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Areta JL, Burke LM, Camera DM, West DW, Crawshay S,
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Reduced resting skeletal muscle protein synthesis is rescued by
resistance exercise and protein ingestion following short-term energy
deficit. Am J Physiol Endocrinol Metab 306: E989–E997, 2014. First
published March 4, 2014; doi:10.1152/ajpendo.00590.2013.—The
myofibrillar protein synthesis (MPS) response to resistance exercise
(REX) and protein ingestion during energy deficit (ED) is unknown.
In young men (n � 8) and women (n � 7), we determined protein
signaling and resting postabsorptive MPS during energy balance [EB;
45 kcal·kg fat-free mass (FFM)�1·day�1] and after 5 days of ED (30
kcal·kg FFM�1·day�1) as well as MPS while in ED after acute REX
in the fasted state and with the ingestion of whey protein (15 and 30 g).
Postabsorptive rates of MPS were 27% lower in ED than EB (P �
0.001), but REX stimulated MPS to rates equal to EB. Ingestion of 15
and 30 g of protein after REX in ED increased MPS �16 and
�34% above resting EB (P � 0.02). p70 S6K Thr389 phosphory-
lation increased above EB only with combined exercise and protein
intake (�2–7 fold, P � 0.05). In conclusion, short-term ED
reduces postabsorptive MPS; however, a bout of REX in ED
restores MPS to values observed at rest in EB. The ingestion of
protein after REX further increases MPS above resting EB in a
dose-dependent manner. We conclude that combining REX with
increased protein availability after exercise enhances rates of
skeletal muscle protein synthesis during short-term ED and could
in the long term preserve muscle mass.

body composition; fat-free mass; myofibrillar protein synthesis;
weight loss

ENERGY DEFICIT (ED) can be achieved through reduced energy
intake and/or increased energy expenditure and subsequently
leads to loss of fat mass (FM). A reduction in FM is a goal for
improved health (19, 33); however, when achieved by energy
restriction alone, it typically results in the concomitant weight
loss comprised of �25% fat-free mass (FFM) (52), of which
skeletal muscle is the main component (37, 39). Given that the
quality and quantity of skeletal muscle is a major determinant
of whole body metabolic rate and functional capacity through-
out the lifespan (25), nutritional and exercise strategies to
prevent or minimize loss of FFM while losing fat mass are
crucial.

Pasiakos et al. (41) reported a 19% reduction in basal rates
of mixed-muscle protein synthesis in young healthy males and
females after 10 days of ED (�500 kcal/day). In contrast, a
more recent study from Pasiakos et al. (40) found no decrease
in rates of resting muscle protein synthesis after 30 days of
moderate ED. If a potential decrease in basal rates of muscle
protein synthesis was not accompanied by a concomitant re-
duction in muscle protein breakdown, then ED would presum-
ably result in a marked loss of skeletal muscle protein. Indeed,
prolonged ED-induced body weight loss can be comprised of
up to 60% FFM (40). In contrast, exercise has been shown to
attenuate the loss of lean body tissue that typically occurs with
periods of ED alone (50). However, it is currently unknown
whether the anabolic effects of resistance exercise (REX) are
attenuated during periods of ED.

Provision of dietary amino acids increases skeletal muscle
protein synthesis, an effect that is enhanced by prior REX (3,
36). To date, only one study has examined whether skeletal
muscle exhibits “anabolic resistance” to exercise and protein
ingestion following short-term ED (40). However, in that
investigation, rates of mixed-muscle protein synthesis and not
myofibrillar protein synthesis (MPS; i.e., the contractile protein
fraction of muscle) were measured. Furthermore, there was no
examination of the impact of exercise, and the cohort under
investigation was comprised mainly of males. Hence, the
primary aim of the current study was to determine the effects
of ED in combination with REX and two levels of protein
intake on skeletal muscle translation initiation signaling,
mRNA expression, and rates of MPS. In addition, because
women may be more susceptible to dysregulation of normal
metabolism during periods of ED (30), a secondary aim was to
identify potential sex-based differences in skeletal muscle
anabolism in response to ED. Our general hypothesis was that
short-term ED would reduce basal rates of muscle protein
synthesis, but this impairment would be overcome by a com-
bination of REX and protein feeding. We also examined two
levels of postexercise protein intake, as higher protein avail-
ability may more efficacious in ED.

