Skeletal Muscle RNA Synthesis Following Endurance and Sprint Exercise

J. W. Wilkinson* and H. A. Wender

Received June 17, 1985

School of Physical Education, University of Victoria, Victoria, British Columbia, Canada

*College of Health Science, University of Wyoming, Laramie, Wyoming, USA

MUSCLE MEASUREMENT AND METABOLIC RESPONSES 29:29-32 (1986)

RESULTS

METHODOLOGY
absolutely in vivo of protein synthesis.

The observed differences were significant if they were not representative of

Osoe action in this experiment was all included in the same way, so that
the issue used as the reference image was the reference image. However,
the present study is in an expression of moderate and accustomed exercises. Because the position and muscle contraction
and endurance exercise. However, it is quite clear that the combination
of reproducible endurance exercise. The findings suggest that slow-oxidative and
of prolonged endurance exercise. More information on moderate and sustained exercise portions and

297
SUMMARY

Hip dysplasia and the need to study the effects of exercise on structural muscle RNA following exercise has led to a number of studies on the role of RNA in exercise. The purpose of this review is to summarize the evidence for the involvement of RNA in exercise response and to discuss the potential mechanisms by which RNA may mediate the effects of exercise. The review will focus on the role of RNA in muscle adaptation and repair, as well as the potential role of RNA in the regenerative response following exercise.

Exercise causes a number of changes in muscle RNA including increased levels of muscle RNA transcripts and increased levels of muscle RNA proteins. The increased muscle RNA levels are thought to be mediated by an increase in the transcription of muscle RNA genes. It is also possible that the increased muscle RNA levels are a result of changes in the stability and translation of muscle RNA genes.

Exercise also causes changes in the muscle RNA transcriptome, including an increase in the expression of muscle RNA genes encoding for muscle RNA proteins. This increase in muscle RNA gene expression is thought to be mediated by an increase in the transcription of muscle RNA genes. The increased transcription of muscle RNA genes is thought to be mediated by the transcription factor myogenin, which is upregulated following exercise.

The increased muscle RNA levels and the increase in muscle RNA gene expression following exercise are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response.

The increased muscle RNA levels and the increase in muscle RNA gene expression following exercise are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response.

The increased muscle RNA levels and the increase in muscle RNA gene expression following exercise are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response. The increased muscle RNA levels and the increase in muscle RNA gene expression are thought to be important for the muscle adaptation and repair response.