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Owing to limited self-healing capacity, tendon ruptures
and healing remain major orthopedic challenges. Increas-
ing evidence suggests that post-traumatic inflammatory
responses, and hence, cytokines are involved in both cases,
and also in tendon exercise and homeostasis. This review
summarizes interrelations known between the cytokines
interleukin (IL)-1b, tumor necrosis factor (TNF)a, IL-6
and vascular endothelial growth factor (VEGF) in tendon
to assess their role in tendon damage and healing. Exo-
genic cytokine sources are blood-derived leukocytes that
immigrate in damaged tendon. Endogenous expression of
IL-1b, TNFa, IL-6, IL-10 and VEGF was demonstrated
in tendon-derived cells. As tendon is a highly mechan-
osensitive tissue, cytokine homeostasis and cell survival
underlie an intimate balance between adequate biomecha-

nical stimuli and disturbance through load deprivation and
overload. Multiple interrelations between cytokines and
tendon extracellular matrix (ECM) synthesis, catabolic
mediators e.g. matrix-degrading enzymes, inflammatory
and angiogenic factors (COX-2, PGE2, VEGF, NO) and
cytoskeleton assembly are evident. Pro-inflammatory
cytokines affect ECM homeostasis, accelerate remodel-
ing, amplify biomechanical adaptiveness and promote
tenocyte apoptosis. This multifaceted interplay might
both contribute to and interfere with healing. Much
work must be undertaken to understand the particular
interrelation of these inflammatory and regulatory med-
iators in ruptured tendon and healing, which has relevance
for the development of novel immunoregulatory therapeu-
tic strategies.

Tendon injury such as rupture induces a local
inflammatory response, characterized by the induc-
tion of pro-inflammatory cytokines (Berglund et al.,
2007; Tohyama et al., 2007; Akesen et al., 2009).
Tendon overuse is accompanied by repetitive micro-
traumata and can lead to tendinopathy or rupture
(Allenmark, 1992; Sun et al., 2008). Blood-derived
leukocytes attracted by tendon tissue trauma and
released into the tissue during bleeding might repre-
sent an important exogenic source for pro-inflamma-
tory cytokines (Tsuzaki et al., 2003b; Chbinou &
Frenette, 2004). However, the highly specialized
resident fibroblasts in tendon, the tenocytes, are
well known to produce several endogenic cytokines
and growth factors acting in an auto- and paracrinic
manner on tenocytes (Pufe et al., 2001; Tsuzaki et al.,
2003b; John et al., 2010). Tendon cell proliferation
and synthesis of a neo-matrix are essential factors in
tendon healing (Chan et al., 2000; Sharma & Maf-
fulli, 2005). The strictly linear uniaxial organization
of collagen fibrils as main constituents of the extra-
cellular tendon matrix (ECM) and the linear align-
ment of tenocytes between them (Fig. 1a and b) have

to be re-established in tendon during healing (Loi-
selle et al., 2009) – remodeling processes, which might
be further influenced in a post-traumatic inflamma-
tory microenvironment. Tendon repair leads to scar
formation. Tendon scars provide inferior or altered
biomechanical properties (Nakamura et al., 2000;
Loiselle et al., 2009).
The aim of this review is to summarize the effects

of pro-inflammatory cytokines such as interleukin
(IL)-1b, tumor necrosis factor (TNF)a and other
important mediators such as vascular endothelial
growth factor (VEGF) in terms of their putative
influence on tendon healing or degeneration. It is
necessary to elucidate the precise multifaceted inter-
play of cytokines and growth factors in damaged
tendon to find strategies for improvement of tendon
healing and to impair scar and adhesion formation.

Tendon organization

The hypocellular histological structure (Meller
et al., 2009), poor blood supply under physiological
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conditions and the low metabolic activity of tendons
and ligaments are major reasons for their limited self-
healing properties (Williams, 1986; Ahmed et al.,
1998; Chen et al., 2009). Only around 5% of the
normal tendon tissue volume is represented by resi-
dent cells in tendon, the tenocytes (Tozer & Duprez,
2005; Meller et al., 2009) (Fig. 1). Tenocytes produce
and remodel this abundant, but strictly organized
tendon ECM (Riley et al., 2002). It consists mainly of
parallel running collagen fibrils whereby the teno-
cytes, which are embedded between these ECM fibre
bundles, show a uniaxial alignment in rows (Fig. 1b)
(Ippolito et al., 1980; Meller et al., 2009). Approxi-
mately 95% of the whole collagen in traction ten-
dons, which are tendons, where the direction of pull
is in line with the direction of the muscle, is type I
(50–80% of tendon dry weight) (Riley et al., 1994),

with types III and V also present in small amounts
(Waggett et al., 1998; Ottani et al., 2002; Sharma &
Maffulli, 2005; Benjamin et al., 2008). Type II
collagen can be found in the gliding areas of tendons
(Koch & Tillmann, 1995; Petersen et al., 2004a).
Gliding tendons such as the Musculus tibialis poster-
ior tendon change their direction by turning around a
bony or fibrous pulley (‘‘hypomochlion’’). In this
region, the tendon is subjected to intermittent com-
pressive and shear forces and contains avascular
fibrocartilage. The tendon ECM also contains 1–
2% of dry weight elastic fibers which are an impor-
tant prerequisite for the elastic modulus of tendon.
At all segmental variations in the microstructure,
ECM synthesis and cell proliferation could be ob-
served in tendons (Abrahamsson et al., 1989). Hence,
the elastin content mediates tendon elasticity

