermore,
studies have shown that the pharmacologic inhibition of mTOR
(by rapamycin treatment) increased IL-12 production by mouse
dendritic cells and human T cells [36,37]. IL-12 is a key immuno-
modulatory cytokine that induces Th1 differentiation and IFN-g
production. mTOR is activated mainly by growth factors and insu-
lin signaling; however, mTOR activity also depends on the avail-
ability of certain amino acids (e.g., leucine). In the absence of
amino acids, mTORC1 signaling is decreased even in the presence
Fig. 1. Immune cells can easily change metabolic pathwa
of growth factors [38]. Amino acids act through sensors to pro-
mote mTOR activation, especially through leucine and arginine
cytosolic sensors. In lymphocytes, mTORC1 activity is sensitive to
leucine concentration. T cells that lack leucine transaminase pres-
ent higher intracellular leucine concentrations, followed by
increased mTORC1 activation and higher glycolysis rates [39].
Furthermore, a CD8+ T-cell-cultivated medium without an
amino-acid medium gave rise to impaired mTOR phosphorylation,
and the addition of leucine (0.4 mM) completely restored mTOR
activity [40].

Therefore, an appropriate amino acid concentration appears
necessary for efficient mTOR function, especially at the initial
stages of immune-cell activation. However, keeping mTOR activity
for a prolonged period of time can increase oxidative stress and
drive cells to an immonoscenecent phenotype, resulting in
impaired antigen recognition, phagocytosis, and cytokine produc-
tion. Moreover, mTOR inhibits AMPK phosphorylation and, conse-
quently, decreases regulatory and memory-cell formation (Fig. 2).

Exercise and the immune system

Exercise as an immunomodulatory agent

Exercise has immunomodulatory actions. Acute exercise
increases the total numbers of leucocytes in the blood, and neutro-
phils are mainly responsible for this situation. From zero to 3 h
after a single bout of aerobic exercise, the total leucocyte numbers
enhanced two- to threefold and returned to baseline levels within
24 h after exercise sensation [41].

Not only are the total circulating numbers increased during
recovery after prolonged exercise, but cell function is also
decreased. CD4+ and 8+ T cells fail to migrate after a 2 h treadmill
run [42]. T-cell proliferation is also reported to decrease during
and after exercise, as does the lymphocyte response to an antigen
challenge. Furthermore, monocyte phagocytosis is impaired after
exhaustive prolonged exercise [43], and 2 h of cycling at 80%
VO2max decreased the neutrophil oxidative burst [44]. Moderate
exercise volume, however, has an immunostimulatory effect. Neu-
trophil and monocyte phagocytosis was enhanced immediately
after a submaximal prolonged exercise [45].

These results indicate that, in relation to exercise, the immune
response depends on exercise intensity and duration, and therefore
it is not surprising that endurance athletes are more vulnerable to
illness up to 72 h after completing a race. This is known as the Open
window hypothesis, proposed by Pedersen and Brunnsgaard, and
ys depending on substrate viability and stimulations.



Fig. 2. During initial cellular activation, mammalian target of rapamycin signaling is required to provide cell proliferation, differentiation, and cell survival, for which amino
acids are essential. However, super activation of mammalian target of rapamycin during prolonged periods can lead to a deep adenosine monophosphate�activated protein
kinase inhibition, which impairs memory-cell formation and induces early cell senescence.
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coincides with the period when numbers and function of immune
cells are impaired [46]. Furthermore, repeated single bouts of stren-
uous exercise without proper recovery can prolong this open win-
dow, and culminate in chronic immunodepression [46].

Nevertheless, exercise intensity and duration is not only impor-
tant for the immune response, but also for nutritional status. As
discussed earlier, immune cells are tightly regulated by substrate
availability, and exercise-induced decreases in glucose and amino
acid concentrations can contribute to immune system impairment.
Exercise, nutrient availability, and immune function

During exercise, there is a huge glucose utilization to maintain
the heart rate and muscle contraction, which leads to a decrease of
this substrate in the bloodstream. Glutamine concentration is also
affected. Glutamine is mainly synthetized, stored, and released by
the skeletal muscle, and repeated muscle contraction can increase
the TCA cycle intermittent flux, which leads to glutamine synthesis
and release. Therefore, moderate intensity training has been asso-
ciated with increased glutamine availability [47].