MATERIALS AND METHODS

Ethical Approval

Subjects were informed of any potential risks involved in the study
before providing their written, informed consent. The study was
approved by the Australian Institute of Sport Ethics Committee and
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conformed to the standards set by the latest revision of the Declaration
of Helsinki.

Subjects

Sixteen young, healthy, resistance-trained subjects (8 females, 8
males) commenced the study, but one female participant withdrew
from the trial before completion (Table 1). Body composition was
measured 1–2 wk before the first experimental trial using a whole
body scan-narrowed fan beam dual-energy X-ray absorptiometry
(DXA Lunar Prodigy; GE Healthcare, Madison, WI) with GE Encore
13.60 software (GE Healthcare).

Experimental Design

The study employed a within-subject design, with subjects com-
pleting four experimental interventions: energy balance (EB) at rest,
ED at rest, and then ED with exercise both with and without protein
feeding. All trials were performed in a randomized order, with the
exception of the EB trial, which was always undertaken first to avoid
any potential dysregulation in EB trial induced by previous ED
interventions (Fig. 1).

Dietary Intervention

Subjects were each provided with individualized prepackaged
meals for 5 days before each experimental trial. Before the resting EB
trial, subjects were provided with meals equivalent to an energy
availability (EA) of 45 kcal·kg FFM�1·day�1, where EA is defined as
energy intake minus the energy cost of exercise. For all ED trials,
diets consisted of an energy availability of 30 kcal·kg FFM�1·day�1.
Between days 1 and 3 of the dietary control period, subjects were
permitted to exercise, and the diet was adjusted to account for the
energy expenditure of the exercise sessions and thus restore EA to the
set level. However, in the 48 h prior to an experimental trial, subjects
refrained from strenuous physical activity/training. The protein, car-
bohydrate, and fat content of the diets was 1.4–1.6, 4–4.5, and
1.5–2.5 g·kg body mass (BM)�1·day�1 for EB and 1.4–1.6, 3–3.5 and
0.5–1.5 g·kg BM�1·day�1 for ED, respectively. The ranges for
protein and carbohydrate depend on the exercise energy requirements
for each day, whereas the amount of fat provided was that required to
match the target EA. No alcohol was consumed by the subjects during
the 5-day dietary control period, and they refrained from caffeine
intake 24 h before each trial day. Between experimental trials, there
was a 9 day “washout” period, during which subjects continued with
their normal exercise and dietary habits.

Rationale for Dietary Interventions and Washout Periods

We chose to employ 5 days of ED prior to each experimental trial
based on previous data showing that such time is sufficient for
inducing disruption to whole body metabolic homeostasis (23, 31). In
addition, a negative nitrogen balance can be generated after as little as
4 days of ED (17, 21, 40, 48). Our 9-day washout period was used
based on data showing that nitrogen balance returns to positive values

after only 3 days of refeeding following a 3-wk fasting period (22) and
that reductions in resting metabolic rate after 20 days of ED return to
basal values after 10 days of EB (53).

Experimental Trials

After 5 days of dietary control, subjects reported to the laboratory
between 0700 and 0800 after an �10-h overnight fast, and a Teflon
catheter was inserted in the antecubital vein of each arm for blood
sampling and tracer infusion. A first (baseline) blood sample was
drawn for the resting EB trial (or muscle biopsy from the vastus
lateralis was obtained for the ED trials) immediately before a primed,
continuous (0.05 �mol·kg�1·min�1, 2 �mol/kg prime) infusion of
L-[ring-13C6]phenylalanine (Cambridge Isotopes Laboratories, Woburn,
MA) commenced.

After a 3-h resting period, a muscle biopsy was obtained. For the
three nontracer naïve subjects, the first muscle biopsy was taken
before the commencement of the infusion in their EB trial.

The ED trials were undertaken after the resting EB trial, with the
protein/placebo (PL) ingestion randomized and counterbalanced.
Drinks contained 15 or 30 g of protein (86.8 g of protein, 1.5 g of fat,
and 3.1 g of carbohydrates/100 g; ISO8 WPI, Musashi) or no protein
given in the form of a flavor- and volume-matched placebo drink.
Each protein drink was enriched with 5% L-[ring-13C6]phenylalanine
and mixed with water to a total volume of 500 ml. The first ED trial
for each subject was divided in two periods. The first (resting) period
of the trial determined resting ED and was identical to the EB trial,
with the exception of an initial muscle biopsy. In the second period
(nutrition/exercise), subjects undertook a bout of REX (described
subsequently), with further muscle biopsies obtained 1 and 4 h
postexercise. Drinks were ingested immediately following cessa-
tion of REX. In the remaining ED trials, a primed, constant
infusion of tracer commenced prior to exercise to ensure that
isotopic equilibrium was reached before/during the measurement
periods (between 1 and 4 h).