Fig. 1. (a–c) Tendon structure and tenocytes. (a) Schematic picture of tendon organization. (b) Hematoxylin Eosin staining of
human hamstring tendon (Musculus semitendinosus). Tendon is a hypocellular and -vascular tissue containing only few cells,
that are aligned in rows between extracellular tendon matrix fiber bundles. (c) Isolated and cultured human hamstring tendon-
derived tenocytes (first passage) are spindle shaped with multiple long cytoplasmic processes forming cell–cell contacts. (b, c)
scale bars 100 mm.
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whereby increasing elastin amounts mostly go hand
in hand with reduced ECM stiffness. In contrast, type
I collagen is mainly responsible for tendon stiffness.
Obviously, both components (type I collagen and
elastin) are differently regulated in tendon by cyto-
kines (Qi et al., 2006a; John et al., 2010). While
collagen provides the tissue with its tensile strength,
proteoglycans play a role in tissue hydration and
regulate collagen integrity (Rees et al., 2009). It is
well known that deposition and expression of ECM
components such as collagens and proteoglycans can
be regulated by pro-inflammatory cytokines in con-
nective tissue cells (Seguin et al., 2005; Qi et al.,
2006a; Thampatty et al., 2007; John
et al., 2010). In tendon disorders such as tendopathy
as well as post tendon injury, a shift of the proteo-
glycan deposition has been observed (Lo et al., 2005;
Rees et al., 2009; Samiric et al., 2009; Lui et al.,
2010). Hence, the question arises whether the pro-
teoglycan disequilibrium emerges from an altered
cytokine expression.
In normal tendon, the local proteoglycan distribu-

tion differs between the midsubstance (tensile region)
of tendon where decorin is more prominent and the
fibrocartilaginous enthesis region with a higher ag-
grecan content in tendon (Abrahamsson et al., 1989;
Waggett et al., 1998; Rigozzi et al., 2009) and also
under pathological and altered biomechanical condi-
tions (Smith et al., 2008; Samiric et al., 2009).
Fibronectin is an ECM glycoprotein, which is pro-
duced by tenocytes mediating their adherence to the
ECM (Tillander et al., 2002). It is upregulated in
tendon healing (Tillander et al., 2002). Furthermore,
the glycoprotein cartilage oligomeric matrix protein
is a typical component of tendon ECM and scleraxis
is a differentiation-associated transcription factor in
tendon (Schweitzer et al., 2001). Tendon is sur-
rounded by the para- and epitenon and subdivided
by the peritenon (Strocchi et al., 1985; Kannus,
2000). Fascicles of tendon are enclosed by the en-
dotenon (Kannus, 2000). These connective tissue
sheaths (Fig. 1a) provide both a frictionless gliding
of tendon fascicles during motion and a flexible
connection to the environmental tissue (Rowe,
1985). These connective sheaths also play a major
role in tendon healing (Wojciak & Crossan, 1993).
Endotenon contains small nerves and blood vessels.
Some tendons are surrounded by a protective and
nutritive tenosynovium (Lundborg & Myrhage,
1977; Sharma & Maffulli, 2005). The tenosynovium
is intimately involved in the healing response after
rupture (Takasugi et al., 1976; Ikeda et al., 2010).
Healing can occur intrinsically, by proliferation of
epitenon and endotenon tenocytes, or extrinsically,
by invasion of cells from the surrounding sheath and
synovium (Lundborg et al., 1985; Siddiqi et al., 1992;
Sharma & Maffulli, 2005).

Tendon-resident cells

Most intrinsic cells in tendon are tenocytes, which are
highly specialized fibroblasts with a mostly hetero-
chromatic elongated nucleus (Chuen et al., 2004)
(Fig. 1b and c). Other small cell populations of
ubiquitous fibroblasts can be observed in tendon
residing in the epi-, peri- and endotenon; some
endothelial cells derived from few microvessels in
tendon are also present, as well as synovial fibro-
blasts covering the tenosynovium. Fibro-chondro-
cytes can be found as small cell populations in the
tendon, particularly in the gliding area of gliding
tendons (Benjamin & Ralphs, 1998; Petersen et al.,
2002; Petersen et al., 2003b; Petersen et al., 2004a) or
in the center of special traction tendons such as the
Achilles tendon (Zantop et al., 2003), especially in
regions that react to biomechanical loading. These
cells can be found in higher amounts in the bone
attachment enthesis region, which usually contains
fibrocartilage (Benjamin & Ralphs, 1998; Sharma &
Maffulli, 2005).
In order to assess the real capacity and sensitivity

