The 10-20-30 training concept improves performance and health profile in moderately trained runners
T. P. Gunnarsson and J. Bangsbo

You might find this additional info useful...

This article cites 47 articles, 15 of which can be accessed free at:
http://jap.physiology.org/content/113/1/16.full.html#ref-list-1

Updated information and services including high resolution figures, can be found at:
http://jap.physiology.org/content/113/1/16.full.html

Additional material and information about Journal of Applied Physiology can be found at:
http://www.the-aps.org/publications/jappl

This information is current as of July 19, 2012.
The 10-20-30 training concept improves performance and health profile in moderately trained runners

T. P. Gunnarsson and J. Bangsbo
Department of Exercise and Sport Sciences, Section of Integrated Physiology, University of Copenhagen, Copenhagen, Denmark

Submitted 15 March 2012; accepted in final form 2 May 2012

Gunnarsson TP, Bangsbo J. The 10-20-30 training concept improves performance and health profile in moderately trained runners. J Appl Physiol 113: 16–24, 2012. First published May 3, 2012; doi:10.1152/japplphysiol.00334.2012.—The effect of an alteration from regular endurance to interval (10-20-30) training on the health profile, muscular adaptations, maximum oxygen uptake (VO₂max), and performance of runners was examined. Eighteen moderately trained individuals (6 females and 12 males; VO₂max: 52.2 ± 1.5 ml·kg⁻¹·min⁻¹) were divided into a high-intensity training (10-20-30; 3 women and 7 men) and a control (CON; 3 women and 5 men) group. For a 7-wk intervention period the 10-20-30 replaced all training sessions with 10-20-30 training consisting of low-, moderate-, and high-speed running (<30%, <60%, and >90% of maximal intensity) for 30, 20, and 10 s, respectively, in three or four 5-min intervals interspersed by 2 min of recovery, reducing training volume by 54% (14.0 ± 0.9 vs. 30.4 ± 2.3 km/wk) while CON continued the normal training. After the intervention period VO₂max in 10-20-30 was 4% higher, and performance in a 1,500-m and a 5-km run improved (P < 0.05) by 21 and 48 s, respectively. In 10-20-30, systolic blood pressure was reduced (P < 0.05) by 5 ± 2 mmHg and total and low-density lipoprotein (LDL) cholesterol was lowered (P < 0.05) by 0.5 ± 0.2 and 0.4 ± 0.1 mmol/l, respectively. No alterations were observed in CON. Muscle membrane proteins and enzyme activity did not change in either of the groups. The present study shows that interval training with short 10-s near-maximal bouts can improve performance and VO₂max despite a ~50% reduction in training volume. In addition, the 10-20-30 training regime lowers resting systolic blood pressure and blood cholesterol, suggesting a beneficial effect on the health profile of already trained individuals.

Address for reprint requests and other correspondence: J. Bangsbo, August Krogh Bldg., Section of Integrated Physiology, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark (e-mail: jbangsbo@ifi.ku.dk).

Copyright © 2012 the American Physiological Society http://www.jappl.org
Prior to as well as before and after the intervention period the subjects reported to the laboratory after an overnight fast and had a blood sample taken and BP measured. Furthermore, before, during (week 4), and after the intervention period, a biopsy from the vastus lateralis muscle was taken.

Training

Prior to the intervention period subjects had two to four weekly training sessions with a training volume of 27.3 ± 2.8 km lasting 137.5 ± 13.4 min with no difference (P > 0.05) between 10-20-30 and CON with regard to weekly training volume (30.4 ± 4.3 and 24.1 ± 3.6 km) or weekly duration of training (155.9 ± 19.9 and 119.2 ± 16.4 min), respectively.

