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Physiological roles of muscle-de
rived interleukin-6 in response

to exercise
Bente K. Pedersen and Christian P. Fischer
Purpose of review

To discuss recent findings with regard to the regulation of

muscle-derived interleukin-6 as well as the possible

physiological and metabolic roles of interleukin-6 in

response to exercise.

Recent findings

Contraction-inducedtranscriptionandreleaseof interleukin-6

is primarily regulated by an altered intramuscular milieu in

response to exercise. Accordingly, changes in calcium

homeostasis, impaired glucose availability and increased

formation of reactive oxygen species are all associated with

exerciseandcapableofactivating transcription factorsknown

to regulate interleukin-6 synthesis. Acute interleukin-6

administration to humans increases lipolysis, fat oxidationand

insulin-mediated glucose disposal. Adenosine

monophosphate-activated protein kinase activation by

interleukin-6 appears to play an important role in modulating

some of these metabolic effects. Interleukin-6 facilitates an

antiinflammatory milieu and may exert some of its biological

effects via inhibition of the proinflammatory cytokine tumor

necrosis factor-a.

Summary

The discovery of contracting muscle as a cytokine-

producing organ opens a new paradigm: skeletal muscle is

an endocrine organ that in response to contractions

produces and releases ‘myokines’, which subsequently can

modulate the metabolic and immunological response to

exercise in several tissues. In our view, interleukin-6 may be

one of several myokines.
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AMPK a
orize
denosine monophosphate-activated protein kinase

IL in
terleukin

MAPK m
itogen-activated protein kinase

NF n
uclear factor

rh re
combinant human

ROS re
active organic species

SOCS su
ppressor of cytokine signaling

TNF tu
mor necrosis factor
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Introduction
In 2000, it was shown that the active (but not the resting)

leg of humans released significant amounts of interleukin

(IL)-6 into the circulation during prolonged single-limb

exercise [1]. An accompanying editorial by Mike Gleeson

said ‘It is an intriguing possibility that the IL-6 response

may be a signal indicating that muscle glycogen stores are

reaching critically low levels and that the active muscles’

reliance on blood glucose as a source of energy is on the

increase’ [2]. Since then, much information has been

accumulated with regard to the physiologic and meta-

bolic roles of muscle-derived IL-6. The recent findings

with regard to muscle-derived IL-6 will be reviewed.

Muscle-derived interleukin-6: the first
myokine
A marked increase in circulating levels of IL-6 after

prolonged exercise without muscle damage is a remark-

ably consistent finding [3–9]. The level of circulating

IL-6 increases in an exponential fashion in response to

exercise and declines in the postexercise period [3,4,10].

The magnitude by which plasma-IL-6 increases is related

to exercise duration, intensity and muscle mass involved

in the mechanical work. Muscle damage is not required in

order to increase plasma IL-6 during exercise. Rather,

eccentric exercise may result in a delayed peak and a

slower decrease of plasma IL-6 during recovery [11,12].

In contrast, the IL-6 response is sensitive to the exercise

intensity [13], which again indirectly represents the

muscle mass involved in the contractile activity.

Since contracting skeletal muscle per se is an important

source of IL-6 found in the plasma [1,14], it is

not surprising that exercise involving a limited muscle

mass, e.g. the muscles of the upper extremities, may be

insufficient in order to increase plasma IL-6 above pre-

exercise levels [15,16]. In contrast, running – which
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involves several large muscle groups – is the mode of

exercise where the most dramatic plasma IL-6 increases

have been observed. The available literature regarding

the exercise-induced IL-6 response has been summar-

ized and reviewed recently [17].

Although muscle is a determining factor, the duration of

exercise is the single most important factor determining

the postexercise plasma IL-6 amplitude. In fact, more

than 50% of the variation in plasma IL-6 following

exercise can be explained by exercise duration alone.

Since exercise at high intensity is associated with shorter

duration of the exercise and vice versa, the relationship

between the plasma IL-6 increase and the duration may

be even more pronounced if adjusted for the exercise

intensity. Accordingly, 6 min of maximal rowing erg-

ometer exercise may increase plasma IL-6 two-fold

[18], but more than 10-fold increases of plasma IL-6 have

not been observed in response to exercise lasting less

than 1 h. The relationship between duration and the IL-6

response is remarkably insensitive to the mode of exer-

cise, although the highest increases of plasma IL-6 are

generally found in response to running. The exercise-

induced increase in plasma IL-6 is followed by increased

circulating levels of well-known antiinflammatory cyto-

kines such as IL-1ra and IL-10 [13,19].