Fig. 1. Schematic of the experimental design. The resting energy balance
(EB) trial was preceded by 5 days of controlled diet providing 45 kcal·kg
fat-free mass (FFM)�1·day�1. The resting/exercise in energy deficit (ED)
trials were preceded by 5 days of controlled diet providing 30 kcal·kg
FFM�1·day�1. Subjects returned to normal daily activities in EB for 9 days
between the ED periods. 2Skeletal muscle biopsy sample; *blood sample.
PL, 15 g, and 30 g represent the respective placebo or whey protein drinks
(500 ml). Dashed timeline represents trials undertaken a single time by
each subject. Times in parentheses are for ED trials involving resistance
exercise (REX) and protein intake.

Table 1. Subject characteristics

Males (n � 8) Females (n � 7)

Age, yr 27 � 5 28 � 4
Body mass, kg* 82.7 � 6.6 70.3 � 7
Fat, %BM* 14.9 � 3.5 28.7 � 5.3
Lean mass, kg* 67.2 � 6.2 48.1 � 4.3
1-RM, kg* 300 � 70 200 � 38
1-RM (kg)/BM (kg)* 3.6 � 0.8 2.8 � 0.3
1-RM (kg)/FFM (kg) 4.5 � 0.9 4.2 � 0.7

Values are means � SD. 1-RM, 1-repetition maximum; BM, body mass;
FFM, fat-free mass. Data were analyzed by using multiple t-tests. *Different
between sexes (P � 0.05).
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Exercise

A one-repetition maximum (1-RM) inclined (45°) leg press
(GLPH1100; Body-Solid, Forest Park, IL) test was completed by each
subject for a minimum of 1 wk prior to the experimental trials. After
a warmup of two sets of five moderate-intensity repetitions, the 1 RM
was determined as the highest successfully lifted weight during a
maximum of six attempts. On the day of an ED experimental trial,
subjects completed two warmup sets of five repetitions at �50 and
�60% 1-RM with 2 min of rest between sets. The REX bout
incorporated six sets of eight repetitions at �80% 1-RM with 3 min
of rest between sets. Exercise range of motion was �85° for the knee
joint, with leg extension end point set at �5° from full extension.

Biological Samples

Blood samples (4 ml) were taken at rest, before the exercise bout,
and at repeated time points throughout recovery (Fig. 1). Skeletal
muscle biopsy samples were taken from different incisions separated
by �1 cm using 5-mm Bergström needles adapted for manual suction.
Muscle was cleaned with saline solution to remove excess blood and
immediately frozen in liquid N2. Muscle and plasma samples were
stored at �80°C until subsequent analysis.

Analytical Procedures

Insulin and amino acid concentration. Plasma insulin concentra-
tion was measured using an automated enzyme-amplified chemilumi-
nescence Immulite 1000 system (Siemens Diagnostics) according to
the manufacturer’s guidelines. Plasma amino acids were analyzed by
gas chromatography-mass spectrometry using the EZ:faast kit (Phe-
nomenex).

Western blot. Intracellular proteins were extracted, isolated, and
quantified as described previously (11). The amount of protein loaded
in each well was 40 �g. Polyclonal anti-phospho-mammalian target of
rapamycin (mTOR) Ser2448 (no. 2,971), monoclonal anti-phospho-
Akt Ser473 (no. 9,271), ribosomal protein S6 Ser235/6 (no. 4,856),
eukaryotic initiation factor 4E binding protein 1 Thr37/46 (no. 2,855),
eukaryotic elongation factor 2 (eEF2) Thr56 (no. 2,331), AMP-acti-
vated protein kinase (AMPK) Thr172 (no. 2,535), and anti-�-tubulin
control protein (no. 3,873) were purchased from Cell Signaling
Technology (Danvers, MA). Polyclonal anti-phospho-p70 S6K Thr389

(no. PK1015) was from Millipore (Temecula, CA). Monoclonal anti-
SLC7A5 (ab134121) was obtained from Abcam (Cambridge, UK).
All densitometric analysis was carried out by the same researcher
using specialized software (Image J 1.47; National Institutes of
Health) by quantifying the area under the peak of each plot for each
lane of the measured membrane.