The 10-20-30 training concept consisted of a standardized ~1.2 km warm-up at a low intensity followed by 3–4 × 5 min running interspersed by 2 min of rest. Each 5-min running period consisted of five consecutive 1 min intervals divided into 30, 20, and 10 s at an intensity corresponding to <30%, <60%, and 90–100% of maximal intensity (determined from 5-Hz GPS data), respectively. During the intervention period 10-20-30 had 3 weekly training sessions with a volume of 14.0 ± 0.6 km/wk (including warm-up). In the first 4 wk, 10-20-30 conducted three 5-min intervals and, in the remaining 3 wk, four 5-min intervals per training session. The total high-speed running amounted to 8.6 ± 0.5 min/wk during the intervention period. In CON the mean speed within the session was 24.8 ± 3.4 and 24.1 ± 3.6 km) and time spent (132.4 ± 16.6 and 119.2 ± 16.4 min) during the intervention period was the same as before the intervention period.

Testing

Prior to all testing subjects refrained from severe physical activity for at least 48 h and all testing was at least 3 h after ingestion of a meal. The subjects performed 1) a 1,500-m run, 2) a 5-km run, and 3) an incremental test to exhaustion on a motorized treadmill (see below). The subjects were familiarized to all testing protocols on at least one separate occasion, and all tests were preceded by a thorough and standardized 15-min warm-up program. Calculation of the individual running speed (60% and 75% of MAS) was based on a V\textsubscript{O\textsubscript{2max}} test performed within the last 2 wk prior to the study.

1,500-m run. The 1,500-m test consisted of 3.75 laps on a 400-m synthetic track. Subjects were wearing a HR monitor (Polar system, Polar, Electro Oy) but did not wear watches during the 1,500-m and thus were not aware of running time. The running time for the first 400 m (1 lap) was given. Time to complete the 1,500 m was used as the test result.

5-km run. The 5-km test consisted of 12.5 laps on a 400-m synthetic track. Subjects were wearing a HR monitor (Polar team system, Polar, Electro Oy, Kempele, Finland) but did not wear watches during the 5-km run and thus were not aware of running time. The time for the first 1,000 m (2.5 laps) was given. The time to complete the 5-km was used as the test result.

Incremental test to exhaustion. The participants reported to the laboratory ~1 h before the V\textsubscript{O\textsubscript{2max}} test. After 20 min of rest in the supine position, a muscle biopsy from the vastus lateralis muscle was collected through an incision made in the skin under local anesthesia (20 mg/ml lidocaine without norepinephrine) and a catheter (18 gauge, 32 mm) was placed in an antecubital vein. In addition, a HR monitor (Polar team system, Polar, Electro Oy) was placed on the subject and HR was recorded in 5-s intervals to determine peak HR. The treadmill test protocol consisted of 2 × 6 min running at 60 and 75% of MAS interspersed with 2 min of rest. After the two submaximal running bouts an incremental test to exhaustion was performed starting with 3 min at 75% of MAS. Hereafter running speed was increased by 1 km/h every minute until volitional fatigue. V\textsubscript{O\textsubscript{2max}} was measured throughout the protocol with a breath-by-breath gas analyzing system (Oxycon Pro, Viasys Healthcare, Hoechberg, Germany) that was calibrated before each test. V\textsubscript{O\textsubscript{2max}} was determined as the highest value achieved during a 30-s period. Criteria used for achievement of V\textsubscript{O\textsubscript{2max}} were a plateau in VO\textsubscript{2} despite an increased running...
speed and a respiratory exchange ratio above 1.15. Blood samples during the test were collected in heparinized 2-ml syringes before and immediately after each of the running bouts and at exhaustion as well as 1, 3, and 5 min in recovery of the incremental test to exhaustion. Immediately after being taken, the blood sample was stored on ice and analyzed for blood lactate using an ABL 800 Flex (Radiometer, Copenhagen, Denmark).

Health Profile

Subjects reported to the laboratory between 6 and 10 A.M. on a separate day after an overnight fasting. After resting for at least 15 min in the supine position, BP was measured six consecutive times by an automatic upper arm BP monitor (M7, OMRON, Vernon Hills, IL) and fasting blood and plasma lipoproteins, hemoglobin, iron, glucose, myoglobin, creatine kinase, cortisol, insulin, and triglycerides were determined under standardized conditions.

Muscle Analysis

The muscle sample was immediately frozen in liquid N₂ and stored at −80°C. The frozen muscle tissue samples were weighed before and after freeze drying to determine the water content. After freeze drying, resulting in two results for the same time point. The intensity of the individual time points were divided with the mean intensity of the pre values within the group, to show the variation in the pre-biopsies.

