Nonequivalent controlled pretest-posttest designs are central to evaluation science, yet no prac-
tical and unified approach for estimating power in the two most widely used analytic approaches
to these designs exists. This article fills the gap by presenting and comparing useful, unified
power formulas for ANCOVA and change-score analyses, indicating the implications of each on
sample-size requirements. The authors close with practical recommendations for evaluators.
Mathematical details and a simple spreadsheet approach are included in appendices.
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Statistical power is an important topic for evaluations aiming to infer
cause from (quasi) experimental designs.' Studies without sufficient power
may lead to incorrect inferences and waste scarce resources and might end up
doing more harm than good (Donner 1984). In plain terms, if a study is under-
powered, evaluators are prevented from knowing why null hypotheses are
sustained (i.e., not rejected). Say, for example, that no statistically significant
difference is found between treatment and control groups on some endpoint.
This may either mean that (a) the treatment program had no effect or (b) there
was insufficient power to detect the relationship that does in fact exist.
Although evaluators have expressed interest in statistical power (see Bloom
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1995; Lipsey 1990), more tailored research and pedagogical expositions are
warranted.

The controlled pretest-posttest design is one of the more powerful evalua-
tion designs because it can isolate causal factors hypothesized to be at work
(Bonate 2000; Rossi, Freeman, and Lipsey 1999). The design may also be the
most frequently used in all of social science (Cook and Campbell 1979). Yet,
confusion remains on how to estimate the sample size required to ensure suf-
ficient statistical power, especially when control groups are not equivalent.
Remarkably, none of the well-known statistical power programs (e.g., PASS
2000, nQuery 4, Power and Precision) include comprehensive dedicated
modules to analyze data generated from the design(s).

We speculate that the principal reason for the dearth of “canned modules”
is the persistent use of analysis of covariance (ANCOVA) for data collected
through controlled pretest-posttest designs. The dominance of ANCOVA
seems attributable to the early conclusions of psychometricians, who were
dismayed with the change-score approach (Allison 1990), and to the accessi-
bility of Reichardt’s (1979) important contribution. However, as the domi-
nance of ANCOVA has diminished (Bonate 2000; Allison 1990), practical
approaches to sample size/statistical power calculations are required.

Although other formulas for calculating power and/or sample size have
been published (cf. Dawson 1998; Hsieh, Bloch, and Larsen 1998; Lipsitz
and Parzen 1995; Bloom 1995; Feldman and McKinlay 1994; Frison and
Pocock 1992; Self and Mauritsen 1988; Cohen 1988; Donner 1984), few pre-
sentations are accessible to practicing evaluators, fewer still apply to the pre-
test-posttest design so often employed in evaluation science, and fewer yet
appreciate that real-world calculations are often done with limited informa-
tion. The problem of calculating statistical power for analyses of data col-
lected in pretest-posttest designs remains.

This article aims to fill the gap by assisting evaluators less experienced in
statistical methods.” We first present the pretest-posttest design and discuss
the two major methods for data analysis. We then present and compare
large-sample power formulas for ANCOVA and change-score analyses, indi-
cating the implications of each on sample-size requirements. We close with
practical recommendations for evaluators trying to calculate power for pre-
test-posttest designs. The mathematical details and derivations of formulae,
including a unified model, are included in an appendix. So, too, is an
easy-to-implement spreadsheet approach to calculate power for change-
score and ANCOVA analyses.

Before proceeding, it seems important to say something about our aims
and nomenclature. The results we present have been synthesized from the
disciplines of statistics, biostatistics, psychometrics, sociometrics, and
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econometrics. We note not only great notational variability within fields but
sometimes contradictory notation between fields. In fact, it is a struggle to
find common nomenclature between any two authors. Because our goal here
is to provide practicing evaluators with useful tools, we have tried to write
with a unified, intuitive notation, using descriptive definitions wherever pos-
sible. For example, throughout this article, we let subscript small xs and ys
indicate unobservable true-score measures and capital Xs and Ys indicate
observed measures. In addition, we have sacrificed some generality and
mathematical precision for the sake of understandability and practicality. We
trust that disciplinary specialists will map our notation to theirs, and
methodologists will abstract and generalize as they deem necessary.

THE PROBLEM

THE DESIGN

Campbell and Stanley (1963) provide a clear presentation of the pre-
test-posttest design, reminding us that it has been in use since the early-20th
century. The design is often of great use to evaluators because it can control
for all of the major threats to internal validity, such as maturation, selection,
and instrumentation (Boruch 1998; Campbell and Stanley 1963). Not only do
subjects serve as their own controls, which yields intraindividual change
scores, but such change is assessed between two groups, one of which
receives some treatment program. Figure 1 diagrams the design.

We let O, . represent an observation (i.e., measurement) in the treatment
group before the treatment is applied, O, |, represent an observation in the
treatment group after the treatment is applied, T be the program treatment
itself, O_ . an observation in the control/comparison group before the treat-
ment is applied, and O_ |, an observation in the control/comparison group
after the treatment is applied.

Notice the Rs in the figure: They imply that subjects are randomized to
treatment or control arms—ideally after baseline measurements are taken.
Control over assignment (i.e., randomization) is critical because it permits
evaluators to assume that the expected values of all (measured/unmea-
sured/umeasurable) variables are equal in the treatment and control groups,
save the treatment program.

