Prevalence of type 2 diabetes among adolescents in Brazil: Findings from Study of Cardiovascular Risk in Adolescents (ERICA)

Gabriela H. Telo1 | Felipe V. Cureau1,2 | Moyses Szklo3,4 | Katia V. Bloch4 | Beatriz D. Schaan1,5

1Postgraduate Program in Endocrinology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
2National Institute of Science and Technology for Health Technology Assessment, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
3Department of Epidemiology, Johns Hopkins and Bloomberg School of Public Health, Baltimore, Maryland
4Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
5Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil

Correspondence
Felipe V. Cureau, Postgraduate Program in Endocrinology, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2350, CEP 90035-903, Porto Alegre, Brazil.
Email: fvcureau@gmail.com

Funding information
Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: 405009/2012-7, 457050/2013-6, 565037/2010-2; Financiadora de Estudos e Projetos, Grant/Award Number: 01090421; Hospital de Clínicas de Porto Alegre, Grant/Award Number: 09.098

Background: Type 2 diabetes mellitus (T2DM) in adolescents represents a clinical challenge related to lifestyle and obesity; however, only a few data are available in developing countries. Therefore, our aim was to investigate the prevalence of T2DM and prediabetes among Brazilian adolescents, as well as to describe the cardio-metabolic profile according to the diagnosis.

Methods: This is a cross-sectional school-based multicenter study including youth aged 12 to 17 years from cities with more than 100,000 inhabitants in Brazil (n = 37,854 students). Fasting glucose, hemoglobin A1c (HbA1c) and other cardio-metabolic risk factors were measured. Prediabetes was defined by glucose levels 100 to 125 mg/dL or HbA1c 5.7% to 6.4%. T2DM was defined by self-report, glucose ≥126 mg/dL or HbA1c ≥6.5%. Multinomial logistic regression was used to estimate the odds ratio (OR) of prediabetes or T2DM according to covariates.

Results: Prevalences of prediabetes and T2DM were 22.0% (95% confidence interval [CI] 20.6%-23.4%) and 3.3% (95% CI 2.9%-3.7%), respectively. This estimates represented 213,830 adolescents living with T2DM and 1.46 million adolescents with prediabetes in Brazil. Prevalences of cardio-metabolic risk factors were higher in adolescents with prediabetes and T2DM. In the multinomial logistic model, obesity (OR 1.59, 95% CI 1.20-2.11), high waist circumference (OR 1.51, 95% CI 1.13-2.01), and skipping breakfast (OR 1.48, 95% CI 1.21-1.81) were associated with an increased OR for T2DM, while studying at rural area (OR 0.56, 95% CI 0.41-0.78) was associated with a decreased OR for T2DM.

Conclusions: The prevalence of T2DM and prediabetes was high among Brazilian adolescents, which highlights that this disease became a public health challenge not only among adults in Brazil.

KEYWORDS
adolescents, Brazil, prediabetes, prevalence, type 2 diabetes mellitus

INTRODUCTION

Type 2 diabetes mellitus (T2DM) prevalence has increased worldwide, especially in low and middle-income countries.1 Global T2DM prevalence in adults rose from 4.7% to 8.5% in the past three decades,2 reflecting the increase in obesity prevalence in most countries. T2DM prevalence varies widely among countries3; however, although 80% of the estimated cases of diabetes occur in less developed areas,3 most available data come from high-income countries. Brazil, a middle-income country, has the fourth largest T2DM patient population in the world.4 In a systematic review including more than one million people, T2DM prevalence in Brazil was found to be 11.9%, showing a progressive increase over the previous three decades.5

ABBREVIATIONS: BMI, body mass index; HbA1c, hemoglobin A1c; T2DM, type 2 diabetes mellitus.
Diabetes prevalence has increased over time not only in adults; in the last two decades, T2DM has become increasingly more frequent among youth worldwide, a trend that seems to be especially related to obesity. The highest prevalence has been observed in the United States, where T2DM represents 10% to 50% of new cases of diabetes among adolescents and over 50% among minority groups, including Latin and Hispanic youth. In contrast, in Europe, T2DM is considered a rare disease, accounting for only 2% of new diabetes cases among youth. Although it is known that the number of obese children and adolescents is increasing worldwide, only limited data are available regarding T2DM outside Europe and the United States. In Brazil, a national survey recently showed that 8.4% of Brazilian adolescents were obese, and over 20% of those had metabolic syndrome, but prior to our study, no data were available on T2DM prevalence in this population.