Fractional synthetic rate. Preinfusion plasma sample proteins,
extracted by acetonitrile, were used for the baseline enrichment values
in “tracer-naïve subjects” (7). For non-tracer-naïve subjects (n � 3;
males) a preinfusion muscle biopsy was used for baseline enrichment.
Muscle tissue was processed as described previously (36).

Calculations. The fractional synthetic rate (FSR) of myofibrillar
proteins was calculated using the standard precursor-product method
FSR (%h�1) � [Ep2 � Ep1]/Eic 	 1/t 	 100, where Ep2 � Ep1

represents the change in bound protein enrichment between two
biopsy samples, Eic is the average enrichment of intracellular phenyl-
alanine between the two biopsy samples; and t is the time between
biopsies. The utilization of tracer-naïve subjects (n � 12) allowed us
to use the preinfusion blood sample (i.e., mixed plasma protein
fraction) as the baseline enrichment (Ep1) for the calculation of resting
MPS (8).

RNA extraction, reverse transcription, and RT-PCR. Skeletal mus-
cle tissue (�20 mg) was used to isolate RNA using a modification of
the acid guanidinium thiocyanate-phenol-chloroform extraction, as
described previously (12). Reverse transcription and real-time poly-
merase chain reaction (RT-PCR) were performed as described previ-

ously (10, 54). Taqman-FAM-labeled primer/probes for atrogin-1
(Hs01041408_m1), muscle RING finger-1 (MuRF-1; Hs00822397_
m1), SLC38A2 (Hs00255854_m1), and SLC7A5 (Hs00185826_m1) prim-
ers (Applied Biosystems, Carlsbad, CA) were used. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH; HS99999905_m1) was used as
the housekeeping gene. The relative amounts of mRNAs were calcu-
lated using the relative quantification (

CT) method (29).

Statistical analysis. Data were analyzed using two-way repeated-
measures analysis of variance (ANOVA) with Student-Newman-
Keuls post hoc analysis (sex 	 time) for cell signaling, RT-PCR, and
myofibrillar FSR (SigmaStat for Windows, version 3.10). There were
no differences between sexes, and data were subsequently combined
for further analysis using one-way repeated-measures ANOVA with
Student-Newman-Keuls post hoc test. Data for plasma insulin and
amino acids concentration were analyzed using two-way repeated-
measures ANOVA with Student-Newman-Keuls post hoc test, where
resting EB and ED trials were independently analyzed from the
exercise trials. Data for Western blotting were log-transformed prior
to analysis. All data are presented as means � SD, and the level of
statistical significance was set at P � 0.05.

RESULTS

Plasma Insulin Concentration

There were no differences in plasma insulin concentration
during the resting EB and ED trials. There was a time 	 group
interaction for plasma insulin concentration (P � 0.001) after
exercise and protein feeding (Fig. 2A).

Amino Acid Concentration

There were no differences in resting essential amino acids
(EAA), branched-chain amino acids (BCAA), or leucine
plasma concentrations during the EB and ED trials. Plasma
concentrations of EAA, BCAA, and leucine increased above
preexercise values between 20 and 120 min postexercise (Fig.
2, B�D) for both the 15- and 30-g treatments. The 30-g protein
feeding protocol resulted in higher aminoacidemia at 20 min
postexercise (1.4-fold, P � 0.004) compared with 40 min
postexercise following 15 g of protein ingestion (1.7-fold, P �
0.001). Plasma concentration peaked 40–60 min postexercise
(1.8- to 1.9-fold, P � 0.001) and remained above preexercise
values until 2 h postexercise (1.6- to 1.9-fold, P � 0.02) in both
the 15- and 30-g treatments. Plasma EAA concentration in-
creased in 30 compared with 15 g between 20 min and 1 h
postexercise (1.2- to 1.3-fold, P � 0.03; Fig. 2B). Plasma
BCAA and leucine concentration followed a similar pattern,
but the differences between 15 and 30 g remained until 2 h
postexercise (1.2- to 1.8-fold, P � 0.02; Fig. 2, C and D).