A related design, more frequently employed but typically less powerful,
occurs when subjects are not randomized to program treatment or control
arms, that is, when the evaluator cannot control the “when” and “to whom” of
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Figure 1. Controlled Pretest-Posttest Design

exposure to treatment. This design is traditionally called a quasi-experiment
(Reichardt and Mark 1998; Cook and Campbell 1979) and is often repre-
sented as Figure 1, except that the Rs are eliminated and a dotted line is placed
between the two rows. The dotted line is to show that treatment and control
groups are not randomized by the evaluator and they thus should not be con-
sidered statistically equivalent (Pocock and Elbourne 2000; Robins and
Freidlander 1995; Heckman and Hotz 1989).

STATISTICAL POWER

Statistical power is the probability that a test of the null hypothesis will
correctly yield statistical significance when the null hypothesis is, in fact,
false. Even more simply put, statistical power is the chance of finding a dif-
ference between two groups when such a difference exists. The point is that,
because of random variation, just any difference between treatment and com-
parison groups may not be sufficient for inferring that such a difference actu-
ally exists.

Figure 2 is adopted from Lipsey (1990) and diagrams the issue. Although
two measured means may literally be different from one another, the error
about the means may be so large that the measured difference cannot be
declared statistically different. The difference, denoted A, may be due to
chance alone. The power of a statistical test measures the likelihood that a dif-
ference between groups is “detectable.” Because B is typically employed to
represent the probability of not finding a relationship when one exists (i.e.,
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Figure 2. Differences Between Means

Type Il error), power is the complement of that error, or (1 — ). If the proba-
bility of Type II error is 0.20, then power is 0.80.

Because of the many (often hidden) assumptions involved, power calcula-
tions are approximations based on known or estimated facts and typically aim
to determine how many subjects are needed to confidently draw conclusions
for a particular statistical test. Too few subjects and relationships may be
overlooked; too many and scarce resources may be squandered. We inten-
tionally use the word approximation because power calculations help us
decide whether we need n or 2n subjects but not n or n + 2. That is, in the prac-
tical world, power calculations may tell us if we need 50 or 100 subjects but,
because of assumptions, not whether we need 50 or 52 subjects. Five major
factors influence statistical power: (a) sample size, (b) variation in the out-
come of interest, (c) statistical test to be used, (d) choice of alpha (Type I)
error rate, and (e) the actual difference between the groups.

THE PROBLEM

Our experience is that evaluators overlook the influence that an analysis
plan (i.e., a particular statistical test) has on power calculations. Indeed, some
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seem to think that power calculations may be done without reference to both
the research design and the specific hypothesis test to be performed. It is a
mistake not to tie together the research design, the analysis plan, and
power/sample-size calculations for they are inextricably related.

When it comes to the pretest-posttest design addressed here, there is little
difficulty when evaluators can randomize subjects to treatment conditions.
Randomization at (actually following) baseline allows a simple, independ-
ent-sample ¢ test to be performed on the two posttest means (although see
Bonate 2000 for other options). Power formulas for such a test are readily
available in elementary statistics texts and in all the power software we have
examined.

For the most part, problems obtain when randomization is not possible. In
this case, evaluators often want to account for baseline values of a measure in
tests because such values may be different between groups. The issue stems
back to debates in the 1960s over whether to analyze data collected from such
a design with ANCOVA or change-score models (cf. Maris 1998; Allison
1990; Burr and Nesselroade 1990; Reichardt 1979). Although related, the
two models contain subtle differences that may affect (or bias) treatment esti-
mates and always affect power calculations. The problem addressed here
obtains because confusion over an analysis plan usually leads to confusion
and possibly mistakes in calculating statistical power.

We do not wish to enter the debate over the superiority of analytic
approaches. Others are shedding light on the matter, especially for nonran-
domized designs (cf. Yanez, Kronmal, and Shemanski 1998; Allison 1990,
1994; Cain, Kronmal, and Kosinski 1992; Rubin 1977). We also acknowl-
edge advances in inferring cause from the data generated through the pre-
test-posttest design, such as propensity score and selection models (see
Winship and Morgan 1999 for an excellent overview), and that subtle
assumptions require attention (see Allison 1994; Rosner 1979). But we do
not address these more sophisticated or deep assumptions here. Instead, we
try to explain the implications of the seemingly most frequently used analytic
approaches on sample-size requirements.

ANCOVA MODEL

In the evaluation context addressed here, an ANCOVA aims to estimate a
treatment effect on some posttest outcome or impact measure while adjusting
for initial pretest scores. This may be done by regressing a posttest score on a
pretest score and an indicator variable. The idea is to statistically control (i.e.,
adjust) for the pretest by means of regression so that one can study the
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posttest freed of the portion of variance linearly associated with the pretest.
The formal model may be written as follows:

Y=0+B,X+B,T+¢, (H

where Y is the posttest score on an outcome/impact measure, ¢ is the esti-
mated intercept, X is the pretest score for the same outcome/impact measure,
B, is the coefficient for the pretest score, T is a (0, 1) indicator variable for
treatment or control group, and € is residual error. The principal null hypothe-
sis is that B, = A =0, which if true suggests that the program being investi-
gated had no effect on the mean of the outcome measure.

The estimated treatment effect for this model may be written as

A=é,-&, =(

=

—T)-B&X, -X.), @)

which says that the treatment effect, which is the difference between the mod-
eled intercepts, equals the difference between the predicted posttest means
minus the difference between the pretest means multiplied by some coeffi-
cient, .