Within the past few years research has demonstrated that

IL-6 messenger RNA is upregulated in contracting

skeletal muscle [20,21] and that the transcriptional rate

of the IL-6 gene is markedly enhanced by exercise. In

addition, it has been demonstrated by immunohisto-

chemistry and in-situ hybridization that the IL-6 protein

is expressed in contracting human muscle fibers [22], and

that IL-6 is released from working, but not resting,

skeletal muscle during exercise [1,23].

In addition, exercise may also increase the IL-6 receptor

expression in human skeletal muscle. This increase

occurs several hours after cessation of the exercise bout,

suggesting a postexercise sensitizing mechanism to IL-6

when the IL-6 levels are declining. Whereas IL-6 recep-

tor protein expression in skeletal muscle is responsive to

elevated plasma IL-6 levels, exercise-induced increases

in IL-6 receptor messenger RNA most likely occur via an

IL-6 independent mechanism as shown in IL-6 knockout

mice and from infusion of recombinant human (rh) IL-6

into healthy volunteers [24].

Training adaptation and interleukin-6
Exercise training involves multiple adaptations including

increased skeletal muscle glycogen content, enhanced

activity of key enzymes involved in b-oxidation and

increased oxidation of intramuscular triglycerides,

whereby the capacity to oxidize fat is increased. As

a consequence, the trained skeletal muscle is less
opyright © Lippincott Williams & Wilkins. Unautho
dependent on plasma glucose and muscle glycogen as

substrates during exercise [25]. Epidemiological studies

have reported a negative association between the amount

of regular physical activity and the basal plasma IL-6

levels: the more physically active, the lower the basal

plasma IL-6, reviewed in [17]. Basal plasma IL-6 is more

closely associated with physical inactivity than other

cytokines associated with the metabolic syndrome [26].

The epidemiological data are supported by findings from

intervention studies, although these produce less con-

sistent results. Basal levels of IL-6 are reduced after

training in patients with coronary artery disease [27].

Aerobic training of adults aged 64 years or more for

10 months also decreases basal plasma IL-6 [28]. In

addition, one study demonstrated that the exercise-

induced increase of plasma IL-6 is affected by training.

Using knee-extensor exercise, healthy men trained for

1 h, five times a week for 10 weeks [29]. Due to a marked

training response, the absolute workload was much

higher after training compared to pretraining. Despite

this, the increase in IL-6 messenger RNA content by

acute exercise at the same relative intensity was 76-fold

before training, but only eight-fold after training. In

addition, the exercise-induced increase of plasma IL-6

was similar before and after training, although the

absolute workload was increased by 44% with training.

Accordingly, it is possible that differences in training

status explain why elderly subjects release the same

amount of IL-6 as young subjects from the leg during

knee-extensor exercise at the exact same relative, but

half the same absolute, workload [30]. Noteworthy,

a training-induced reduction of plasma IL-6 may be

partially counteracted by increased expression of IL-6

receptor in the skeletal muscle [31]. The latter finding

suggests that a trained muscle is more sensitive to IL-6

than untrained muscle.

Regulation of muscle-derived interleukin-6
Since IL-6 is synthesized and released only from the

contracting muscles and not from the resting muscles

exposed to the same hormonal changes [1,32], circulating

systemic factors alone do not explain why contracting

muscles synthesize and release IL-6. Instead, local factors

seem necessary, although systemic factors may modulate

the response. The promoter region of the IL-6 gene

contains a binding site for the nuclear factor (NF)-kB

and NF-IL-6 [33].

Additional transcription factors such as the NF of acti-

vated T cells [34] and heat shock factors 1 and 2 [35] may

contribute to the activation of IL-6 gene transcription.

In vitro, calcium activates both the NF of activated T

cells and NF-kB [36,37], and incubation of muscle cell

cultures with a calcium ionophore (ionomycin) increases

IL-6 secretion in a p38 mitogen-activated protein kinase
rized reproduction of this article is prohibited.
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Figure 1 Several mechanisms may link muscle contractions to