The Study of Cardiovascular Risk in Adolescents (Portuguese acronym: Estudo de Riscos Cardiovasculares em Adolescentes “ERICA”) was designed to estimate the prevalence of cardiovascular risk factors in adolescents aged 12 to 17 years. Its aim was to evaluate the prevalence of prediabetes and T2DM in this population. We hypothesized that a high prevalence of prediabetes and T2DM would be found among obese/overweight youth, those from lower socioeconomic backgrounds and those with unhealthy lifestyle behaviors. Moreover, we expected a higher prevalence of cardiometabolic risk factors among adolescents with prediabetes and T2DM.

2 | METHODS

2.1 | Study design and sample

ERICA is a national, school-based, cross-sectional multicenter study aimed at examining the prevalence of cardiovascular risk factors including obesity, diabetes, and metabolic syndrome in a representative sample of Brazilian adolescents. Eligible participants included regular students residing in Brazilian municipalities with more than 100 000 inhabitants. Data collection took place between February 2013 and November 2014. A thorough description of the study design and sampling procedures is available elsewhere.

2.2 | Participants

The target population of ERICA was stratified into 32 geographical strata: 26 state capitals, one federal district, and five strata representing other municipalities in each macro-region of the country. Schools were selected based on number of students and a probability inversely proportional to the distance between the non-capital municipalities and the capital of the state. We selected three classes per school with different combinations of school schedule time (morning and afternoon) and grade (seventh, eighth, and ninth grade of elementary school, and first, second, and third grade of high school). All students in the selected classes were invited to participate. For the present analyses, we used data from students aged 12 to 17 years (n = 37 854), who lived in 124 municipalities and attended one of the 925 selected schools during the morning, as an overnight fasting was mandatory. The response rate for completion of all procedures, including blood collection, was 52%. A thorough description of the response rate in the ERICA is available elsewhere.

All adolescents who agreed in participate in the study provided a written informed assent, and an informed consent signed by the parent or legal guardian. ERICA was approved by the Institutional Review Boards of all 27 federation units in Brazil.

2.3 | Data Collection

Trained researchers performed all the measurements according to written standardized procedures. Height was measured using a portable stadiometer without shoes; body weight was measured using a digital scale in light clothing. These measures were used for calculating body mass index [BMI = weight (kg)/height (m²)]. Nutritional status was determined by age-sex-specific BMI, according to the World Health Organization reference curves. The categories were defined as follows: underweight if BMI z-score < −1; normal weight if BMI z-score ≥ −1 and ≤ 1; overweight if BMI z-score > 1 and ≤ 2; and obesity if BMI z-score > 2. Waist circumference was measured as a marker of central adiposity using an anthropometric tape. The measurement was taken at midway between iliac crest and lower costal margin. Abdominal obesity was defined according to the cutoff points recommended by the International Diabetes Federation based on the metabolic syndrome criterion for this age group (younger than 16 years old: ≥ 90th sex and age-specific percentile; older than or equal to 16 years old: ≥ 90 cm for boys and ≥ 80 cm for girls).

Systolic and diastolic blood pressures were measured using an automatic oscillometric device (Omron 705-IT- Omron Healthcare, Bannockburn, IL), previously validated for use in youth. Three consecutive measures were taken from each student’s right arm after 5 minutes sitting in a quiet position, using an individually determined cuff size and, with an interval of at least 3 minutes between each measure. The second and third blood pressure readings were averaged and used in analyses. High blood pressure was defined as values of systolic or diastolic blood pressure ≥ 95th percentile for sex, age, and height.