Among the assumptions in this model, several are especially important to
evaluators: (a) There is a linear relationship between X and Y; (b) Y is nor-
mally distributed; (c) the residual error variance, €, is constant for all sub-
jects; (d) the residual errors are independent of one another and the pretest
scores; and (e) the pretest score, X, is assumed to be measured without error
(Greene 1997). Other, more subtle assumptions such as random sampling
and the “stable unit treatment value assumption” (SUTVA) may be found in
Winship and Morgan (1999), Rubin (1991), and Holland (1986).

It is the fifth assumption, sometimes called fixed regressors, that is often
overlooked and yet causes the most difficulty for evaluators conducting
“observational” studies (cf. Yanez, Kronmal, and Shemanski 1998;
Chambless and Roeback 1993; Cain, Kronmal, and Kosinski 1992). Itis gen-
erally known that the incorrectly assuming error-free measurement attenu-
ates the magnitude of the regression coefficient, biasing it toward zero unless
errors are independent (Fuller 1987). More simply put, in the presence of pre-
test measurement error, the coefficient B in Equation 2 is actually multiplied
by the psychometric reliability of the pretest, conventionally denoted as py,
(Reichardt 1979). Because p,, is always less than one, B is reduced and the
estimated treatment effect, A, is altered. In other words, in the presence of
measurement error, the slopes of the ANCOVA parallel regression lines
become flatter and may decrease or increase their vertical separation,
depending on the positions of the treatment and control data. ANCOVA may
yield biased results in quasi-experimental designs (cf. Lord 1960).
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Importantly, this bias does not obtain if treatments are randomly assigned
because that would mean E(X .= X ..) =0, which would eliminate any influ-
ence of the pretest reliability. Below, we show that the pretest error assump-
tion also has important implications for power calculations.

It is worth pointing out that the ANCOVA model may also be written as

Y-X)=o+BX+B,T+¢, 3)

where 3, =B, — 1. This specification, which regresses the difference between
the posttest and pretest score on the pretest and treatment indicator variable,
yields the same coefficient and standard error for the treatment effect, 3,
(Werts and Linn 1970). Keep this in mind when reading the change-score
model below because it implies that one of the key differences between the
models is not the dependent variable but the inclusion of a pretest covariate.

CHANGE-SCORE MODEL

Another well-known, although seemingly less frequently employed,
approach to analyses of data from pretest-posttest designs is the analysis of
change scores, sometimes called gain scores. This model may be written as

Y-X)=o+B,T+¢, 4

where Y is the posttest score on an outcome/impact measure, and X is the pre-
test score on an outcome/impact measure; their difference is the change
score. All other symbols are the same as before. The principal null hypothesis
remains that 3, = 0. Unlike the ANCOVA approach above, this model does
not include a pretest covariate on the right-hand side of the equation. Allison
(1994) presents this model as the fixed-effect estimator.

This model maintains the same assumptions as the ANCOVA model,
except that it does not assume pretest scores are measured without error. In
addition, this model assumes that the regression coefficient for posttest
scores on pretest scores is unity, that is, ¥ = o. + X + 3,7+ €. This relationship
may be more easily seen in terms of the model for the treatment effect in a
change-score model:

A=a,-a,=( -%)- &, -X). ©)
Notice that the only difference between Equations 5 and 2 is the absence of a
coefficient for the pretest adjustment. In other words, the coefficient is fixed
at unity: B, = 1.
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Many of the statistical properties associated with the change-score model
spawned a zealous attack by psychometricians and sociometricians (Burr and
Nesselroade 1990). Two problems appear to have been central:

1. Reliability: Lord (1967) pointed out that because the denominator in the for-
mula for the reliability of a change score was 2(1 — r,,), as the correlation
between pre- and posttests increased toward unity, the reliability of the change
score decreased. This was thought to make change-score values less reliable
than their component pre- and posttest values (Burr and Nesselroade 1990).

2. Regression toward the mean: This phenomenon obtains when extreme scores
on the pretest move inward toward the mean on the posttest and appears
almost universal in the pretest-posttest designs (Allison 1990). The result is
that differences are attenuated (Burr and Nesselroade 1990). This problem
may be more troublesome in quasi-experimental pretest-posttest designs
because there may also be correlation between treatment program and
differences.

Since 1975, there has been a tempering of opinion on the use of
change-score models (although see Yanez, Kronmal, and Shemanski 1998;
Cain, Kronmal, and Kosinski 1992). Allison (1990) shows that (a) the reli-
ability of measures in the change-score model plays no role and introduces no
bias because the purported low reliability is due to differencing out the stable
component of the measure; and (b) relying on Kenny (1975) and Kenny and
Cohen (1979), that regression toward the mean does not pose a problem when
evaluators are comparing two stable groups—as is the case with the design
discussed here.

Allison (1990) goes on to say that the change-score method is superior to
ANCOVA whenever T is subsequent to the pretest and uncorrelated with the
“transient” component of the measure. By transient, he means that there is no
causal interaction between group and treatment. Or, in still other words, that
there is no systematic differential change (i.e., increasing growth) in the treat-
ment group compared to the control. A key aspect of his statement is that the
“extra” assumption about the implicit value of the pretest coefficient (i.e., B =
1) is largely unimportant.