Muscle myofibrillar FSR

Intracellular free phenylalanine enrichments showed a stable
precursor pool throughout infusion in all groups. Resting
post-absorptive MPS after ED was lower compared with EB
(0.019 vs 0.026%/h�1, P � 0.001; Fig. 3). Resistance exercise
in ED returned MPS to values comparable with resting EB in
the acute postexercise recovery period. Resistance exercise
followed by 15- and 30-g protein ingestion increased postex-
ercise MPS �16 and �34% above resting EB, respectively
(0.030 and 0.038%/h, respectively, P � 0.02; effect sizes d �
0.86 and 2, respectively). The 30-g protein treatment also
increased MPS above 15 g by �14% (P � 0.003; effect size
d � 0.83). There were no differences between males and
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females in any of the treatments. Linear regression analysis
revealed a positive correlation between the quantity of protein
ingested per kilogram of BM or FFM and MPS (r2 � 0.43 and
0.42 respectively, P � 0.001; Fig. 4).

Cell Signaling

There were no differences in phosphorylation status between
resting EB and ED for any of the proteins quantified. Akt
Ser473 is phosphorylated directly by mTOR, and phosphoryla-
tion of this site is required for full activation of Akt (45).
Akt Ser473 phosphorylation was higher than resting ED in all
treatments 1 h postexercise (1.8- to 3.2-fold, P � 0.05;

Figs. 5A and 6A). Protein intake increased Akt Ser473 phos-
phorylation above resting EB to a similar extent 1 h postexer-
cise regardless of protein quantity (15 g: �2.1-fold; 30 g:
�2.4-fold; P � 0.02). There were similar effects on mTOR
Ser2448 and S6K Thr389 phosphorylation. Protein intake in-
creased mTOR Ser2448 phosphorylation above resting EB lev-
els and placebo at the 1-h postexercise time point (�2.5-fold
from resting EB, �2-fold from PL 1 h; P � 0.006; Figs. 5B
and 6B). However, only the 30-g treatment prolonged the
elevation in mTOR phosphorylation to 4 h postexercise (�2.1-
fold, P � 0.05). The p70 S6K Thr389 phosphorylation in-
creased above resting levels 1 and 4 h following resistance
exercise and protein ingestion (2.6- to 7-fold, P � 0.05; Figs.
5C and 6C). Peak phosphorylation above rest was observed
with 30 g of protein at 1 h postexercise (7-fold, P � 0.001) and
was higher than 15 g of protein at the equivalent time point
(1.8-fold, P � 0.051). Phosphorylation of rpS6 Ser236/237

above resting EB was highest 1 h after exercise with postex-
ercise protein ingestion (12.5- to 19.2-fold, P � 0.001; Figs.
5D and 6D). There were no differences in AMPK Thr172,
4E-BP1 Thr36/47, or eEF2 Thr56 phosphorylation at any time
(data not shown).

mRNA Expression

CT values for GAPDH were stable across all time points.
There were only minor changes in MuRF-1 mRNA content
from resting EB, but MuRF-1 was different from rest and
select postexercise time points after 4 h postexercise recovery
in the 15-g protein treatment (1.85-fold, P � 0.003; Fig. 7A).
Atrogin-1 mRNA content at 4 h postexercise was higher than
resting EB, ED, and 1-h recovery (1.98- to 2.27-fold, P �
0.006; Fig. 7B). There were no differences in system A amino
acid transporter (sodium-coupled neutral amino acid trans-

Fig. 2. Plasma insulin (A), essential amino
acids (EAA; B), branched-chain amino acids
(BCAA; C), and leucine (D) concentration
after 5 days of ED (30 kcal·kg FFM�1·day�1)
and following a bout of leg press (6 sets 	 8
repetitions at 80% 1-repetition maximum) and
postexercise ingestion of a PL or 15 or 30 g of
whey protein drinks. Data were analyzed by
using 2-way repeated-measures ANOVA with
Student-Newman-Keuls post hoc analysis.
Values are mean and individual values. aDif-
ferent vs. rest within treatment; *PL; †15 g;
§30 g at equivalent time point (P � 0.05).