IL-6 synthesis

Changes in calcium homeostasis, impaired glucose availability and
increased formation of ROS are all capable of inducing transcription
factors regulating IL-6 gene transcription. The synthesized IL-6 may act
locally within the contracting skeletal muscle in a paracrine manner or be
released into the circulation, thus able to induce systemic effects. In liver,
the circulating IL-6 may increase hepatic glucose output. In adipose
tissue, IL-6 produced locally and IL-6 from the circulation in concert may
increase lipolysis. FFA, free fatty acids; IL, interleukin; ROS, reactive
oxygen species.
(MAPK)-dependent manner [38,39]. A recent study

demonstrates that contraction-induced IL-6 transcription

in rat slow-type muscle is partly dependent on calcineurin

activation [40]. Human studies have shown increased

total and nuclear content of phosphorylated p38 MAPK,

but unaltered nuclear content of the NF of activated

T cells in muscle biopsies after 1 h of bicycling [41],

whilst messenger RNA content of calcineurin A – which

is involved in calcium signaling – is increased in muscle

biopsies 6 h post 3 h of knee-extensor exercise [42].

Activation of NF-kB has been demonstrated in rat

skeletal muscle after exercise [43], but not consistently

in humans [41]. Interestingly, NF-kB is a redox-sensitive

transcription factor [44] that may be activated by reactive

oxygen species (ROS). Increased (ROS) formation in

exercising skeletal muscle following exercise has been

demonstrated directly in animals [45,46] and indirectly

in humans [47]. In vitro, murine skeletal myotubes

release IL-6 when exposed to oxidative stress in an

NF-kB-dependent fashion [48]. In addition, supplement-

ation with different antioxidants attenuates the systemic

increase of IL-6 in response to exercise [49,50]. Using

arterio-venous differences of IL-6 across the leg, we

observed that the reduced systemic increase of IL-6

during exercise was due to an almost complete inhibition

of the net leg release of IL-6 in the group pretreated with

vitamin C and E for 4 weeks [14]. The observation that

indomethacin – a member of the nonsteroidal anti-

inflammatory drugs that are known to inhibit NF-kB

activity – reduces the exercise-induced increase of

IL-6 further supports that NF-kB is likely to serve as a

link between contractile activity and IL-6 synthesis [51].

On the other hand, increased oxidative stress, as well as

low glucose availability, low glycogen content, catechol-

amines, increased intracellular calcium levels, hyperther-

mia and ischemia-reperfusion are all features of exercise

capable of inducing heat shock proteins, which may, in

turn, activate IL-6 synthesis via heat shock factors 1 and 2

[35]. Accordingly, several regulators of IL-6 transcription

are likely to be activated by an altered intramuscular

milieu in response to exercise (Fig. 1). This point of view

is supported by the various interventions that have

demonstrated an effect on the exercise-induced IL-6

response. For instance, reduction of intramuscular gly-

cogen content prior to exercise results increased accumu-

lation of IL-6 messenger RNA within the contracting

muscle as well as increased release of IL-6 from the

contracting muscle [38,51–53]. This effect of glycogen

on the exercise-induced IL-6 may be mediated through

activation of p38 MAPK [38] and adenosine monophos-

phate-activated protein kinase (AMPK) [54]. In contrast,

supplementation with carbohydrates during exercise

inhibits the exercise-induced increase of IL-6 in plasma,

whilst IL-6 messenger RNA expression within the
opyright © Lippincott Williams & Wilkins. Unauth
contracting muscle is unaffected [55–58]. Whilst glucose

availability may interfere with IL-6 gene expression

through AMPK [59,60], other mechanisms regulating

IL-6 at a posttranslational level appear to exist. To make

it even more complex, IL-6 appears to be capable of

enhancing its own transcription [61], which may partly

explain the almost exponential increase of IL-6 towards

the end of exercise. It should be noted, however, that the

IL-6 released into the circulation is cleared very quickly.

In mice, the half-life of 125I-labeled IL-6 in the circula-

tion is 2 min [62], which is in accordance with the fast

decrease of plasma IL-6 following rhIL-6 infusion from

human studies [63]. A substantial part of muscle-derived

IL-6 appears to be cleared by the liver. By placing

catheters in the brachial artery and the hepatic vein,

and by measuring blood flow using indocyanine green

dye, we were able to quantify IL-6 flux across the

hepatosplanchnic viscera during exercise. Rather than

produce IL-6, the hepatosplanchnic viscera clear IL-6

during exercise, because we observed a net IL-6 uptake

by these tissue beds [64].