of the highly specialized intrinsic tendon-specific
cells, the tenocytes, isolated and cultured tenocytes
(Fig. 1c) are a versatile in vitro model. Tenocytes can
be identified by scleraxis gene expression (Schweitzer
et al., 2001). Tenomodulin and tenascin C have also
been suggested as tendon marker proteins (Docheva
et al., 2005; Shukunami et al., 2006; Jelinsky et al.,
2010). Both markers are also expressed by other cell
types to some degree (Saiki et al., 2009; Jelinsky
et al., 2010). However, under inflammatory conditions
as observed during tendinitis or after tendon rupture,
the presence of major populations of immigrated cells
such as neutrophils and macrophages derived from
the blood or the surrounding tissue can be observed in
tendon. These cells phagocyte, opsonize, and hence,
remove ECM fragments of the damaged tissue, but
might also release various cytokines and growth
factors affecting tendon homeostasis.

Immigrated blood-derived cells in damaged tendon and
tendon healing

Wojciak and Crossan demonstrated the presence of
inflammatory cells during tendon healing in a rat
tendon rupture model: an infiltration of the synovial
tendon sheath and epitenon with lymphocytes and
macrophages was discernable (Wojciak & Crossan,
1993). Adhesion formation during tendon healing
was also influenced by the interaction of leukocytes
with epitenon and tenosynovial cells, which corre-
lated strongly with an increased transforming growth
factor (TGF)b1-mediated fibronectin production
by the epitenon cells (Wojciak & Crossan, 1993;
Wojciak & Crossan, 1994). In response to tendon
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rupture, bleeding occurs, leading to a ruptured he-
matoma, which is characteristic for the first so-called
‘‘hemorrhagic healing phase’’. The blood coagula-
tion is followed by growth factor and cytokine
release e.g. by aggregating platelets. These factors
chemotactically attract leukocytes (neutrophils, lym-
phocytes and macrophages) to immigrate into the
injured tissue (Chbinou & Frenette, 2004; Sharma &
Maffulli, 2005) and to produce cytokines and growth
factors (e.g. TGFb1, insulin-like growth factor
[IGF]-I, basic fibroblast growth factor [bFGF],
platelet-derived growth factor [PDGF], growth and
differentiation factor [GDF]). However, an enhanced
IL-1b expression was evident in ruptured tendon
(Berglund et al., 2007) and TNFa also seems to be
involved in healing processes at this time, as analyzed
in a rat Achilles tendon healing model (Eliasson
et al., 2009). Additionally, complement split products
resulting from the damaged tissue might also act as
chemoattractants for neutrophils as reported for
other tissues (Amsterdam et al., 1995; Morgan,
2000). Polymorph nuclear cells (PMNs, e.g. neutro-
phils) dominate on days 1–3 of tendon healing, and
subsequently, macrophages prevail (Chbinou &
Frenette, 2004). Peripheral blood-derived macro-
phages express the ED1 antigen, macrophages im-
migrating from the peritendinous tissue into the
defect appear later with a maximum on the 28th
day post rupture and express the ED2 antigen. They
possibly have an anabolic function in tendon healing
(Massimino et al., 1997). ED1-macrophages remove
cell debris and necrotic tissue by phagocytosis repre-
senting the second so-called ‘‘inflammatory healing
phase’’, which lasts 24–48 h, whereas later ED2-
macrophages become resident cells enhancing the
cell proliferation (Massimino et al., 1997; Chbinou
& Frenette, 2004). The presence of these heterogenic
leukocyte subpopulations underlines the fact that
different subclasses of leukocytes exhibit complemen-
tary functions during tissue healing. Under the
influence of growth factors (Chang et al., 1997;
Chen et al., 2008), the tendon fibroblasts start pro-
liferation and produce an immature neomatrix,
which differs from mature tendon matrix e.g. by the
predominance of type III compared with type I
collagen (Loiselle et al., 2009), as a typical feature
of the third, the ‘‘proliferation healing phase’’ (Loi-
selle et al., 2009). Furthermore, vascular ingrowth
can be observed (Petersen et al., 2003a ,d). A cell-rich
granulation tissue is the result (fourth phase of
healing: ‘‘granulation phase’’) (James et al., 2008).
The tendon ECM is later reorganized by a remodel-
ing process, which starts around 5–8 weeks post
injury (Loiselle et al., 2009). The cellularity decreases,
matrix synthesis is reduced and shifts towards an
increased type I vs type III collagen deposition
(Loiselle et al., 2009). Cells become aligned according

to the direction of tension in this fourth phase of
tendon healing called the ‘‘remodeling phase’’ (James
et al., 2008).