Muscle ion transport proteins. A part of the muscle sample taken at rest (−4−5 mg dry wt) was homogenized on ice in a fresh batch of buffer (10% glycerol, 20 mM Na-pyrophosphate, 150 mM NaCl, 50 mM HEPES, 1% Nonidet P-40, 20 mM β-glycerophosphate, 10 mM NaF, 2 mM PMSF, 1 mM each of EDTA and EGTA and 10 μg/ml each aprotinin and leupeptin and 3 mM benzamidine) with a Polytron 3100 (Kinematica) for not more than 30 s. After rotation end over end for 1 h, the samples were centrifuged for 30 min at 17,500 × g, and lysates were collected as the supernatant. Protein concentrations were determined in the lysates using BSA standards (Pierce Reagents). The lysates were diluted to appropriate protein concentrations in a 6 × sample buffer (0.5 M Tris-base, DTT, SDS, glycerol, and bromphenol blue), and equal amount of total protein (3−15 μg in accordance with the antibody optimization) were loaded for each sample in different wells on 10% precasted Tris·HCl gels (Bio-Rad Laboratories, Hercules, CA). For comparisons, samples from the same subject were always loaded on the same gel. The gel electrophoresis ran for around 100 min with 25 mA and a maximum of 150 V per gel. Afterward proteins were blotted to a polyvinylidene difluoride membrane using 70 mA and a maximum of 25 V per gel in −2 h. The membranes were incubated overnight with 20−30 ml of primary antibody diluted in either 2% nonfat milk [monoclonal Na⁺-K⁺ pump α 1-subunit (~100 kDa), 1:500 dilution (C464.6, no. 05−369, Millipore); polyclonal α2-subunit (~100 kDa), 1:500 dilution (no. 07−674, Millipore); and monoclonal β1-subunit (~50 kDa), 1:1,000 dilution (MA3-930, Affinity BioReagents)] or 3% BSA [monoclonal NHE1 (~100 kDa), 1:500 dilution; polyclonal MCT1 (~43 kDa), 1:1,000 dilution; and polyclonal MCT4 (~43 kDa), 1:1,000 dilution (MAB3140, AB3538P, and AB3316P, Millipore)]. After being washed briefly in a Tris-buffered saline-Tween, membranes were incubated with secondary antibody for ~1 h at room temperature. The secondary horseradish peroxidase-conjugated antibodies used were diluted 1:5,000 in 2% nonfat milk or 3% BSA depending on the primary antibody (P-0447, P-0448, and P-0449, DakoCyтомation). The membrane staining was visualized by incubation with a chemiluminescent horseradish peroxidase substrate (Millipore) immediately before the image was digitalized on a Chemi Doc MP (Bio-Rad Laboratories). Net band intensities were quantified using Image Lab (Image Lab v. 4.0, Bio-Rad Laboratories).

Data treatment. Double determinations were made for the muscle samples, i.e., the biopsies were divided and kept in two parts before freeze drying, resulting in two results for the same time point. The mean signal intensity of the two samples was used as the result for the individual time point. The intensity of the individual time points were divided with the mean intensity of the pre values within the group, to show the variation in the pre-biopsies.

Muscle enzymes. A part of the muscle sample (~2 mg of dry weight) was homogenized (1:400) in a 0.3 M phosphate BSA buffer adjusted to pH 7.7 and phosphofructokinase (PFK), hydroxycarbony-CoA dehydrogenase (HAD), and citrate synthase (CS) muscle enzyme activity was determined fluorometrically as described by Lowry and Passonneau. (27).

Statistics

Student’s unpaired t-tests were used before the intervention period to compare subject characteristics (V˙O₂max, 5-km performance, age, weight, and body mass index) as well as before and during the intervention to compare group differences in training volume and time. Changes in performance (5 km and 1,500 m), BP, resting HR, pulmonary V˙O₂, fasting blood, and plasma samples (total cholesterol, LDL- and HDL-lipoproteins, hemoglobin, iron, glucose, myoglobin, creatine kinase, cortisol, insulin, and triglycerides) and enzyme activities were evaluated using a two-way ANOVA for repeated measures,
The largest difference in the HR response to training in 10-20-30 and CON was time spent above 90% of HRmax, which amounted to 11.1 and 0 min corresponding to 43 and 0% of weekly training time, respectively (Fig. 1).