EB ED PL 15
g

30
g

a

ca a b
c d

b

b

Fig. 3. Myofibrillar fractional synthetic rate (FSR) at rest after 5 days of EB (45
kcal·kg FFM�1·day�1), after 5 days of ED (30 kcal·kg FFM�1·day�1), and
following a bout of leg press (6 sets 	 8 repetitions at 80% 1-repetition
maximum) and postexercise ingestion PL or 15 or 30 g of whey protein drinks.
Data were analyzed by using repeated-measures ANOVA with Student-
Newman-Keuls post hoc analysis. Values are mean and individual values.
Different vs. the following (P � 0.02): aEB; bED; cPL; d15 g.
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porter 2) mRNA content (Fig. 7C), but in all treatments there
was a decrease in system L amino acid transporter (LAT1)
mRNA content at 1 and 4 h postexercise compared with resting
EB (�0.49 to 0.6, P � 0.03). In addition, LAT1 mRNA
content following resistance exercise with PL (4 h) and 15 g of
protein ingestion (1 h) was lower compared with resting ED
(0.55–0.64, P � 0.04; Fig. 7D).

Protein Content

We found no differences in the amount of SLC7A5 protein
content at any time points between treatments (Fig. 8).

DISCUSSION

The first novel finding of the present study was that 5 days
of moderate ED resulted in a 27% reduction in resting rates of
myofibrillar protein synthesis in young, healthy men and
women. A second finding was that, even when in ED, a single
bout of REX was sufficient to restore MPS to values observed
at rest in EB. Finally, the ingestion of protein after REX further
increased rates of MPS above those observed at rest in EB in

a dose-dependent manner. Taken collectively, our results dem-
onstrate that a combination of REX with increased protein
availability postexercise can enhance rates of skeletal muscle
protein synthesis during short-term ED, which could in the
long term preserve muscle mass.

Pasiakos et al. (41) have reported previously that, compared
with EB, 10 days of moderate ED (�500 kcal/day) resulted in
a 19% reduction in basal rates of mixed protein synthesis.
Here, we extend their findings (41) and show that just 5 days
of moderate ED (an energy availability of 30 kcal·kg
FFM�1·day�1) resulted in a similar reduction in the rates of
MPS in healthy individuals. Previous studies that have mea-
sured muscle protein synthesis responses to perturbations in
energy status have based their protocols on a model of ED from
estimated energy requirements (40, 41, 51). Instead, we chose
a model of energy availability to set the energy deficit in our
subjects, with a level of 30 kcal·kg FFM�1·day�1 correspond-
ing to a threshold below which there is significant disruption to
metabolic and hormonal systems within the body (30). The
notional energy deficit of �15 kcal·kg FFM�1·day�1 in our
subjects was typically equivalent to an energy availability of
1,690–2,200 kcal/day for males and 1,210–1,640 kcal/day for
female subjects. Despite the extensive resistance training his-
tory of our subjects, coupled with the high relative dietary
protein intake (1.4 g·kg BM�1·day�1) during ED, postabsorp-
tive MPS rates were not preserved compared with EB. The
reduction in MPS in ED that we and others (41) have observed
may be an adaptive response since MPS is an energetically
expensive process.

Consistent with observations when individuals are in EB
(36, 43), the anabolic stimulus generated by REX during
energy restriction in the fasted state elevated rates of MPS
above resting levels in the early postexercise period. However,
despite this elevation, exercise merely restored MPS to a level
that was similar to but not exceeding rates measured in EB.
Accordingly, it appears that the metabolic status of the muscle
during short-term (5 days) ED plus an �10-h fast may dictate
that contractile overload in isolation is not enough to increase
MPS to values that otherwise would be observed when subjects
are in EB.

The anabolic effect of protein ingestion on cell signaling and
rates of protein synthesis is well accepted (6). A recent study
on young healthy subjects involving 21 days of moderate ED
(750 kcal/day) found that high protein intake (1.6 and 2.4 g·kg
BM�1·day�1) rescued the FFM loss seen with protein intake at
RDA levels (0.8 g/kg BM) (40). Our study is the first to
determine the acute muscle anabolic response to resistance
exercise with two different doses of protein ingested after
exercise during short-term ED. Our results highlight the im-
portance of combining REX with increased protein availability
to maximize rates of protein synthesis. Furthermore, we report
a dose-dependent response of MPS to protein ingestion in
individuals in short-term ED; we observed a hierarchical in-
crease above resting EB for rates of muscle protein synthesis
with ingestion of 15 and 30 g of whey protein (Fig. 3). This
effect was evident when protein ingestion was expressed in
both absolute and relative terms to BM and FFM (Fig. 4). Our
results suggest that the optimal amount of protein to maximize
the response to a single bout of resistance training while in ED
may be above the level (20 g) found to maximize MPS
postexercise for individuals who are in EB (35). Given that