Pro- and anti-inflammatory cytokines in cultured
tenocytes and tendon

Tenocyte isolation for in vitro studies can be per-
formed easily using explant cultures or enzymatic
digestion of the tendon ECM to release the tenocytes
(Schulze-Tanzil et al., 2004) (Fig. 1b). Tenocytes
expanded in monolayer culture proliferate slowly
and can display an unstable phenotype with increas-
ing culture time reflecting the tendency to dediffer-
entiate (Bernard-Beaubois et al., 1997; Yao et al.,
2006; Almarza et al., 2008). For long-term tenocyte
cultivation, three-dimensional culture conditions
provide a more suitable basis (Schulze-Tanzil et al.,
2004; Stoll et al., 2010). Cultured tenocytes are a
versatile system to study particular cytokine effects
on tenocyte homeostasis (Tsuzaki et al., 2003b; John
et al., 2010). Sources for cytokine release are the
tenocytes and particularly in tendinitis and tendon
rupture immigrated blood-derived inflammatory
cells such as neutrophils and macrophages (Tsuzaki
et al., 2003b; Chbinou & Frenette, 2004).
Endogenous expression of various cytokines such

as TNFa, IL-1b, IL-6, IL-10, VEGF and TGFb has
been demonstrated in tenocytes (Pufe et al., 2001;
Tsuzaki et al., 2003b; Tohyama et al., 2007; John et
al., 2010). However, we were not able to show
interferon (IFN)g gene expression in tenocytes
(own unpublished results). IL-1b was up-regulated
in ruptured tendon (Berglund et al., 2007). Heat
stress, which might occur during prolonged tendon
exercise and overuse, induced TNFa but not IL-1b
expression in equine tendon fibroblasts (Hosaka et
al., 2006). An increased amount of pro-inflammatory
cytokines such as IL-1a, IL-1b, TNFa and IFNg was
demonstrated in inflamed native equine tendon (Hos-
aka et al., 2002). Mechanical factors influence tendon
cytokine profile. Adequate physiological mechanical
stimuli are important for the maintenance of tendon
homeostasis. Cyclic strain induced VEGF expression
in tenocytes (Petersen et al., 2004b). Stress depriva-
tion lead to an over-expression of pro-inflammatory
cytokines such as IL-1b and TNFa and other cyto-
kines such as TGFb in the patellar tendon with
mechanical deterioration of the tendon (Uchida et
al., 2005).

Role of IL-1b and TNFa in tendon and tenocytes

Tenocytes expressed the IL-1RI as a precondition for
sensibility against IL-1b. The type II receptor for
IL-1b – a decoy receptor, was barely detectable

Schulze-Tanzil et al.

340



(Tsuzaki et al., 2003b). In human tenocyte cultures,
the pro-inflammatory cytokine IL-1b induced inflam-
matory and catabolic mediators such as cyclo-oxy-
genase (COX)-2, prostaglandin (PG)E2 and various
matrix metalloproteinases (MMPs), which accelerate
the degradation of tendon ECM and hence the loss
of the biomechanical resistance and durability of
tendon (Corps et al., 2002; Archambault et al.,
2002a; Tsuzaki et al., 2003b; Corps et al., 2004;
Yang et al., 2005; Thampatty et al., 2007) (Table 1;
Fig. 2a). COX-1 was constitutively expressed by
tenocytes and not regulated by IL-1b (Tsuzaki
et al., 2003b). In equine superficial digital flexor
tendons, TNFa was found as a key factor in degen-
eration (Hosaka et al., 2004). It was up-regulated in
inflamed equine tendon and also expressed in scar-
formed tendon (Hosaka et al., 2005a ,b). TNFR1 and
-R2 co-localized on the same tenocyte and were up-
regulated by TNFa in equine tenocytes. TNFR-
associated factor (TRAF)2 was also detected in
tendon (Hosaka et al., 2004). TNFa stimulated
tenocytes to produce further pro- and anti-inflam-
matory cytokines such as IL-1b, TNFa, IL-6 and IL-
10 and matrix degradative enzymes such as MMP1.
Hence, tenocytes can be highly activated by TNFa
(John et al., 2010). Interestingly, Tohyama et al.
(2007) reported that extrinsic fibroblasts that immi-
grate from outside into the healing tissue were less
sensitive to pro-inflammatory cytokines such as IL-
1b compared with tenocytes. These cytokines sup-
pressed ECM synthesis such as that of type I collagen
(Qi et al., 2006a; John et al., 2010). However, the
expression of other ECM components such as elastin
was up-regulated by TNFa (John et al., 2010). A
similar effect was reported by Qi et al. (2006a) in
response to tenocyte IL-1b-treatment hypothesizing
a role in ‘‘constructive remodeling’’ in tendon for this
cytokine. IL-1b increased the elastic modulus in
tendon by differentially regulating the expression of
major tendon matrix proteins, type I collagen (its

expression was suppressed by IL-1b, which led to
reduced stiffness) and elastin (its expression was
amplified, which might augment tendon elasticity)
(Qi et al., 2006a). Additionally, exogenous VEGF
applications decreased the stiffness of grafted liga-
ments (Yoshikawa et al., 2006; Tohyama et al.,
2009). TNFa expression was lower in loaded com-
pared with unloaded tendon repair callus during
healing, which underlines the important influence
of mechanobiology on healing (Eliasson et al.,
2009). Moreover, IL-1b regulated tenocytes cytoske-
letal polymerization, and hence, cell stiffness, which
was an important precondition for the cell adaptive-
ness to mechanical loading in tendon (Qi et al.,
2006b). A disruption of cytoskeletal actin filaments
leading to a more stellate cell shape and down-
regulation of actin in IL-1b-treated tenocytes was
observed whereby cytoskeletal tubulin was up-regu-
lated (Qi et al., 2006b). Taken together, IL-1b
impaired the Young’s modulus in human tenocytes,
which may help the cells to survive higher mechanical
loading as observed in damaged tendon (Qi et al.,
2006a). Cytoskeletal alterations toward a more stel-
late shape and loss of F-actin fibers were also visible
in tenocytes treated with TNFa (John et al., 2010).