The implicit unity coefficient assumption means that for every one-unit
increase in a pretest, we should expect a one-unit increase in a posttest. Statis-
ticians and psychometricians have argued that, if not supported by data,” this
assumption reduces the usefulness of the change-score model by inflating the
variance of the treatment estimate (Reichardt 1979; Feldt 1957). However,
Allison (1990) persuasively argues that (a) it is a reasonable assumption to
make in (quasi) experimental designs, and (b) even if wrong it (i) probably



12 EVALUATION REVIEW / FEBRUARY 2001

has little substantive impact and (ii) is a reasonable assumption when causal
relationships are complex. Readers familiar with this literature will recog-
nize that Allison’s concept is mathematically expressed in Winship and
Mare’s (1992) Equation 6 as the differential treatment effect, (0, —J,.).

POWER FOR THE CHANGE-SCORE MODEL

Contrary to many texts, we think evaluators often begin thinking about
power by considering how many subjects they can afford to observe, the con-
ventional desired power for a given test (e.g., 80%), and the desired alpha
error (e.g., 5%). Accordingly, instead of calculating power, (1 — ), or sample
size, n, we often calculate the minimum detectable difference, A, between
groups for a given test. We thus admit to using the term power calculations a
bit loosely.

Because it seems easier to understand, we begin with the formula for
change-score analysis. The actual minimal detectable effect for a two-group,
pretest-posttest controlled design analyzed with a change-score model is

A \/405 (Z +2,) (1-R2) ©)

n

where A is the minimum detectable difference between groups, o is the total
variance of posttest values, Z,,, is the normal deviate at a selected Type I er-
ror rate, Z, is the normal deviate for a given Type II error rate, n is the
per-group sample size, and R, is the proportion of variance in the observed
control-group posttest score explained by the true score of the control-group
pretest.

The formula is actually quite simple to use. Because Type I error rates are
conventionally 5%, Z ,, is often 1.96. Because Type Il error rates are conven-
tionally 20%, power is 80%, and thus Z, is often 0.84. The squared product of
these two terms is therefore 7.84. The variance of the observed posttest score,
o ﬁ , may be estimated from data, previous studies, or as a last resort as 25% of
an endpoint’s range. Per-group sample size, n, is usually determined by bud-
get constraints and may vary to any degree an evaluator wishes. The only
challenging term is R, .

The explanation of R, requires some digression. Classical measurement
theory (see Nunnally and Bernstein 1994 or Bohrnstedt 1983) is based on the
equation

X=T+e¢, @)
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or what is the same in our notation,
X=x+e¢. (®)

Equation 8 says that an observable response, X, for a given measure is the sum
of its unobservable true score, x, and measurement error, €. We believe that all
observed variables are measured with error. Psychometricians estimate this
error with reliability statistics, which survey researchers often call intraclass

correlations (ICCs). We denote reliability of a measure as R, , which may be
written as
RZ — szrue — UJZC . (9)
Y0, +0? o’ +o?

true error X €

Notice that the reliability of a measure is a fraction of its total variance and
has a range [0,1]. Reliabilities, or ICCs, are routinely published in psycho-
metric studies of endpoints, especially in public health/behavioral medicine
studies that rely so often on multi-item scales (cf. McDowell and Newell
1996). Reliabilities above 0.70 are considered acceptable for a new
sociometric scale, and 0.90 is considered acceptable for a stable (i.e., state)
scale physiologic scale. For new or single-item measures, the reliability R,
may be approximated by R,,, the test-retest Pearson correlation coefficient
between pretest and posttest scores. More formally, R;_ = R, (Streiner and
Norman 1999, p. 115). Because R}, < R,,, evaluators may be inclined to sub-
jectively deflate the correlation to better approximate the true reliability
value. However, because Bohrstedt (1983) states that observed test-retest
reliabilities usually underestimate true reliabilities, deflation may not be nec-
essary. In any case, our experience suggests that the correlation between pre-
test and posttest measures typically ranges from 0.30 to 0.50 for stable trait
assessments over reasonable study periods, making the estimate of R}, fall on
the interval [0.09-0.25]. We encourage evaluators to focus more attention on
this important area of research.

Not to be confused with R}, , the term R, may be thought of as a reliability
of a true pretest score to an observed posttest score. It is the fraction of the
variance of observed posttest score attributable to the true pretest score in the
absence of change.

Where can evaluators find a value for R, ? The term R, is the quotient of
the proportion of variance of the observed posttest explained by the observed
pretest to the reliability of the pretest score. Using our notation, this becomes

R? _ R, (10)

Yx T 2
RXX
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Equation 10 means that evaluators can estimate R, by dividing the propor-
tion of variance explained in the observed posttest by the observed pretest by
the reliability of the pretest measure. If a measure is perfectly reliable, then
R; =1.0andR;, =R, .Note, however, that the value of the quotient should
not exceed unity: R; >R, .

The upshot is that Equation 10 permits evaluators to substitute estimable
values into Equation 5 and get a practical formula for the minimal detectable
effect for a change-score analysis:

) R (11)
40X(Z,, +zﬂ)2(1—R%)

A — Xx
n

Equation (11) is useful when trying to estimate the minimum detectable
effect for a study using change-score analysis. Evaluators need only deter-
mine (or intentionally vary for purposes of sensitivity analysis) o}, R;, , and
R}, to conduct a sensitivity analyses for A. Sensitivity analyses are critical
because they reveal the implications of each term on the minimum detectable

difference in a study.