Before blood collection, participants were asked to keep an overnight fast of 12 hours. The following analytes were measured: glucose (hexokinase method), insulin (chemiluminescence), hemoglobin A1c (HbA1c ion exchange chromatography), total cholesterol (enzymatic kinetics), high-density lipoproteins (HDL)-cholesterol (enzymatic colorimetric assay), and triglycerides (enzymatic kinetics). The high-density lipoproteins (LDL)-cholesterol was estimated indirectly by the Friedewald equation. Lipid and insulin abnormalities were defined following Brazilian guidelines as previously reported: total cholesterol ≥ 150 mg/dL; HDL-cholesterol ≤ 45 mg/dL; LDL-cholesterol ≥ 100 mg/dL; triglycerides ≥ 100 mg/dL; and insulin ≥ 15 mU/L. All blood samples were analyzed in a single laboratory following a standardized protocol.

2.4 | Study-outcome definitions

Self-reported diagnosis of diabetes was assessed by a standard questionnaire that was self-administered by students and supervised by trained staff using a personal digital assistant (LG GM750Q).
Participants who reported insulin use were classified as having type 1 diabetes mellitus (n = 33) and were excluded from further analyses in this study. Type 1 diabetes autoantibodies were not evaluated in this study.

The American Diabetes Association diagnostic criteria for prediabetes and diabetes were used in this study. Prediabetes was defined by fasting glucose levels between 100 and 125 mg/dL (5.6–6.9 mmol/L) or HbA1c between 5.7% and 6.4% (39–47 mmol/mol). T2DM was defined by self-report (previous T2DM diagnosis reported and one or more positive responses for two questions regarding receiving any diabetes treatment recommendation and taking diabetes medication), fasting glucose ≥126 mg/dL (7.0 mmol/L), or HbA1c ≥6.5% (48 mmol/mol). The lab results in adolescents without self-reported diabetes were used to define previously undiagnosed T2DM.

2.5 Covariates

Covariates were macro-regions (North, Northeast, Midwest, Southeast, and South), sex, age (categorized as 12-13, 14-15, and 16-17 years), self-reported skin color [white, black, mixed (brown), yellow, native, and not reported], type of school (public or private) and school area (urban or rural).

Skipping breakfast (never/sometimes) was considered an indicator of unhealthy eating habits. Time spent in moderate-to-vigorous physical activity was assessed using an adapted version of the Self-Administered Physical Activity Checklist, cross-culturally adapted and validated also in Brazilian adolescents. To determine the weekly amount of time spent in physical activity, we multiplied self-reported duration and frequency for each activity listed and then dichotomized in <60 or ≥ 60 minutes/day.

2.6 Data analysis

ERICA was designed to provide representative estimates of the prevalence of major cardiovascular risk factors, including diabetes in Brazilian school-aged adolescents (12-17 years). All analyses were weighted to represent the total population of adolescents regularly attending schools in Brazilian municipalities with more than 100,000 inhabitants based on the 2011 National Educational Census. Premenopausal women were included, and menopause status was not considered a covariate. Adolescents with undiagnosed diabetes had higher levels of fasting glucose and HbA1c than those with previously diagnosed T2DM.

A linear trend was observed among adolescents with T2DM and prediabetes, in comparison to healthy youth, with regard to waist circumference (T2DM: 73.9 cm, prediabetes: 72.9 cm and healthy: 71.9 cm; P for trends <0.001), LDL-cholesterol (T2DM: 91.0 mg/dL, prediabetes: 86.9 mg/dL and healthy: 84.6 mg/dL; P for trends =0.001), triglycerides (T2DM: 84.5 mg/dL, prediabetes: 81.4 mg/dL, healthy: 76.9 mg/dL; P for trends <0.001), and insulin (T2DM: 10.8 mU/L, prediabetes: 10.6 mU/L, healthy: 9.1 mU/L; P for trends <0.001). Table 1 also shows the distribution of cardio-metabolic characteristics for prediabetes and T2DM through specific categories.