Role of the immunoregulatory cytokines IL-6 and IL-10
in tendon

Immunoregulatory and anti-inflammatory cytokines
might play a role in tendon healing. Increased IL-6
production and signal transducer and activator of
transcription (STAT3) phosphorylation was found in
ruptured rotator cuff tendon (Nakama et al., 2006a).
IL-6 is a multifunctional Th2 cytokine, which exhibits
immunoregulatory functions in tissues and obviously
plays an essential role in tendon healing (Skutek
et al., 2001; Lin et al., 2005; Lin et al., 2006).
Mechanical properties of healing tendons in

Table 1. Cytokines and VEGF, which play a role in tendon rupture, healing and inflammation and their known effects on tendon derived cells

Cytokine Effects in tendon/on tenocytes References

IL-1b ECM degradation (MMPs), induction of inflammatory
mediators (IL-1b, TNFa, IL-6, COX-2, PGE2), suppression
of type I collagen, induction of elastin, cytoskeletal changes

Archambault et al. (2002a ,b), Corps et al. (2002), Tsuzaki et al.
(2003a ,b), Corps et al. (2004), Yang et al. (2005), Qi et al.
(2006a ,b), Thampatty et al. (2007)

TNFa ECM degradation (MMPs), induction of cytokines (IL-1b,
TNFa, IL-6, IL-10), suppression of type I collagen, induction
of elastin, SOCS1, pro- and anti-apoptotic effects,
cytoskeletal changes

Archambault et al. (2002), Machner et al. (2003); Tsuzaki et al.
(2003a ,b), Hosaka et al. (2005a ,b), Thampatty et al. (2007),
John et al. (2010)

IL-6 STAT3 phosphorylation, VEGF expression, supports tendon
healing, induction of SOCS3 and of IL-10

Wei et al. (2003), Lin et al. (2006), Nakama et al. (2006a), John
et al. (2010)

IL-10 IL-10R1 induction John et al. (2010)
VEGF Neo-angiogenesis, remodeling (MMP expression) Pufe et al. (2001), Petersen et al. (2004b); Pufe et al. (2005),

Nakama et al. (2006b)
TGFb1 Fibronectin expression, tendon scar formation Wojciak & Crossan (1993), Wojciak & Crossan (1994)

Cytokines in tendon

341



knock-out mice were inferior compared with normal
controls (Lin et al., 2006). IL-6 was highly up-
regulated by both prototype pro-inflammatory cyto-
kines TNFa and IL-1b in tenocytes (Tsuzaki et al.,
2003b; John et al., 2010). As reported in other cell
types, IL-6 and the anti-inflammatory cytokine IL-10
induce the activation of the STAT3 signaling path-
way, which is implicated in cell proliferation and
survival (Ahmed & Ivashkiv, 2000; Tanuma et al.,
2001; Nishimoto & Kishimoto, 2006). IL-6 exerts its
biological functions mainly through Janus tyrosine

kinases (JAKs) and STAT factors. Stimulating cells
with IL-6 induces receptor oligomerization and
causes the local aggregation, and consequent activa-
tion, of associated JAKs (Nakama et al., 2006a).
JAKs, activated by tyrosine-phosphorylation activate
STATs, which subsequently translocate to the cell
nucleus to modulate gene expression. Tendon healing
was impaired in IL-6 knock-out mice underlining an
essential role of IL-6 in tendon healing (Lin et al.,
2006). IL-6 was also up-regulated in tendon and
peritendineous tissue during tendon exercise. Accord-