Performance

In 10-20-30, performance improved ($P < 0.01$) by 6% in the 1,500-m run (5.79 ± 0.22 vs. 6.16 ± 0.29 min) and 4% in the 5-km run (22.26 ± 0.90 vs. 23.07 ± 1.07 min) during the 7-wk intervention period whereas performance was not changed in CON (Fig. 2).

Pulmonary $\dot{V}O_{2}$

In 10-20-30 $\dot{V}O_{2\text{max}}$ was 4% higher ($P < 0.05$) after the intervention period (53.8 ± 2.3 vs. 51.6 ± 1.9 ml·kg$^{-1}$·min$^{-1}$), whereas no change was observed in CON (Table 1). $\dot{V}O_{2}$ at running speeds of 9.9 and 12.4 km/h before and after the intervention period was not different in either of the groups (Table 1).

Fasting Blood and Plasma Values

After the intervention period total cholesterol (4.3 ± 0.3 vs. 4.8 ± 0.4 mmol/l) and LDL cholesterol (2.7 ± 0.3 vs. 2.3 ± 0.3 mmol/l) was lower ($P < 0.05$) in 10-20-30, whereas no changes were observed in CON (Fig. 3). No changes were found in blood hemoglobin and plasma iron, glucose, myoglobin, creatine kinase, cortisol, insulin, and triglycerides during the intervention period in either of the groups (Table 2).

Muscular Adaptations

The Na$^+$/K$^+$ pump subunits α1, α2, and β1 as well as NHE1, MCT1, and MCT4 were not changed during the intervention period in either of the groups (Fig. 5). Likewise, no changes were observed in the CS, HAD, or PFK activity during the intervention period (Table 3).

Table 1. $\dot{V}O_{2\text{max}}$ and $\dot{V}O_{2}$ during two submaximal running bouts before (Pre) and after (Post) the 7-wk intervention period for the 10-20-30 and the control group

<table>
<thead>
<tr>
<th></th>
<th>10-20-30</th>
<th></th>
<th>CON</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{V}O_{2\text{max}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l/min</td>
<td>3.98 ± 0.29</td>
<td>4.16 ± 0.31</td>
<td>3.84 ± 0.22</td>
<td>3.91 ± 0.23</td>
</tr>
<tr>
<td>ml·kg$^{-1}$·min$^{-1}$</td>
<td>51.6 ± 1.9</td>
<td>53.8 ± 2.3</td>
<td>52.3 ± 1.6</td>
<td>53.5 ± 1.6</td>
</tr>
<tr>
<td>$\dot{V}O_{2}$, ml·kg$^{-1}$·km$^{-1}$</td>
<td>214 ± 7</td>
<td>214 ± 5</td>
<td>214 ± 8</td>
<td>213 ± 7</td>
</tr>
<tr>
<td>9.9 km/h</td>
<td>210 ± 5</td>
<td>213 ± 4</td>
<td>206 ± 7</td>
<td>210 ± 6</td>
</tr>
<tr>
<td>12.4 km/h</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± SE. $\dot{V}O_{2}$, oxygen consumption; $\dot{V}O_{2\text{max}}$, maximal oxygen consumption; CON, control. See Training for description of 10-20-30 protocol. *Different ($P < 0.05$) from Pre. †Different ($P < 0.01$) from Pre.
Blood Lactate Response to Treadmill Running

Before and after the intervention period, blood lactate at rest, after submaximal running, and after the exhaustive running was the same for both 10-20-30 and CON (Table 4). Likewise, no group differences within pre and post were observed.

DISCUSSION

The major findings of the present study were that after 7 wk of 10-20-30 training, with a ~50% reduction in training volume, VO$_{2\max}$ was elevated by 4% and performance in a 1,500-m and a 5-km run improved by 21 and 48 s, respectively. Furthermore, the 10-20-30 training led to a marked reduction in systolic BP as well as a lowering of total cholesterol and LDL-cholesterol.