Interleukin-6 and its role in chronic diseases
Growing evidence links type 2 diabetes to a state of low-

grade chronic inflammation and it has been suggested

that IL-6 promotes insulin resistance due to the obser-

vation that plasma IL-6 is often elevated in patients with

metabolic disease. From a simplistic physiological point

of view, it seems paradoxical that working muscle would

release a factor that inhibits insulin signaling when
orized reproduction of this article is prohibited.
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insulin sensitivity is enhanced in the immediate postex-

ercise period [65]. The idea of IL-6 being a bad or a good

guy with regard to metabolism has recently been debated

in a counterpoint discussion [66]. Most of the conceptual

basis with regard to IL-6 having detrimental metabolic

actions is primarily based on (1) correlational relation-

ships in cohort studies, (2) animal studies, neglecting that

mouse and human IL-6 exhibit only approximately 42%

sequence identity, and (3) in-vitro cell culture studies of

supraphysiological concentrations of IL-6.

The in-vivo effect of interleukin-6 on glucose
and lipid metabolism
Using rhIL-6 infusion to humans, we have previously

demonstrated that IL-6 appears to play a role in mod-

ulating endogenous glucose production during exercise

in humans [67]. In contrast, IL-6 has no apparent effects

on basal glucose metabolism in resting humans – acute

rhIL-6 administration to healthy humans neither impairs

whole-body glucose disposal or net leg glucose uptake,

nor does it increase endogenous glucose production

[68–70]. In fact, in patients with type 2 diabetes, rhIL-

6 decreases circulating insulin without concomitant

changes in glucose metabolism [70]. To test the hypoth-

esis that IL-6 may increase peripheral insulin sensitivity,

we recently demonstrated that IL-6 increases glucose

infusion rate and glucose oxidation during a hyperinsu-

linemic euglycemic clamp in healthy humans [71]. Of

note, these data are in contrast to observations reported in

mice [72]. The finding of an insulin-sensitizing effect of

IL-6 at conditions where endogenous glucose production

is suppressed indicates that the main effect of IL-6 on

insulin-stimulated glucose metabolism in humans is

likely to occur in peripheral tissues such as fat deposits

and skeletal muscle.

When infusing rhIL-6 into healthy humans, we found

that IL-6 increased lipolysis in the absence of hypertri-

acylglyceridemia, or changes in catecholamines, glucagon,

insulin or any adverse effects. These findings were true

both for young and elderly healthy individuals [63,69,70]

as well as for patients with type 2 diabetes [70]. Together

with cell culture experiments demonstrating that IL-6

alone markedly increases both lipolysis and fat oxidation,

these findings identify IL-6 as a novel lipolytic factor [70].

Interestingly, axokine, a human variant of the IL-6 family

cytokine member ciliary neurotrophic factor, which acts

via a common receptor with IL-6 (the IL-6 receptor/

leukemia inhibitory factor receptor/ciliary neurotrophic

factor receptor/gp130 receptor complex), induces marked

weight loss in obese patients [73]. Moreover, blocking IL-

6 in clinical trials with patients with rheumatoid arthritis

leads to enhanced cholesterol and plasma glucose levels,

indicating that functional lack of IL-6 may lead to insulin

resistance and an atherogenic lipid profile [74–76]. In

accordance, IL-6 knockout mice develop late-onset
opyright © Lippincott Williams & Wilkins. Unautho
obesity and impaired glucose tolerance [77]. Together,

these studies add weight to the notion that IL-6 family

cytokines are ‘antiobesogenic’.

Is interleukin-6 acting via adenosine
monophosphate-activated protein kinase?
In isolated hepatocytes and in mice in vivo, IL-6 has a

negative effect on hepatic insulin sensitivity. These

findings, however, are in contrast to in-vivo studies in

resting humans demonstrating that neither splanchnic

glucose output measured by arterio-venous balance

across the hepatosplanchnic tissue nor isotopic tracer

determined endogenous glucose production is increased

by acute infusion of rhIL-6 [68–70]. In vitro, IL-6 either

enhances [71,78] or does not enhance [79,80] glucose

transport in adipocytes. The fact that IL-6 infusion has no

effect on subcutaneous adipose tissue glucose uptake in

humans [81] suggests that IL-6 has at least no acute

effects on insulin-sensitivity in human adipose tissue.

In addition, IL-6 increases intramyocellular or whole-

body fatty acid oxidation [70] and thus likely to decrease

intramyocellular fatty acid accumulation that per se may

impair insulin signaling. In myocytes, IL-6 may enhance

insulin-stimulated glucose transporter 4 translocation,

basal and insulin-stimulated glucose uptake [71,82],

and glycogen synthesis [83].