The prevalence of prediabetes was higher in males than in females, based on two criteria: altered fasting glucose only (3.5% vs 1.3%, P < 0.001) and altered HbA1c only (15.5% vs 20.9%, P < 0.001) (not shown in a table). On the other hand, no sex-related differences were observed for previously diagnosed and undiagnosed T2DM.

Overall, adolescents with prediabetes and T2DM had lower age than healthy ones. This finding, however, was observed in both males and females only for prediabetes; adolescents with T2DM were younger only in females. Also, higher BMI was observed in girls but not in boys with prediabetes and T2DM (see Supporting Information Table S1).

The prevalence of T2DM was higher in adolescents who studied in urban areas in comparison to rural areas (3.3% vs 2.0%, P < 0.001). Moreover, skipping breakfast was shown to be associated with higher prevalence of T2DM (3.6% vs 2.7%; P < 0.001). Prediabetes was more frequent in boys, younger adolescents, students from public schools and urban areas, and adolescents with underweight or obesity when compared with normal weight (Table 2). Table S2 shows the distribution of mean values of fasting glucose and HbA1c according to selected covariates.

Figure 1 shows the prevalence of potential cardio-metabolic risk factors according to studied groups (healthy, prediabetes, and T2DM). Compared with healthy adolescents, those with prediabetes or T2DM have shown a higher prevalence of abdominal obesity, high blood pressure, and higher fasting glucose and HbA1c levels.
Diabetes categories, fasting glucose and HbA1c levels were categorized as follows: Healthy: fasting glucose <100 mg/dL, HbA1c <5.7% and without self-reported diabetes diagnosis; Previously diagnosed diabetes: self-reported diabetes diagnosis by a physician or health professional; Previously undiagnosed diabetes: fasting glucose ≥126 mg/dL or HbA1c ≥6.5% and without self-reported diabetes diagnosis; Isolated impaired fasting glucose: fasting glucose 100 to 125 mg/dL and HbA1c <5.7%; Isolated impaired HbA1c: fasting glucose <100 mg/dL and HbA1c ≥6.5%; Combined fasting glucose and HbA1c: fasting glucose 100 to 125 mg/dL and HbA1c ≥6.5%.

This study was the first school-based report in Latin America to estimate the prevalence of T2DM and prediabetes among youth. Our results indicate that T2DM has reached epidemic proportions not only in adults, but also in adolescents in Brazil. Extrapolation of our results to the adolescent population in cities with more than 100 000 inhabitants resulted in 200 000 living with T2DM and almost 1.5 million with prediabetes, a condition that has been shown to increase cardiovascular risk in this population. Several previous studies have reported a rapid increase in the prevalence of diabetes in Brazil, mostly in adults. However, most of these studies were based on self-reports. Also, because the American Diabetes Association only included HbA1c as a criterion for diabetes in 2009, most past studies did not consider HbA1c in their diagnostic criteria. In our study, 8.2% were classified as previously undiagnosed cases, and this number could be even higher as we did not evaluate 75-g oral glucose tolerance test, and, although equally appropriate for diagnostic testing, the tests do not necessarily detect diabetes in the same individuals. Unlike type 1 diabetes, symptoms may be less marked or even absent in T2DM and, thus, this disease may go undiagnosed for several years until diabetes-related complications occur. A recently published study showed that 72% of teenagers with T2DM had evidence of at least one early diabetes-related complication. Failure to diagnose diabetes close to its onset burdens the health care system, as the more severe this disease is at diagnosis, the more expensive it is to treat it—a problem that is particularly important in developing countries.