Fig. 2. (a–b) Interplay of cytokines: effects on tenocytes. (a) Exogenic pro-inflammatory cytokines such as TNFa and IL-1b
lead to an autoamplification loop in tenocytes activating them in an autocrine and paracrine manner. TNFa and IL-1b induce
pro-inflammatory cytokine expression, expression of inflammatory mediators (COX-2, PGE2), degradative enzymes (MMPs),
neoangiogenesis (VEGF), suppression of type I collagen expression and induction of cytokine inhibitors (SOCS1, SOCS3). (b)
the cytokine and inhibitor induction in tenocytes shows some time dependency revealing an early inflammatory and a
subsequent immunoregulatory response. HIF-1, hypoxia inducible factor-1; TIMPs, tissue inhibitors of matrix-metallopro-
teinases; pSTAT3, phosphorylated STAT3; SOCS, suppressor of cytokine signaling.
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ingly, cyclic mechanical stretching enhanced the se-
cretion of IL-6 in human tendon fibroblasts (Skutek
et al., 2001). Despite this, IL-6 did not induce its own
expression or that of TNFa or IL-1b, however, it had
a slight but significant stimulatory effect on IL-10
gene expression (John et al., 2010). IL-6 also pro-
motes blood vessel proliferation by VEGF-dependent
angiogenesis via the STAT3 pathway in other cell
types (Wei et al., 2003). IL-6 might play a role in the
proliferation phase of tendon healing via STAT3
activation by stimulation of cell proliferation and
thus supporting survival. IL-4, IL-13 and IL-10 are
typical anti-inflammatory Th2 cytokines, whereby
IL-10 is the most effective one. IL-10 not only plays
a major role in immune cells but also has been
demonstrated to be produced by and to affect con-
nective tissue cells such as fibroblasts and chondro-
cytes (Iannone et al., 2001; Yamamoto et al., 2001;
Moroguchi et al., 2004; John et al., 2007a; Muller
et al., 2008; Schulze-Tanzil et al., 2009). We could
recently show IL-10 expression in tenocytes, which
was up-regulated by TNFa and also that the IL-10-
specific IL-10R1 was expressed and up-regulated by
pro-inflammatory cytokines such as TNFa (John et
al., 2010). In IL-4 knock-out mice, an up-regulated
IL-10 and IL-13 expression correlated with even
superior healing properties compared with the con-
trol mice indicating that these cytokines might com-
pensate for the lack of IL-4 (Lin et al., 2006).
Ricchetti et al. (2008) reported some time-dependent
effects of IL-10 on the biomechanics of healing
tendons when using an IL-10 overexpression model
in the mice. However, the role of IL-10 in tendons
remains still unclear; it is probable that co-stimuli are
necessary for full effects. In other fibroblastic cell
types, IL-10 seemed to be involved in ECM remodel-
ing because an up-regulation of elastin, decorin as
well as MMPs and down-regulation of type I collagen
expression by IL-10 have been shown (Reitamo et al.,
1994a ,b; Yamamoto et al., 2001; Moroguchi et al.,
2004). Another research group reported recently that
tenocytes are sensitive to the other so-far known anti-
inflammatory cytokines IL-4 and IL-13. Both cyto-
kines stimulated tenocyte proliferation (Courneya
et al., 2010).

Cytokine inhibitors and time dependencies in cytokine
regulation

Studies comparing the regulation of cytokines und
other inflammatory factors in a time-dependent
manner are scarce up to now. Tsuzaki et al.
(2003b) found MMP and COX-2 expression after
16 h of cytokine stimulation. Induction of TNFa
expression by TNFa could be observed at 6 and
24 h, but it was higher at 6 h. In contrast, gene

expression of IL-6 in response to TNFa was superior
at 24 compared with 6 h. The IL-10 gene expression
induced by TNFa was only evident after a 24-hour
observation period (John et al., 2010; Fig. 2b). A
TNFa-mediated expression of the C3aR anaphyla-
toxine receptor on tenocytes was higher at 24 com-
pared with 6 h (unpublished own results). Many
cytokines utilize the JAK-STAT signal transduction
pathway to mediate most part of their key physiolo-
gical and pathological actions. Suppressors of cyto-
kine signaling (SOCS)1 and SOCS3 are cytokine
inhibitors of the STAT signaling pathways and
exhibit negative feedback loops (Tan & Rabkin,
2005; Qin et al., 2008). SOCS1 and SOCS3 were
expressed by tenocytes and both were up-regulated
by TNFa. SOCS3 was additionally induced by IL-6
in tenocytes (John et al., 2010). Hence, SOCS3 might
time-dependently limit the IL-6 effects in tendon.
Indicating an important function for IL-6 in neo-
angiogenesis during tendon healing, Nakama et al.
(2006a) detected the expression of IL-6, the IL-6
receptor and phosphorylated STAT3 in ruptured
rotator cuff tendon, mainly in proliferative vessels,
and to a lesser extent, in the tenocytes.

VEGF in tendon and interrelation with
pro-inflammatory cytokines

The angiogenic factor VEGF, which was firstly
described as an endothelial cell mitogen and critical
for neo-vascularization, is nearly completely down-
regulated in healthy tendons. It is expressed during
embryogenesis and only in a few sites in the adult
body, such as in the lung (Fehrenbach et al., 2003).
However, its expression also reoccurs during various
disease states in the tendon as well as during tendon
healing (Zhang et al., 2003; Petersen et al., 2003a).
Interestingly, a neo-angiogenesis could be observed
in Achilles tendon disorders (Ohberg et al., 2001).
Sclerosing these vessels using sclerosing agents leads
to an improved healing of the disordered Achilles
tendon (Willberg et al., 2008).
Post tendon surgery, an enhanced VEGF expres-