However, high intensity and prolonged exercise play opposing
roles. An acute bout of high intensity interval exercise decreases
serum glutamine concentration compared with basal levels [48],
and prolonged, exhaustive exercise has a profound negative effect
on glutamine concentration compared with exercise of a shorter
duration [49]. Furthermore, glutamine concentration in the muscle
of rats was markedly reduced 24 h after exhaustive exercise [50].
These results were followed by a decrease in GS, which suggests an
impairment in muscle glutamine synthesis after exhaustive exercise.
Blomstrand and Essen-Gustavsson [51] provided further evidence
by showing that glutamine levels were reduced in both types I and
II muscle fibers in humans, 2 h after submaximal resistance exercise.
In addition, overtrained athletes have shown a marked decrease in
glutamine levels, even at rest, compared with adequately trained
athletes. The plasma concentration of glutamine appears to be a
marker for impaired immune cell function [52].
A decline in substrate availability has a direct impact on the
function of immune cells. Performing a single bout of exercise in
low-glycogen conditions or after a few days on a low carbohydrate
diet decreased T cell, natural killer cell, and neutrophil function
compared with exercise performed during a diet of normal choles-
terol [53]. Both the plasma concentration of glutamine and
immune-cell function decrease after prolonged, exhaustive exer-
cise. However, several studies have found no relation between glu-
tamine and aspects of exercise-induced immunodepression [54].
Recently, sufficient glutamine availability has been suggested to
combat postexercise decreases in immune function after endur-
ance events [54,55].

As discussed earlier, a fall in the concentration of nutrients has
been suggested as one of the mechanisms for the open-window
condition, which increases the risk of upper respiratory tract infec-
tion (URTI). In this context, supplementing individuals with carbo-
hydrate or amino acids has emerged as a strategy to avoid
exercise-induced immunodepression.

In the early 1990s, oral L-glutamine ingestion attenuated the
exercise-induced decrease in plasma glutamine concentration
[56]. Researchers speculated that glutamine supplementation
could restore immune function and decrease the incidence of
susceptibility to URTIs [56]. Many studies have shown that, in
individuals who take glutamine versus placebo, glutamine sup-
plementation was able to maintain the plasma glutamine con-
centration after an exhaustive exercise intervention, but there
was no link with improving immune cell function or trafficking
[57�59].

However, recent studies on rats have found that glutamine sup-
plementation reduces oxidative stress [60] and muscle damage
and inflammation [61] after prolonged exercise. Furthermore,
despite plasma concentration increase not being directly related to
improvements in immune function, athletes who supplemented
with glutamine reported a lower incidence of URTIs than those
who received placebo [56]. Interestingly, 10 wk of BCAA supple-
mentation (precursor for glutamine) had a positive effect on neu-
trophils in trained cyclists [62].
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Glucose supplementation during and after prolonged exer-
cise seasons have positive effects on immune cell function. The
intake of 30 or 60 g/h of carbohydrate during 2.5 h of cycling
restored the CD4+ and 8+ T-lymphocytes production of IFN-g
[63]. Moreover, the ingestion of carbohydrates before, during,
and after exhaustive exercising, performed during 2 consecutive
days, enhanced lymphocytes proliferation in response to an anti-
gen-stimulation and increased T-cell proliferation on the second
day [64].

All these findings suggest that a suitable dietary intake of amino
acids and carbohydrates is required to keep immune functions in
response to exhaustive exercise. Carbohydrates appear to have a
positive acute answer because its intake before, during, and after
exercising can avoid immune depression. Glutamine has a direct
impact on the improvement of muscle regeneration, immune func-
tion, and the intestinal barrier.
Conclusions

Prolonged and strenuous aerobic exercise induces a marked
decrease in plasma concentration of glucose and amino acids,
which can lead to immunodepression. In this case, the mainte-
nance of nutrient availability during and after vigorous exercise is
essential for proper immune system control, which is coordinated
by nutrient sensors (i.e., AMPK and mTOR) and metabolic pathways
(i.e., glycolytic or oxidative phosphorylation) in immune cells.
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