POWER FOR ANCOVA MODEL

The formula approximating A for ANCOVA analysis is

Ao 200(Zy, +2Z,) . 12)
n(1-RZ%,)

Most of the terms have already been described above. What is new is the term
R, inthe denominator and the term o thatreplaced the o'} in the numerator.

The term R, symbolizes the proportion of variance in the true pretest, x,
explained by group membership, G. For purposes here, subjects may be in
either the treatment or control groups. R, is thus related to selection bias (cf.
Berk 1983; Berk and Ray 1982). This term is related to Reichardt’s (1979)
“D,” found in his equation for the precision of the treatment effect estimate.
In an experimental (i.e., randomized) design, this value approaches zero,
yielding no effect on the expression for A. Randomization is in fact what
Cohen (1988) assumes in his {” effect size (ES) for ANCOVA analyses. Note
that in studies with extreme selection bias, R, approaches 1 and pushes A
toward infinity. Power becomes meaningless in studies infected with extreme
selection bias.
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We typically do not have an estimate of R, in the design (i.e., proposal)
phase of a study. Obviously, the objective is to have R, — 0, which is accom-
plished through randomization—although it can be shown that as n — 0,
R, #0. Evaluators relying on a quasi-experimental design may conduct sen-
sitivity analyses for A by letting R, vary over some reasonable range (cf.
Rosenbaum 1995). We tentatively speculate that for a study with a carefully
selected comparison group, R, may vary over the interval [0.01-0.10]. Post
hoc publication of this value by several evaluators would improve our
science.

The other new term, 082, symbolizes the variance of measurement error
and seems more difficult to grasp. o' is not the total variance of the primary
endpoint: 67 # 0. Rather, ¢ is the unobservable error of the posttest mea-
sure. Those familiar with classical psychometric test theory will recognize
this term, but even they might find it difficult to estimate during the design
phase of a study. A solution is possible, however. Following Bohrnstedt
(1983, Equation 3.12), we know that

ol =0;(1-R}), (13)

where o} is the total variance of observed posttest and Ry, is defined in Equa-
tion 10 above.

The upshot of Equation 13 is that it permits evaluators to substitute known
quantities into Equation 12 and, as before, use Equation 10 to get a useful for-
mula. For practical purposes, then, we may thus write the power formula for
ANCOVA as

2 14
202, +Zﬁ)2(1—R%) 1
R
A - Xx S
n(1-RZ%)

where all the terms are now recognizable, estimable, or reasonably varied
over some range.

Recall from Equation 10 that the ANCOVA models assume that the pretest
regressor, X, is measured with perfect precision, thatis, Ry, = 1.0. This makes
R, =R}, andR], =R;,. Which means that the formula for ANCOVA is
effectively

Ao 207(Zyy +Z;) (1-Ryy) (15)
n(1-R%,) ’

which may be familiar to those working in this area.
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CHANGE-SCORE VERSUS ANCOVA

The preceding discussion raises several important questions: What are the
differences between the power formulae of equations for the change-score
model (Equation 11) and the ANCOVA model (Equation 15), and what do
such differences mean?

The two equations differ in three key areas: First, the numerator in the
change-score model is multiplied by four instead of two. The reason for this
is that the ANCOVA model of Equation 15 assumes that regressors are mea-
sured without error, which eliminates a variance component. Second, Equa-
tion 15 includes the term R, in the denominator and Equation 11 does not.
This means that power calculations for ANCOVA analyses are affected by
selection bias issues (i.e., difference in groups at baseline), whereas calcula-
tions for change-score analyses are not. Pretest group differences are elimi-
nated through the differencing of change-score analyses. Finally, the change-
score model incorporates the reliability of the pretest, Ry, , whereas the
ANCOVA model assumes perfect reliability.

What are the implications of these differences? If we assume a perfectly
reliable pretest measure (R;, = 1) and a randomized experiment (R;, = 0),
then it turns out that the proportion of variance in the posttests accounted for
by the pretest, R;,, plays no role in the formula for change-score analyses.
Equation 11 thus yields detectable differences or ESs that are 29.3% larger
than the formula for ANCOVA, Equation 15, all else equal. This means that
in an experimental situation with perfect measurement, ANCOVA is about
30% more precise than change-score analysis. This is a good thing and
widely recognized (see Reichardt 1979). But if change-score analysis is the
preferred analytic method—and according to Allison (1990), it may well be
in quasi-experiments—this also means that studies powered for ANCOVA
that end up using use change-score analyses will be about 30% less precise,
all else equal.

As the correlation between pretest measures and group assignment, R, ,
increases from 0, the magnitude of the minimum detectable effect, A, for the
ANCOVA model increases and the power differences between change-score
and ANCOVA decrease, still assuming perfect measures (R}, = 1). It is not
difficult to show that when R, = 0.5, the two equations yield identical out-
put: AsR’. — 0.5, the difference in A between ANCOVA and change-score
models becomes negligible. WhenR . >0.5, Ais greater in ANCOVA than in
change-score analyses. All of this should be intuitively obvious: Selection
bias increases the minimum detectable difference between two groups.
Because a smaller A is better, the presence of selection bias in quasi-experi-
mental studies increases the number of required subjects for a given A, which
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increases the cost. Randomization leads to the least expensive inferences, all
else equal. Thus, not only may selection bias lead to improper inferences in
the traditional sense (cf. Berk 1983), evaluators employing ANCOVA to ana-
lyze data from quasi-experiments may estimate biased results from the intrin-
sic properties of the model itself. And because the required sample size is
increased due to the presence of selection bias, there is a cost premium to pay
to the improper analysis of less than perfect data.