sion was detected (Boyer et al., 2001). VEGF was up-
regulated by hypoxia, pro-inflammatory cytokines
and IL-6, growth factors (e.g. PDGF), mechanical
loading and was elevated in fetal, ruptured and
degenerated adult tendons (Pufe et al., 2001; Petersen
et al., 2003c; Petersen et al., 2004b; Pufe et al., 2005;
Nakama et al., 2006b). Hypoxia and PDGF had a
synergistic effect on VEGF expression (Petersen et
al., 2003c). Inhibition of the cytokines IL-1b and
TNFa effectively reduced VEGF production in
tenosynovial samples (Jain et al., 2002). VEGF
was chemotactic for monocytes and was a procoa-
gulant (Petersen et al., 2003c). We could show the
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expression of VEGF by tenocytes and a culture
system-dependent regulation of VEGF in tenocytes
(Stoll et al., 2010). Five distinct VEGF isoforms can
be observed as a result of alternative splicing (with
121, 145, 165, 189, 205 isoforms in humans), whereby
the splicing variants 120 and 164, which correspond
with human 121 and 165 isoforms were found during
tendon healing in sheep (Petersen et al., 2003a).
Hypoxia induced an increase in the production of
VEGF by ex vivo tenosynovial lining cells and
impaired IL-10 expression in the tenosynovium
(Jain et al., 2002; Sivakumar et al., 2008). Tenosy-
novial hypoxia could result in tendon rupture, which
is frequently observed in rheumatoid arthritis (RA)
patients (Sivakumar et al., 2008). Hypoxia inducible
factor 1 is a transcription factor involved in VEGF
up-regulation in tendon (Petersen et al., 2003c). On
the contrary, endostatin, a fragment of type XVIII
collagen and an antagonist of VEGF, impaired
VEGF up-regulation (Pufe et al., 2003; Pufe et al.,
2005). Secretion of matrix-degrading MMPs facili-
tated angiogenesis and VEGF stimulated vice versa
MMP expression in tendon. Hence, increased MMP
levels might induce ECM degradation and remodel-
ing and weaken tendons’ biomechanical resistance
(Petersen et al., 2003c; Pufe et al., 2005).

MMPs and Tissue inhibitor of matrix-
metalloproteinases (TIMPs): regulation of ECM
homeostasis by cytokines

MMPs are the key players in physiological and
pathological tendon ECM remodeling (Smith et al.,
2008). MMPs are zinc-dependent endopeptidases
with a particular specificity for degradation of var-
ious extracellular tendon matrix components. The
balance between MMPs and their natural inhibitors,
TIMPs, regulates normal tendon remodeling. These
enzymes are strictly regulated on the gene and
protein expression level by specific inhibitors
(TIMPs) and require activation (Clegg et al., 2007).
Stromelysins such as MMP3 cleave proteoglycans,
which surround and embed the collagen fibers in the
tendon ECM (Imai et al., 1997). Subsequently, the
collagen bundles might be more accessible for clea-
vage by collagenases such as MMP1 and MMP13,
which both can cleave type I collagen (Nagase et al.,
2006). However, this stromelysin-mediated proteo-
glycan cleavage might not play a major role in vivo
where aggrecanases are more important. Aggreca-
nases such as aggrecanases-1 and –2, which are also
called a disintegrin and metalloproteinase with
thrombospondin motif (ADAM-TS)4 and –5, speci-
fically degrade aggrecan. ADAM-TS4 also cleaves
fibronectin, which plays a pivotal role in tendon
repair and the main tendon matrix proteoglycan,

decorin (Jones et al., 2006). ADAM-TS activity can
be inhibited by TIMP3 (Jones et al., 2006). Increased
MMP13 expression was found in rotator cuff tendon
tears (Lo et al., 2004) as well as in a rabbit model of
flexor tendon injury (Berglund et al., 2007). Mean-
while various MMPs, among them MMP1, -2, -3, -7,
-9, -10, -13, -19, -23, -25 and ADAM-TS1, -8, -12,
have been demonstrated in tendon (Tsuzaki et al.,
2003b; Pufe et al., 2005; Jones et al., 2006; Qi et al.,
2006a). Additionally, the natural MMP-inhibitors
TIMP1–4 have been detected in tendon (Jones et
al., 2006). The expression profile differed clearly
between healthy, degenerative and ruptured tendons
with lower levels of MMPs3, -10, TIMP3 and higher
levels of ADAM12, MMP23 in painful compared
with normal tendons. Lower levels of MMPs3, -7,
TIMPs2, -3 and -4 and higher levels of ADAMs8, -
12, MMPs1, -9, -19 and -25, and TIMP1 were evident
in ruptured compared with normal tendons (Lo
et al., 2004; Jones et al., 2006). MMP1 showed the
greatest difference between ruptured and normal
tendons suggesting a high level of collagen degrada-
tion by this enzyme (Jones et al., 2006). MMP19
cleaves nidogen 1, whose fragments are inhibitors of
angiogenesis (Jones et al., 2006). An increase in
MMPs and the resulting degradation of the ECM
has also been implicated in the pathogenesis of
tendinopathy (Arnoczky et al., 2007b). MMPs were
up-regulated by TNFa, IL-1b and VEGF in tendon
(Archambault et al., 2002a; Tsuzaki et al., 2003b;
Thampatty et al., 2007; John et al., 2010). Cytokine
IL-1b-mediated up-regulation of MMPs could be
enhanced by tenotoxic agents such as ciprofloxacin
(Corps et al., 2002) and could be inhibited by dietary
phytochemicals such as epigallocatechin gallate,
probably by inhibiting the stress-activated protein
kinase/c-Jun NH2-terminal kinase (JNK/SAP) path-
way (Corps et al., 2004). Heat stress of equine
tenocytes as well as treatment with TNFa and IL-
1b induced MMP9 expression (Hosaka et al., 2006).
The increase in MMPs (MMP1 and MMP3 expres-
sion) was more pronounced when IL-1b was com-
bined with a mechanostimulation (Archambault
et al., 2002a). Additionally, fluid flow stress induced
IL-1b gene expression (Archambault et al., 2002b).
Stretching stimulated MMP expression in rabbit
tenocytes (Archambault et al., 2002a). To sustain,
mechanical forces require adequate adaption of the
tendon ECM, and hence, ECM remodeling, triggered
by the MMPs. These processes can be accompanied
by neo-angiogenesis triggered by an enhanced VEGF
expression in tendon. TIMPs, the tissue-specific
MMP inhibitors were down-regulated by VEGF in
tendon (Pufe et al., 2005). TIMP1 and -2 mRNA
were also detected in human flexor tendon cells, but
both factors were rather constitutively expressed as
reported by Tsuzaki et al. (2003b). On the contrary,
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stress deprivation of tendons leads to MMP induc-
tion (Arnoczky et al., 2007b). Tendinitis and tenosy-
novitis often arise as sequelae of arthritis such as RA:
under these conditions, Jain et al. (2002), demon-
strated that cytokine inhibition using a TNFa
inhibitor could significantly reduce the amount of
MMPs in tendon, and hence, tendon damage.