It is well known that the presence of T2DM and prediabetes in adolescents increases the risk of future cardiovascular disease. Importantly, other risk factors may also be present early in life associated with T2DM, such as overweight and obesity. Like T2DM, excess adiposity, is a risk factor for a cluster of metabolic conditions, including high blood pressure, high total and LDL-cholesterol, high triglycerides and high insulin concentrations.

In the adjusted multinomial logistic models, studying in urban areas, yellow skin color, skipping breakfast, and having general or abdominal obesity increased the odds of having T2DM (Table 3). Moreover, male sex, older ages (inversely), black or mixed-brown skin colors, studying in public schools and in urban areas, underweight status, general and abdominal obesity were associated with having prediabetes.
including hyperglycemia, insulin resistance, dyslipidemia, and hypertension. A cluster of these risk factors has been shown to be three times more frequent in adolescents with, than in those without diabetes. Our study identified a graded (dose-response) pattern of increase among adolescents with prediabetes and T2DM, when compared to healthy youth, not only for obesity, but also for insulin resistance and dyslipidemia. In agreement with our study, previous data from the SEARCH study had already indicated that dyslipidemia prevalence increased significantly with increasing HbA1c in adolescents with T2DM. With regard to hypertension, our data found an association only with prediabetes. We hypothesized that lifestyle changes likely recommended to youth previously diagnosed with T2DM in our study may have decreased blood pressure levels in T2DM adolescents.

Interestingly, our results have also identified underweight to be associated with a higher prevalence of prediabetes, even after

TABLE 2

Prevalence of prediabetes and type 2 diabetes in Brazilian adolescents by covariates. ERICA 2013-2014