Although it is the real-world case, things become a great deal more com-
plicated if we permit measurement error into the models, that is, letting R, <
1, because comparative answers depend on the magnitude of R;, and the rela-
tions between unmeasurable true scores. Furthermore, if data do not conform
to the change-score model’s implicit assumption and the regression coeffi-
cient between pretest and posttest score departs from unity, then the change-
score model is not applicable and should not be used. These relationships are
for another article, and we will say nothing more about this here.

EFFECT SIZE

We note one more aspect of power calculations before concluding. The
minimal detectable difference, A, is based on the metric scale (e.g., pounds,
dollars, points) of the primary endpoint, as reflected in G,. Because scales
may differ across studies, A is difficult to compare across studies. A standard-
ized (i.e., unitless) measure is needed.

As described by Lipsey (1990) and Cohen (1988), it is often useful to stan-
dardize the scale of A by dividing it by the standard deviation of the pooled
prestest, 6. This parameter is called the ES (effect size) and may be used to
compare power, or detectable effects, across a range of studies with different
measurement units. Because outcome variables for a novel study may be
arbitrarily scaled, ES becomes an important parameter in discussions of sta-
tistical power. ES may be written as

Effect Size = ES = 2. (16)

Oy

Researchers believe that for the behavioral sciences, ESs valued at 0.20
may be categorized as small, 0.50 medium, and 0.80 large (Lipsey 1990;
Cohen 1988). The smaller the desired ES, the more powerful a study needs to
be. In other words, more powerful studies have a better chance at detecting
smaller differences between treatment and control groups. The smaller ES
we can detect the better.
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DISCUSSION AND CONCLUSION

Nonequivalent control-group pretest-posttest designs are central to evalu-
ation science, yet no practical and unified approach for estimating power in
the two most widely used analytic approaches exists. This article filled the
gap by presenting and comparing useful large-sample power formulas for
ANCOVA and change-score analyses, indicating the implications of each on
sample-size requirements. We discussed the models, their assumptions, and
the impacts of such assumptions on power. Our take-home message is that
statistical power calculations need to be related to the research design and the
statistical test(s) of interest.

The principal finding is that for a randomized experiment, ANCOVA
yields unbiased treatment estimates and typically has superior power to
change-score methods, all else equal. However, in the absence of randomiza-
tion, when baseline differences between groups exist, we follow Allison
(1990) and show that change-score models yield less biased estimates (if
biased at all). Then, bias aside, we went on to show that the common assump-
tion that ANCOVA models are more powerful rests on the untenable assump-
tion that pretests are measured without error. In the presence of measurement
error, change-score models may be equally or even more powerful.

Although the debate over analytic methods will no doubt continue, these
findings should help practicing evaluators determine which analytic model is
appropriate and how to calculate power for them.

Before closing, we offer a few general and subjective comments about sta-
tistical power.

1. Statistical power is critically important to evaluation science. Underpowered
studies may lead to wrong and perhaps damaging inferences. The added
expense of adding more subjects to a study will pale in comparison to the loss
of reputation due to incorrect inferences due to an underpowered study.

2. More subjects are generally better, but randomization, if possible, is critical to
drawing proper inferences. Differences in groups at baseline may bias esti-
mates, especially where ANCOVA is employed.

3. Errors in the measurement of the outcome variables weaken and may negate
the inferences. It is critically important to use reliable measures and precisely
measure variables consistently across subjects and over time, especially when
using ANCOVA models.

4. Attrition will occur in all longitudinal studies and must be accounted for. All
sample-size formulae and requirements herein are for postattrition levels. If
you expect a 25% attrition rate, then you need to inflate any sample size by
1.25, at least. Expected attrition rates should be defended.
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5. Differential nonrandom attrition may occur because of the difference in per-
sonal attention evaluators pay to treatment and control groups. Differential
attrition is not random and not ignorable (cf. Foster and Bickman 1996). As it
can bias estimates, it is critical to minimize this effect.

6. Stronger interventions should have larger impacts and thus permit larger
thresholds of detectable effects and smaller sample sizes. Nothing is as good
as a strong, focused intervention.

7. The more statistical tests you perform, the more likely you will find a differ-
ence when none really exists. This phenomenon is called alpha decay and
results from “mining” the data for any statistically significant difference (cf.
Pocock, Geller, and Tsiatis 1987). It is critically important to plan your pri-
mary tests in advance and stick to them. Secondary analyses, unless planned
for, will inflate the error rates and should be considered exploratory only
(Assman et al. 2000).

APPENDIX A

In this appendix, we outline the mathematics behind the two statistical models dis-
cussed above, ANCOVA and change-score, as well as their simplest common general-
ization, a measurement error model with one dichotomous independent variable and
one continuous covariate (Fuller 1987). We specify the assumptions underlying each
model, provide estimation and standard-error formulas for the intervention effect in
each case, and show how apparent discrepancies between the ANCOVA and change-
score models follow from differing assumptions.