Fig. 4. Myofibrillar FSR after 5 days of ED (30 kcal·kg FFM�1·day�1)
following bout of leg press (6 sets 	 8 repetitions at 80% 1-repetition
maximum) plotted against postexercise protein intake in g of protein/kg of
body mass (BM; A) and FFM (B). Data were analyzed using linear regression.
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previous studies have shown chronic resistance training and
protein supplementation can promote gains in muscle mass
when individuals are in EB or ED (20), our findings add
support to the view that there are favorable interactions be-
tween REX and increased protein availability during periods of
low energy availability that lead to improvements in body
composition. However, the precise dose of protein necessary to
preserve (or increase) rates of protein synthesis while simulta-
neously reducing fat mass in the face of different levels of

energy restriction has not been determined systematically (24,
28). Regardless, the provision of exogenous amino acid during
ED appears to be a prerequisite for supporting muscle protein
synthesis and allowing an increase in net muscle protein
synthesis above that achieved at rest while in EB (2, 43).

The current data set indicates that the physiological response
in skeletal muscle following the short-term ED protocol em-
ployed in the current study was similar in male and female
subjects, and they appear to be equally responsive to an acute
bout of REX and postexercise protein intake in ED. Indeed, we
failed to observe any sex-based differences for the cellular
markers of “muscle anabolism” under investigation, providing
further support for the notion that both acute and chronic
responses to resistance exercise and/or protein ingestion are
similar between younger men and women (42, 46, 47, 54). Our
muscle anabolic responses in ED persisted despite a wide range
of differences in BM and body composition (Table 1). Given
that the subjects in the current study had a history of REX, we
cannot discount this as a possible factor that may have reduced
our capacity to detect sex-based differences in MPS. Moreover,
since there was a moderate relationship between the relative
quantity of protein ingested and MPS, we cannot completely
rule out the possibility that (smaller) females may have bene-
fited at least in part from a greater relative protein dose (Fig. 4)
and that this may have attenuated any potential sex-based
differences. Indeed, Phillips et al. (42) have recently reported
that the capacity of skeletal muscle to hypertrophy during 20
wk of the REX program is to a large extent determined
genetically rather than sex dependent. Therefore, our current
findings support the hypothesis that sexual dimorphism in
absolute muscle mass of healthy adult males and females is
likely determined by factors other than the magnitude of the
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Fig. 5. Phosphorylation of skeletal muscle
Akt Ser473 (A), mammalian target of rapamy-
cin (mTOR) Ser2448 (B), p70 S6K Thr389 (C),
and rpS6 Ser235/236 (D) at rest after 5 days of
EB (45 kcal·kg FFM�1·day�1), after 5 days
of ED (30 kcal·kg FFM�1·day�1), and fol-
lowing a bout of leg press (6 sets 	 8
repetitions at 80% 1-repetition maximum)
and postexercise ingestion of a PL or 15 or
30 g of whey protein drinks. Data were ana-
lyzed by repeated-measures ANOVA with
Student-Newman-Keuls post hoc analysis.
Values are mean and individual values. Dif-
ferent vs. the following (P � 0.05): aEB; bED;
cPL, 1.5 h; dPL, 4.5 h; f15 g, 4.5 h; h30 g, 4.5 h.
AU, arbitrary units.

Fig. 6. Representative blots for signaling proteins.

E994 MUSCLE PROTEIN SYNTHESIS AND SHORT-TERM ENERGY DEFICIT

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00590.2013 • www.ajpendo.org
Downloaded from journals.physiology.org/journal/ajpendo (189.063.086.118) on April 13, 2020.



hypertrophic response to REX and protein intake (38). Al-
though sex-based differences in skeletal muscle fiber compo-
sition have been reported previously (49), these differences are
unlikely to have influenced our findings, as previous studies
have failed to show any meaningful fiber type-specific effects
on rates of MPS (26, 34).