Recent evidence suggests a link between IL-6 and

AMPK: AMPK activation stimulates fatty acid oxidation

and increases glucose uptake [84]. IL-6 enhances AMPK

in both skeletal muscle and adipose tissue in mice [85],

and the effects of IL-6 on enhanced glucose uptake in

skeletal myotubes are abolished in cells infected with an

AMPK dominant-negative construct [71]. Studies have

shown that IL-6 can enhance lipid oxidation in vitro [70],

ex vivo [86] and in vivo [63,70]. AMPK phosphorylates

acetyl-CoA carboxylase resulting in inhibition of acetyl-

CoA carboxylase activity which, in turn, leads to a

decrease in malonyl-CoA content, relieving inhibition

of carnitine palmitoyltransferase-1 and increasing fatty

acid oxidation [70,84]. We recently showed that the IL-6-

mediated phosphorylation of acetyl-CoA carboxylase and

subsequent palmitate oxidation in vitro is AMPK depen-

dent [71]. These data, together with recent findings

regarding ciliary neurotrophic factor, which also enhances

lipid oxidation via activation of AMPK in mice [87],

suggest that ligands that bind to the gp130 receptor

complex generally may enhance glucose uptake and fat

oxidation via activation of AMPK.

IL-6 has been shown to activate suppressor of cytokine

signaling (SOCS) proteins in liver leading to hepatic

insulin resistance [88]. IL-6 increased SOCS3 expression

in myotubes, but concomitantly increased glucose uptake

in these cells [71]. While IL-6 increased SOCS3 two-

fold in muscle, it was increased around 25-fold in liver,
rized reproduction of this article is prohibited.
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Table 1 Interventions that modulate the interleukin-6 response

to exercise

Effect on interleukin-6
in response to
exercise Intervention References

Attenuation Oral carbohydrates
supplementation

[55,95–97]

Supplementation
with antioxidants

[14,49,50]

Nonsteroidal
antiinflammatory
drugs (indomethacin)

[98]

Endurance training [29]
Augmentation Reduction of preexercise

of muscle glycogen
content

[38,52,53]

Nicotinic acid
(reduces lipolysis)

[99]

Heat [100]
suggesting that the capacity for IL-6 to induce SOCS3 is

much greater in hepatic tissue [89]. Although speculative,

the possibility exists that the negative effects of IL-6 on

SOCS3 may be overridden by the positive effects on

AMPK.

IL-6 stimulates the production of anti-inflammatory cyto-

kines [9] and suppresses tumor necrosis factor (TNF)-a

production in humans [90]. Direct evidence for a role of

TNF-a in insulin resistance in humans has been obtained

[91] and it is likely that muscle-derived IL-6 offers

protection against TNF-induced insulin resistance [9].

Given the different biological profiles of TNF-a and IL-6

and given that TNF-a can trigger IL-6 release, it is

possible that it is adipose tissue-derived TNF-a that is

actually the ‘driver’ behind the metabolic syndrome and

that increased systemic levels of IL-6 reflect locally

produced TNF-a [9].

Skeletal muscle as an endocrine organ
We have known for a long while that the signaling

pathways from contracting muscles to other organs were

not mediated solely by the nervous system as electrical

stimulation of paralyzed muscles in spinal cord injured

patients (i.e. lacking afferent and efferent nerve

impulses) induces many of the same physiological

changes as in intact humans [92,93]. On this basis, it

was clear that a humoral factor must exist. For lack of

more precise knowledge, such a factor has been called the

‘work stimulus’ or ‘the work factor’ [94]. We prefer to use

the term ‘exercise factor’ to cover the effects of muscle

contractions as such. In our search for an exercise factor,

we found a cytokine, IL-6, which is produced by con-

tracting muscles and released into the blood. We have

suggested that muscle-derived IL-6 fulfils the criteria of

an exercise factor and that such classes of cytokines

should be named ‘myokines’ [5]. We find that muscle-

derived IL-6 possesses some of the characteristics of a
opyright © Lippincott Williams & Wilkins. Unauth
true ‘exercise factor’. In our view, IL-6 may be one of

several ‘myokines’. Clearly, the numerous and diverse

effects of exercise are not mediated by only or two

myokines, but it is possible that there are several myo-

kines that may modulate the more well-known neurohu-

moral effects. See Table 1.

Conclusion
Given that skeletal muscle is the largest organ in the

human body, the discovery of contracting muscle as a

cytokine-producing organ opens a new paradigm: skeletal

muscle is an endocrine organ that in response to contrac-

tions stimulates the production and release of myokines,

which can influence metabolism and modify cytokine

production locally and systemically.
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