The 7-wk period with 10-20-30 training led to an improvement in the 1,500-m and 5-km run of 6% and 4%, respectively, despite a 54% reduction in training volume. The major difference between the 10-20-30 training and the normal training was the speed during the 10-s intervals (>20 km/h), being much higher than the pace before the intervention period (10-14 km/h), which was similar to the speed during the 20-s and higher than the 30-s exercise periods in the 10-20-30

Table 2. Blood hemoglobin and plasma iron, glucose, myoglobin, creatine kinase, cortisol, insulin, and triglycerides after overnight fasting before (Pre) and after (Post) the 7-wk intervention period for the 10-20-30 and the control group

<table>
<thead>
<tr>
<th></th>
<th>10-20-30</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin, mmol/l</td>
<td>9.0 ± 0.1</td>
<td>9.0 ± 0.3</td>
</tr>
<tr>
<td>Iron, µmol/l</td>
<td>19.7 ± 2.1</td>
<td>20.9 ± 3.0</td>
</tr>
<tr>
<td>Glucose, mmol/l</td>
<td>5.1 ± 0.3</td>
<td>21.7 ± 1.8</td>
</tr>
<tr>
<td>Myoglobin, µl/l</td>
<td>51 ± 4.6</td>
<td>52 ± 5</td>
</tr>
<tr>
<td>CK, UI</td>
<td>317 ± 147</td>
<td>229 ± 49</td>
</tr>
<tr>
<td>Cortisol, nmol/l</td>
<td>467 ± 63</td>
<td>444 ± 23</td>
</tr>
<tr>
<td>Insulin, pmol/l</td>
<td>35 ± 7</td>
<td>31 ± 3</td>
</tr>
<tr>
<td>Triglycerides, mmol/l</td>
<td>1.4 ± 0.4</td>
<td>1.2 ± 0.2</td>
</tr>
</tbody>
</table>

Values are means ± SE. CK, creatine kinase.

Blood Lactate Response to Treadmill Running

Before and after the intervention period, blood lactate at rest, after submaximal running, and after the exhaustive running was the same for both 10-20-30 and CON (Table 4). Likewise, no group differences within pre and post were observed.

![Fig. 3](https://www.jappl.org/fig3.png)

Fig. 3. Total cholesterol (A), low-density lipoprotein (LDL; B), and high-density lipoprotein (HDL; C) before (Pre) and after (Post) the 7-wk intervention period for the 10-20-30 and control (CON) group. *Different (P < 0.01) from Pre.

![Fig. 4](https://www.jappl.org/fig4.png)

Fig. 4. Systolic blood pressure (mmHg) before (Pre) and after (Post) the 7-wk intervention period for the 10-20-30 and the control (CON) group. *Different (P < 0.05) from Pre.
training. Iaia et al. (20) found an elevated short-term (0.5–2 min) performance, but no difference in the 10-km time when endurance-trained subjects for 4 wk replaced their normal training (45 km/wk) with 30-s intervals at near-maximal speed (8–12 intervals per session) and reduced the amount of training by ~64%. In agreement with the present study, Bangsbo et al. (4) not only found improvement in short-term performance, but also in performance at a 10-km (37 vs. 36 min) after 6–9 wk with a reduced training volume of ~30% and adding repeated 30-s near-maximal running intervals as well as training sessions with four 4-min intervals at an intensity of 90–100% of HRmax. Other studies have shown 2–6% improvements in endurance performance in endurance-trained subjects when increasing the speed during training, but the speed has been around the one corresponding to the VO2\textsubscript{max} and the amount of training has not been reduced (25, 26, 45, 47, 48). Taken together it appears that not only the 30-s near-maximal speed intervals are efficient in improving both

![Graph A](image1)

![Graph B](image2)

Table 3. Citrate synthase, \(\beta \)-hydroxyacyl CoA dehydrogenase, and phosphofructokinase activity before (Pre) and after 4 wk (Mid), and 7 wk (Post) of the 7-wk intervention period for the 10-20-30 and the control group