Sample statistics. N subjects are recruited for an evaluation experiment. The out-
come variable X is measured at baseline, after which n, subjects are randomly selected
for intervention and n, for controls. After intervention, a follow-up measurement ¥ of
the outcome variable is made on each subject. Means taken over the entire data are de-
noted in the usual way by XY, }?, Y_2, and XY. Means within the intervention or con-
trol group are denoted by X, and Y, where G = 1 for intervention subjects and G = 0
for controls.

Measurement error model. The observed baseline measurement X is assumed
to be the sum of an unobserved (“true”) value x and random Gaussian measurement
error:

X =x+ MO, 0?). (A1)

The unobserved values x will be treated as random variables and their variance de-
noted 0.

The follow-up outcome measurement is assumed to be the sum of three terms: a
constant depending on treatment group, a regression term depending on the baseline
value (“true,” not observed), and a Gaussian deviate due to measurement error at fol-
low-up. Thus,
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Y=Ag+ Bx + NO, o). (A2)
The effect of intervention is
A=A - A, (A3)
The total variance of the outcome measurement is
o} =B’ +0?. (Ad)

Special case: ANCOVA model. If one assumes that the baseline value is measured
without error, then the variability of the “true” values x is the only source of random
variance at baseline:

X=x. (AS)

The follow-up measurement can be written in this case with the regression term de-
pending on the observed baseline value X rather than the “true” value:

Y=Ag+BX+ NO,02). (A6)

Special case: change-score model. Assume that the regression coefficient for de-
pendence of follow-up on baseline is fixed at § = 1. Then the baseline and follow-up
measurements can be written as follows:

X=x+ MO, o). (A7)

Y=Ag+x+MNO,0?). (A8)

For any particular subject, the covariance between baseline and follow-up is due to the
simple term x, which can be eliminated by subtraction. The change between baseline
and follow-up is thus

Y—X=As+ MO, 2072). (A9)

Correlation parameters. The two Gaussian error terms in the measurement error
model are assumed to be independent of one another and of the unobserved baseline
value x. Interdependencies exist, however, among x, the observed values X and Y, and
the condition variable G, which can be expressed as follows in terms of the parameters
of the measurement error model.

The fraction of variance of X attributable to variation in the underlying “true”
value x is an indication of the reliability of the measurement on a given occasion.
Commonly termed the reliability coefficient or intraclass correlation (ICC), this
quantity is given by
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, 0l (A10)
Ry, =———.
g, t0,

In the special case of ANCOVA, where x = X, the error variance in Equation A10 van-
ishes and R} = 1.

The fraction of variance of Y explained by variation in the “true” baseline value x is
an indication of the persistence of an individual’s characteristics over time:

g . B . (Al1)
"B +0?

In the special case of the change-score model, where [ is fixed at 1, Equation A11 re-
duces to Equation A10 so that R, =R, .

The fraction of variance of the unobserved baseline value x explained by the condi-
tion variable G is an indication of imbalance between the intervention and control
subjects with respect to the baseline value:

Na? =m0, =m0, _ nony (g — 41, )* (A12)

s

R =
G
! No’ N’o?

X

where j1.and 0 ;, denote the mean and variance of unobserved values within treat-

ment groups. In an ideal experiment, random selection of the intervention and control
groups would cause this quantity to be zero. In observational studies, where subjects
may be steered by unknown confounding forces into either of the two groups to be
compared, R’ is an indication of selection bias.

The correlation parameters defined in Equation A10 through A12 will enter into
the formulas for precision, power, and sample size developed below. In most design
exercises, they can be estimated theoretically or approximated from earlier studies. In
some cases, however, an investigator may have directly pertinent data, which would
necessarily involve the observed values X rather than the unobservable x. The avail-
able quantities would be the fraction of variance of Y explained by X, denoted R, and
the fraction of variance of X explained by G, denoted R}, The quantities in Equations
A1l and A12 are readily estimated from the corresponding data-based parameters:

, R (A13)
™ T 52
Xx
R: (A14)
R, :ﬁ'

A data-based estimate of the reliability coefficient R;, would have to be obtained from
a study designed for that purpose, for example, short-term replication of the outcome
measurement, from which R} would be estimated as the ratio of within-subject to to-
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tal variance. In ANCOVA, where one assumes x = X and R;_ = 1, distinguishing R,
from R}, and R}, from R’ is not necessary.
Parameter estimates. For the measurement error model, an optimal estimate of the

regression coefficient is

NXY _no)?n?() _nl)?]?] (A15)
NX? —n X2 -n X2 -Nio>’

B=

where A is the minimum solution of a quadratic equation expressed in determinantal
form as

V-1 ¥ T X7 (A16)
o=| ¥ L m+N X
Y, n+N n +N X,
¥ X X Xl

(Fuller 1987). In the special case of ANCOVA, where the baseline value is assumed to
have no measurement error, the final term in the denominator of Equation A15 van-
ishes and the expression becomes the standard estimator for parallel-line regression
(Zar 1984). For both the general measurement error model and the special case of
ANCOVA, the optimal estimate of the intervention effect is
N TN Y Y Al17
A= (¥, -¥,) - BX, - X,). A7)
In the change-score model, B is not defined because B does not enter the model.
The optimal estimator of A is
N 7 7 ¥ Al8
A=, -7 - (X, -X,). (Al8)
Standard error for intervention effect. Complete details concerning vari-
ance-covariance estimation for the measurement error model are given by Fuller
(1987). The important item for present concerns is the variance of the intervention ef-
fect estimate:

sexhy =S U=RD( L VT IR R R J] (A19)