In agreement with recent observations by others (40), our
mTOR-associated translational signaling responses were sim-
ilar at rest whether subjects were in EB or ED. Indeed, REX
performed under conditions of ED and an overnight fast had
little effect on promoting the phosphorylation of any of the
proteins measured in the current study. This finding was in

contrast to our previous results (9) and those from several other
groups (13, 15) when REX was undertaken in the fasted state
in EB. However, we did observe a marked increase in trans-
lational signaling following the postexercise ingestion of pro-
tein, with subtle differences between the response to 15 and 30 g of
whey protein. Moreover, we have previously reported a hier-
archical signaling response to increasing quantities of whey
protein ingestion (i.e., greater protein availability resulted in
greater phosphorylation of p70 S6K) (1). The results of the
current study indicate that ED may alter the magnitude of
signal for translation initiation in response to acute exercise
and protein intake (Fig. 5). Importantly, the similar phosphor-
ylation responses were not mirrored by MPS rates and support
previous work showing that translation initiation signaling can
be indicative of increases in MPS compared with rest (8, 18,
27) but do not accurately reflect the magnitude or duration of
the MPS response (1).

The ubiquitin ligases MuRF-1 and atrogin are key regulatory
steps of the ubiquitin-proteasomal protein degradation. Linked
originally to muscle atrophy (4), they seem to be important in
the myofibril remodeling process after a bout of resistance
exercise (55). ED did not generate any differences in muscle
transcriptional activity of any gene of interest at rest compared
with resting EB (Fig. 7). Protein intake in sufficient quantities
has been shown previously to blunt the exercise induced
increase in MuRF-1 mRNA abundance (1, 5, 32). Interestingly,
increases in Atrogin mRNA abundance following high-inten-
sity exercise are not consistently observed in human skeletal
muscle (1, 32, 44), and our results showing elevated atrogin
mRNA following resistance exercise in all treatments suggests
that ED may promote the catabolic activity of this specific
atrogene. Importantly, protein ingestion did not alter the ele-
vated transcriptional activity of atrogin during recovery from
resistance exercise in ED, but direct measurements of protein
breakdown are required to determine the physiological rele-
vance of the increase in atrogin mRNA expression when

Fig. 7. Muscle RING finger-1 (MuRF-1;
A), atrogin-1 (B), SLC38A2/SNAT 2 (C), and
SLC7A5/LAT1 (D) mRNA abundance at rest
after 5 days of EB (45 kcal·kg FFM�1·day�1),
after 5 days of ED (30 kcal·kg FFM�1·
day�1), and following a bout of leg press (6
sets 	 8 repetitions at 80% 1-repetition max-
imum) and postexercise ingestion of a PL or 15 or
30 g of whey protein drinks. Data were ana-
lyzed by repeated-measures ANOVA with
Student-Newman-Keuls post hoc analysis.
Values are mean and individual values. Differ-
ent vs. the following (P � 0.05): aEB; bED; cPL,
1.5 h; dPL, 4.5 h; e15 g, 1.5 h; g30 g, 1.5 h.

α-tubulin

SLC7A5
EB (r) ED (r) 15g-1h 15g-4h P-1h P-4h 30g-4h30g-1h

Fig. 8. LAT 1/SLC7A5 protein content relative to �-tubulin protein content.
Data were analyzed by repeated-measures ANOVA with Student-Newman-
Keuls post hoc analysis. Values are mean and individual values.
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exercising in ED. We observed a downregulation of the system
L amino acid transporter gene SLC7A5. Although SLC7A5
mRNA has been shown to be elevated after REX alone (16)
and also following REX and protein ingestion when subjects
are in EB (14), our results indicate that REX undertaken in ED
acts to suppress the typical exercise/nutrient-mediated upregu-
lation of SLC7A5 mRNA abundance (Fig. 7D). Notwithstand-
ing any perturbations to SLC7A5 mRNA that may be induced
by energy status, we failed to detect changes in LAT1 protein
content during the early recovery period for any intervention
(Fig. 8).

In conclusion, our results are the first to determine the effect
of short-term ED on rates of myofibrillar protein synthesis. We
show that as little as 5 days of ED (energy availability 30
kcal·kg FFM�1·day�1) was sufficient to reduce rates of post-
absorptive MPS. However, this impairment was “rescued” to
values observed at rest in EB by a single bout of resistance
exercise. The ingestion of protein after REX further increased
MPS above resting EB in a dose-dependent manner. Accord-
ingly, we suggest that chronic resistance training combined
with increased postexercise protein availability would enhance
rates of skeletal muscle protein synthesis during prolonged
periods of moderate ED, which would ultimately preserve lean
(muscle) mass and reduce fat mass. Finally, we suggest that the
amount of protein required to maximally stimulate muscle
protein synthesis under conditions of mild ED is likely to be
higher than for individuals in EB.
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