<table>
<thead>
<tr>
<th></th>
<th>10-20-30</th>
<th>CON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Mid</td>
</tr>
<tr>
<td>CS, (\mu \text{mol} \cdot \text{g dry wt}^{-1} \cdot \text{min}^{-1})</td>
<td>34 ± 3</td>
<td>36 ± 4</td>
</tr>
<tr>
<td>HAD, (\mu \text{mol} \cdot \text{g dry wt}^{-1} \cdot \text{min}^{-1})</td>
<td>18 ± 1</td>
<td>19 ± 1</td>
</tr>
<tr>
<td>PFK, (\mu \text{mol} \cdot \text{g dry wt}^{-1} \cdot \text{min}^{-1})</td>
<td>193 ± 18</td>
<td>168 ± 17</td>
</tr>
</tbody>
</table>

Values are means ± SE. CS, citrate synthase; HAD, \(\beta \)-hydroxyacyl CoA dehydrogenase; PFK, phosphofructokinase.
short- and long-term performance, but also, as demonstrated in the present study, that training with 10-s speed intervals have a major impact on performance.

In the present study V_{O_2max} increased by 4% although the total volume was reduced by 54%. It may be explained by the HR being higher during the training than before the intervention despite the short intense intervals (~40 vs. ~0% of training time spent above 90% of HRmax; Fig. 1), suggesting that a high cardiac stress in combination with a reduction in training volume can elevate V_{O_2max}. A number of other studies have observed increase in V_{O_2max} in trained subjects when performing intensified training but without a reduction in training volume (11, 18). In contrast, studies using 30-s near-maximal speed intervals separated by 3 min of recovery does not seem to lead to an increase in V_{O_2max} (4, 20), suggesting that continuing the running after the high speed in the 10-20-30 training period reduced the resting systolic BP in these already trained subjects. It is well established that a period of endurance and other types of training, such as soccer training, lowers systolic BP of untrained subjects (2, 24, 35, 40, 41), but to our knowledge this is the first study to show that intense training has this effect on systolic BP in trained subjects. In a recent study by Gosselin et al. (17), no difference in systolic and diastolic BP was found when comparing 20 min of normal endurance training (~70% of V_{O_2max}) with four different high-intensity training protocols. However, the intensities were significantly lower (<90% of V_{O_2max}) than in the present study (90–100% of maximal intensity). The underlying mechanism for the lowered BP is not clear but is likely multifactorial and involves modulation in the activity of the autonomic nervous system, neurohumoral and structural adaptations, as well as a reduction in systemic vascular resistance (9, 37). The lack of change in resting HR rate may suggest that the sympathetic outflow was not changed after the training period. Further studies are needed to elucidate the mechanism of the reduction in systolic BP. Nevertheless, the observed 5-mmHg decrease in systolic BP is of clinical relevance as a decrease of that magnitude is likely to reduce the risk of cardiovascular death by 10-15% (37).

A significant decrease in total cholesterol and LDL-cholesterol was also observed after the 10-20-30 intervention period. This finding suggests that the subjects obtained a better health profile, since high levels of total and LDL-cholesterol are associated with a higher risk of death and major adverse cardiovascular events. Thus a reduction in LDL of 1 mmol/l would result in a 25% reduced cardiovascular risk, independent of baseline LDL levels (12). In accordance with the present study Randers et al. (41) also found a lowering of blood cholesterol when using soccer training as an intervention. On the other hand, in a number of studies the cholesterol levels were not changed, although the subjects were untrained (2, 24, 35). The diverging results may be related to differences in the training intensity. In the study by Krstrup et al. (24) the subjects performed moderate-speed running as the subjects in CON in the present study (~80% of HRmax). The subjects in the study by Nybo et al. (35) carried out repeated high-intensity running (2-min intervals), but at an intensity below the speed eliciting V_{O_2max} (V_{O_2max} ~95% of HRmax), and significantly lower than used in the 10-20-30 training (10 s at ~95% of maximal