<table>
<thead>
<tr>
<th>Covariates</th>
<th>Healthy</th>
<th>Prediabetes</th>
<th>Type 2 diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
<td>% (95% CI)</td>
</tr>
<tr>
<td>Overall</td>
<td>74.8 (73.2-76.2)</td>
<td>22.0 (20.6-23.4)</td>
<td>3.3 (2.9-3.7)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>79.0 (77.2-80.7)</td>
<td>17.9 (16.3-19.6)</td>
<td>3.0 (2.6-3.6)</td>
</tr>
<tr>
<td>Male</td>
<td>70.5 (68.4-72.4)</td>
<td>26.1 (24.2-28.1)</td>
<td>3.4 (2.9-4.1)</td>
</tr>
<tr>
<td>Age group (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>70.8 (68.3-73.1)</td>
<td>25.3 (23.1-27.6)</td>
<td>4.0 (3.3-4.8)</td>
</tr>
<tr>
<td>14-15</td>
<td>74.4 (72.2-76.4)</td>
<td>22.7 (20.8-24.6)</td>
<td>3.0 (2.4-3.7)</td>
</tr>
<tr>
<td>16-17</td>
<td>78.5 (76.3-80.5)</td>
<td>18.6 (16.6-20.7)</td>
<td>3.0 (2.3-3.8)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>72.5 (70.8-74.2)</td>
<td>24.2 (22.6-25.9)</td>
<td>3.2 (2.8-3.8)</td>
</tr>
<tr>
<td>Northeast</td>
<td>74.2 (71.9-76.4)</td>
<td>22.8 (20.5-25.1)</td>
<td>3.1 (2.6-3.7)</td>
</tr>
<tr>
<td>Southeast</td>
<td>74.8 (72.2-77.2)</td>
<td>21.7 (19.4-24.1)</td>
<td>3.6 (3.0-4.3)</td>
</tr>
<tr>
<td>South</td>
<td>76.5 (72.7-79.9)</td>
<td>21.0 (17.4-25.1)</td>
<td>2.5 (1.9-3.4)</td>
</tr>
<tr>
<td>Midwest</td>
<td>75.4 (73.2-77.4)</td>
<td>21.9 (19.9-24.1)</td>
<td>2.7 (2.2-3.3)</td>
</tr>
<tr>
<td>School type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>78.4 (76.2-80.5)</td>
<td>17.6 (15.5-20.0)</td>
<td>4.0 (3.4-4.6)</td>
</tr>
<tr>
<td>Public</td>
<td>73.7 (71.9-75.4)</td>
<td>23.2 (21.6-25.0)</td>
<td>3.0 (2.6-3.6)</td>
</tr>
<tr>
<td>School area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>80.6 (76.8-83.9)</td>
<td>17.4 (14.4-21.0)</td>
<td>2.0 (1.5-2.7)</td>
</tr>
<tr>
<td>Urban</td>
<td>74.5 (73.1-75.8)</td>
<td>22.2 (20.9-23.6)</td>
<td>3.3 (3.0-3.7)</td>
</tr>
<tr>
<td>Skin color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>78.0 (76.2-79.7)</td>
<td>18.9 (17.3-20.6)</td>
<td>3.1 (2.5-3.7)</td>
</tr>
<tr>
<td>Black</td>
<td>68.6 (64.0-72.8)</td>
<td>28.9 (24.6-33.6)</td>
<td>2.6 (1.9-3.5)</td>
</tr>
<tr>
<td>Mixed (brown)</td>
<td>73.1 (71.0-75.2)</td>
<td>23.5 (21.8-25.3)</td>
<td>3.4 (2.7-4.1)</td>
</tr>
<tr>
<td>Yellow</td>
<td>72.9 (67.0-78.1)</td>
<td>21.8 (18.6-27.9)</td>
<td>5.3 (3.2-8.6)</td>
</tr>
<tr>
<td>Native</td>
<td>78.8 (70.0-78.3)</td>
<td>16.9 (11.3-24.6)</td>
<td>4.2 (1.9-9.0)</td>
</tr>
<tr>
<td>Not reported</td>
<td>73.1 (67.3-78.3)</td>
<td>23.6 (18.6-29.4)</td>
<td>3.3 (2.0-5.4)</td>
</tr>
<tr>
<td>BMI category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight</td>
<td>67.8 (61.2-73.7)</td>
<td>30.3 (24.3-37.0)</td>
<td>1.9 (0.8-4.4)</td>
</tr>
<tr>
<td>Normal weight</td>
<td>76.1 (74.6-77.5)</td>
<td>21.0 (19.6-22.3)</td>
<td>3.0 (2.6-3.4)</td>
</tr>
<tr>
<td>Overweight</td>
<td>75.4 (72.6-77.9)</td>
<td>20.7 (18.0-23.6)</td>
<td>4.0 (2.9-5.4)</td>
</tr>
<tr>
<td>Obesity</td>
<td>65.2 (60.8-69.3)</td>
<td>30.5 (26.7-34.6)</td>
<td>4.3 (3.4-5.4)</td>
</tr>
<tr>
<td>Physical activity (min/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>76.3 (74.6-77.9)</td>
<td>20.7 (19.1-22.5)</td>
<td>3.2 (2.7-3.6)</td>
</tr>
<tr>
<td>≥60</td>
<td>72.1 (70.2-74.0)</td>
<td>24.4 (22.6-26.3)</td>
<td>3.5 (2.8-4.4)</td>
</tr>
<tr>
<td>Skip breakfast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>76.2 (74.4-78.0)</td>
<td>21.1 (19.5-22.8)</td>
<td>2.7 (2.2-3.2)</td>
</tr>
<tr>
<td>Yes</td>
<td>73.6 (71.8-75.4)</td>
<td>22.7 (20.9-24.5)</td>
<td>3.6 (3.2-4.1)</td>
</tr>
</tbody>
</table>

Abbreviation: BMI, body mass index; CI, confidence interval

*Adjusted Wald’s test for heterogeneity. **Adjusted Wald’s test for trends.