—+— 1+ < +—
1-R; (”0 n J|: R, Ll_R)%x 1-R;

This formula applies to the measurement error and ANCOVA models, for which Ais
defined by Equation A17. For ANCOVA, the bracketed term vanishes because R;, =

1:

SE*(A) =
xG n(} nl

ai(l—Rg)[lJrl] (A20)
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Table A1: Variance of Estimated Intervention Effect (SE? (A)) in Important Spe-

cial Cases
ANCOVA Change Score
R =1) (Rx =A%)
2 2
UY(1_RYX) l l 2 2 l l
(a) General case TR, \n T 20,(1-Ry,) ntn
H 2 2 2 1 1 a
(b) No confounding (RZ; = 0) oy,(1-Ry,) P —
o 1
207(1-Ry,) 407(1-Ry},)
(c) Equal samples (n,=n, = n) ni-R%,) n
202(1-R?
(b) and (c) 20,0-R.) -

n

a. Same as above; under change-score model, variance of A is not affected by R?;.

For the change-score model, Ais supplied by Equation A18, and the variance is

SEZ(A)zzoi(l—Ri)(;+1} (A2
0

n

Important special cases of Equations A19 through A21 are displayed in Table Al. In
particular, when the intervention and control samples are of equal size (n,=n,=n) and
randomly selected (R’ = 0), the variance is

1 for ANCOVA; (A22)
. 201_p2 _p2 2
SE*(A) = 20,(1-Ry,) X1+ ! f}“’ Ry, 5 for measurement error model;
n R,. 1-R;,
2 for change — score analysis.

The smaller apparent variance for ANCOVA is a direct consequence of assuming per-
fect reliability at baseline. Whenever baseline reliability (R, ) is greater than pre-post
correlation (R, )—a typical situation because the pretest measurement is closer in
time to the “true” baseline value—the measurement error variance in Equation A22
will be intermediate in magnitude between the two special cases.

Power, sample size, and detectable effect. The equation relating least detectable in-
tervention effect to precision, power, and sample size is
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8= SE(N)(z,, +3,). (A23)

where o and 3 denote Type I and Type II error rates, respectively; z, is defined by p =
j “N(0, 1) and power is 100% x (1 —b). In designing a planned evaluatlon study, any
appropriate version of the standard-error formula for A, as given in Table A1, can be
inserted into Equation A23 and solved for whatever power, sample-size, or detect-
able-effect parameter is required.

APPENDIX B

The formula presented in Equations 11 and 15 should be useful to evaluators con-
ducting power analyses in the design stage of a study. Although many approaches are
possible, this section presents one simple way to operationalize the change-score for-
mula in a spreadsheet. Similar spreadsheets may be written for ANCOVA models, as
per Equation 15. What follows is written for Microsoft’s Excel-97 for Windows soft-
ware. We use brackets to indicate a cell formula; they are not to be typed in cells.

As shown in Equation 11, there are four key design parameters: o, 1 — B, o}, Ry,
R} . For practical purposes, these may be translated as (a) Type I error rate, (b) power,
(c) standard deviation of the endpoint, and (d) the reliability of the endpoint. Esti-
mates of these parameters are discussed above.

1. The first step is to insert a 2 X 4 matrix in a spreadsheet with labels in the first
column and values in the second. We usually also find it useful to add a third
column with descriptive comments. For purposes here, let the labels be
inserted in cells C5 through C9, with numeric values in D5 through D9.

2. The next step is to type a list of reasonable (i.e., affordable) per-group sam-
ple-size values, say 30 to 200 by 10. Label the column “n per group,” and fill in
column C. Begin at C13 and end at C32.

3. Incolumn D, insert a column for the normal deviates of the Type I error rate.
Fill cells in this column with the formula [=TINV((($D$5/100)/2),2*C13-1)],
where cell D5 contains a percentage (i.e., 10) for the total alpha error.

4. Do likewise in column E for power, filling the cell with
[=TINV((((100-$D$6)*2)/100), 2*C13-1)], where cell D6 contains a percent-
age (i.e., 80) for power.

5. Incolumn F, calculate the numerator of Equation 9. Fill the cells with the for-
mula [=4*((($D$7)"2)*((D13+E13)"2))*(1-($D$8"2/$D$9))].

6. Let column G contain the minimum detectable effect, A, for a given sample
size n per group in C. Fill cells in column G with the formula
[=SQRT(F13/C13)].
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Figure 3: Spreadsheet for Change-Score Analysis

7. Finally, let column H contain the values of the effect size, ES. Fill the cells of
this column with [=G13/$D$7], where again D7 is the standard deviation of
the endpoint.

Nothing more is needed. Evaluators may now easily calculate statistical power, or
more specifically, the minimum detectable difference between treatment and control
groups for change-score analyses of data collected in a controlled pretest-posttest de-
sign. Figure 3 shows the results of Steps 1 through 7 above.

NOTES

1. Because it does not directly incorporate Neyman-Pearson hypothesis testing, power is not
formally addressed in Bayesian statistical methods, although the concept is somewhat related to
highest posterior density intervals. See Barnett 1999 for more information.

2. We are working on a more rigorous treatment.
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3. The assumption can be tested with the data.
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