<table>
<thead>
<tr>
<th>Running Speed</th>
<th>Rest</th>
<th>9.9 km/h</th>
<th>12.4 km/h</th>
<th>Exhaustion</th>
<th>1 min</th>
<th>3 min</th>
<th>5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-20-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>1.3 ± 0.2</td>
<td>1.8 ± 0.3</td>
<td>3.2 ± 0.7</td>
<td>10.3 ± 1.1</td>
<td>10.1 ± 1.1</td>
<td>10.2 ± 1.4</td>
<td>9.8 ± 1.2</td>
</tr>
<tr>
<td>Post</td>
<td>1.2 ± 0.1</td>
<td>2.0 ± 0.2</td>
<td>3.4 ± 0.5</td>
<td>10.7 ± 0.9</td>
<td>10.1 ± 0.7</td>
<td>10.5 ± 0.6</td>
<td>10.2 ± 0.6</td>
</tr>
<tr>
<td>CON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre</td>
<td>1.0 ± 0.1</td>
<td>1.6 ± 0.2</td>
<td>3.1 ± 0.4</td>
<td>9.4 ± 0.9</td>
<td>8.9 ± 0.4</td>
<td>10.1 ± 0.7</td>
<td>9.9 ± 0.8</td>
</tr>
<tr>
<td>Post</td>
<td>1.4 ± 0.2</td>
<td>2.1 ± 0.3</td>
<td>3.3 ± 0.3</td>
<td>9.3 ± 0.5</td>
<td>9.5 ± 0.5</td>
<td>9.8 ± 0.6</td>
<td>10.0 ± 0.4</td>
</tr>
</tbody>
</table>

Values are means ± SE.
speed). This could indicate that the improvement of the plasma lipid profile requires training at speeds above V_{O2max}. However, further studies are needed to examine the cause of these changes in blood cholesterol.

In summary, the present study shows that the 10-20-30 training concept is efficient in increasing performance. Despite a ~50% reduction in training volume, V_{O2max} and performance were significantly elevated in moderately trained subjects without changes in running economy, muscle oxidative enzymes, and ion transport proteins. In addition, the 10-20-30 training led to reduced resting systolic BP and blood cholesterol, suggesting a better health profile for already trained subjects.

Perspectives

The 10-20-30 training concept is easy adapted in a busy daily schedule as it reduces time needed for training (~30 min including warm-up) and positively affects short- and long-term performance capacity. Furthermore, the present study is the first to show an improved cardiovascular health profile in trained subjects, which is in line with a prospective study by Albert et al. (1) suggesting that habitual vigorous exercise, as in the present study, diminishes the risk of death. The 10-20-30 concept is easy applicable for a variety of individuals ranging from the sedentary to the elite runner where the 10-20-30 concept may be used prior to a competition as the marked reduction in training volume in the present study (~50%) led to significant improvements in performance. Since the 10-20-30 concept deals with relative speeds and includes both low-speed running and 2-min rest periods, individuals with different fitness levels can train 10-20-30 together.

ACKNOWLEDGMENTS

We thank J. J. Nielsen and M. Thomassen for excellent technical assistance.

GRANTS

This work was supported by the Nordea Foundation (Nordea-fonden, Copenhagen, Denmark).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: T.P.G. and J.B. drafted manuscript; T.P.G. and J.B. approved final version of manuscript. T.P.G. and J.B. interpreted results of experiments; T.P.G. prepared figures; T.P.G. and J.B. performed experiments; T.P.G. and J.B. analyzed data; T.P.G. and J.B. contributed equally to this work.

REFERENCES

Effects of concurrent endurance and strength training on running economy and \dot{V}_O_2 kinetics.

Madsen K, Franch J, Clausen T.

Effects of interval training versus traditional exercise interventions for promoting health.

Pedersen BK, Saltin B.

Evidence for prescribing exercise as therapy in chronic disease.

Pollock ML, Miller HS Jr, Linnerud AC, Cooper KH.

Effect of supra-lactate threshold training on the relationship between mechanical stride descriptors and aerobic energy cost in trained runners.

Randers MB, Nielsen JJ, Krustrup BR, Sundstrup E, Jakobsen MD, Nybo L, Dvorak J, Bangsbo J, Krustrup P.

Skeletal muscle buffering capacity and endurance performance after 6 weeks of plyometric training.

Pollock ML, Broida J, Kendrick Z, Miller HS Jr, Janeway R, Linnerud AC.