Prediabetes: fasting glucose 100 to 125 mg/dL or HbA1c 5.7% to 6.4%; Type 2 diabetes: fasting glucose ≥ 126 mg/dL or HbA1c ≥ 6.5% or self-reported diabetes diagnosis. BMI categories: underweight BMI Z-scores < −1; normal weight BMI Z-scores ≥ −1 and ≤ 1; overweight BMI Z-scores >1 and ≤ 2; and obesity BMI Z-scores >2.
adjustment for sociodemographic characteristics. This finding has been observed in previous studies and it is likely explained by iron deficiency, which may increase red blood cells survival and hence glycosylation. In the NHANES study, iron deficiency had a dose-response association with HbA1c independently of fasting glucose levels. Iron deficiency was not evaluated in our study and, thus, this hypothesis should be evaluated in future studies.

Most studies evaluating T2DM in youth showed that 65% to 70% of T2DM adolescents were females, usually from ethnic minorities. However, some studies suggested that boys have higher glycemic levels than girls. In our study, male sex was found to be associated with increased odds of having prediabetes only. Also, the prevalence of both prediabetes and T2DM were higher among younger adolescents. We hypothesized that this finding may be explained by the fact that older adolescents are in their final puberty period, which is characterized by the end of transient insulin resistance.

With regard to socioeconomic findings, although a very high prevalence of T2DM has been seen in non-White groups, this disease may happen in all ethnic groups. Brazil has a large mixed-race population, mostly represented by brown skin color. In our study, adolescents with brown skin color presented the highest prediabetes prevalence. Previous studies have shown, as we did in our study, that skin color seems to be an important socioeconomic marker associated with diabetes. Another characteristic related to socioeconomic status in our study was studying in public schools, which reflects a lower socioeconomic status and which increased the odds of prediabetes. Previously published data also showed that foods available in public schools are generally unhealthy, which may have contributed to the findings in our study. Also, although studying in rural areas was shown to be less associated with T2DM than urban areas, this study included very few schools in rural areas, which limited the value of this finding.

The present study has some limitations. Although ERICA was a large school-based study, it had a cross-sectional design subjected to both temporal and survival biases (although in adolescents the latter bias is less likely to occur). Also, even though the large sample size of ERICA and the careful planning and execution of this study reinforce the findings, the response rate for completion of all procedures was 52% and this may influence our results. In addition, many characteristics included in this study were based on self-report, which may have resulted in information bias and misclassification. Another possible source of misclassification was that, although our protocol specified that blood collection should be done after an overnight fasting period, we could not be sure that all adolescents complied with this request. Notwithstanding these potential biases, the present study is, to the best of our knowledge, the first country-wide, population-based representative study to assess the prevalence of diabetes and prediabetes in Latin American adolescents using, as part of its criteria, measured glucose and HbA1c.

In conclusion, this school-based study assessed prediabetes and T2DM data in a national sample of adolescents in Brazil, and showed that the prevalences of both prediabetes and T2DM were very high, and mainly associated with obesity and low socioeconomic status.
Our findings highlight T2DM as an important public health challenge not only among adults in Brazil, but also in adolescents. Considering the modifiable nature of T2DM cardio-metabolic risk factors, strategies aimed at prevention must be considered by public health authorities in Brazil.

ACKNOWLEDGEMENTS

Brazilian Department of Science and Technology at the Secretariat of Science and Technology and Strategic Inputs of the Ministry of Health and Funding Authority for Studies and Projects (FINEP) (grant: 01090421) and by the Brazilian National Counsel of Technological and Scientific Development (CNPq) (grants: 565037/2010-2, 405009/2012-7 and 457050/2013-6) and hospital research incentive fund for Clinics in Porto Alegre (FIPE - HCPA) (grant: 09.098).

CONFLICTS OF INTEREST

The authors have no conflicts of interest relevant to this article to disclose.

ORCID

Felipe V. Cureau https://orcid.org/0000-0001-7255-9717

REFERENCES

33. Dabelea D, Stafford JM, Mayer-Davis EJ, et al. Association of Type 1 Diabetes vs Type 2 Diabetes Diagnosed During Childhood and Adolescence With Complications During Teenage Years and Young Adulthood. JAMA. 2017;317(8):825-835.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.