Tenocyte apoptosis and cytokines

The increased cell loss by apoptosis seriously affects
the homeostasis of hypocellular tissues such as ten-
don, and hence, contributes to various tendon dis-
orders. In the early phase of tendon healing (up to
the third day in the inflammatory phase), an in-
creased cell death rate was observed in tendon, which
declined later. Cell death might be induced by pro-
inflammatory cytokines and other catabolic factors
(Wu et al., 2010). Stress deprivation, e.g. the absence
of regular tension in tendon, also led to rat tenocytes
apoptosis (Egerbacher et al., 2008). Prolonged ele-
vated temperatures in tendon, which can occur dur-
ing tendon overuse, raised the tenocyte death rate,
whereby short periods of hyperthermia were found
unproblematic and had no detrimental effects on
equine tenocytes (Sharma & Maffulli, 2005; Hosaka
et al., 2005b, 2006). Hosaka and colleagues, observed
an enhanced expression of TNFa and caspase-3
activation in inflamed equine tendons indicating a
pro-apoptotic effect of this cytokine. TNFa seemed
to be involved in the occurrence of tendinitis and
tendon degeneration (Hosaka et al., 2005a ,b). TNFa
was able to induce apoptosis under particular con-
ditions as reported for other connective tissue cell
types (Fischer et al., 2000; Aizawa et al., 2001). Up to
now, the direct effect of TNFa on tenocytes survival
has been only partially investigated. However, Mach-
ner and colleagues reported, that TNFa had an
inhibitory effect on pro-apoptotic Fas ligand expres-
sion in human tenocytes of tendons, which derived
from the neighborhood of osteoarthritic joints. In
tenocytes derived from healthy patients TNFa had
no inhibitory effect on Fas expression (Machner et
al., 2003). In human tenocyte cultures, the stimula-
tion with TNFa alone was not sufficient to induce
apoptosis (unpublished own results). Altogether,
these facts indicate that environmental, also prob-
ably species-dependent conditions and particular
co-stimuli, are necessary to provoke pro- or anti-
apoptotic effects of TNFa in tendon.

Nitric oxide (NO)

NO is an important messenger molecule in physiolo-
gical processes. However, it is also known to con-
tribute to apoptosis in inflammatory cell types such as

monocytes (Natal et al., 2008), or in connective tissue
cells e.g. chondrocytes under inflammatory conditions
such as osteoarthritis (Maneiro et al., 2005; Wu et al.,
2007; Abramson, 2008). Elevated inducible nitric
oxide synthase (NOS) expression seemed to be related
to the increased apoptosis observed in Achilles tendi-
nopathy (Pearce et al., 2009). On the contrary, NO
generated by NOS is involved in tendon healing
(Murrell, 2007). NO mediates angiogenesis in vivo
and endothelial cell growth and migration
in vitro (Ziche et al., 1994). Collagen synthesis and
organization are improved by NO in healing tendons
(Xia et al., 2006; Murrell, 2007). Accordingly, the
synthesis of other ECM proteins is also enhanced by
NOS such as decorin, biglycan, laminin and of the
MMP10 as shown by the NOS overexpression in
tenocytes (Molloy et al., 2006). The interrelation of
cytokines with NOS activities and NO release is up to
now only incompletely elucidated in tendon.

Mechanotransduction: influence on cytokine
expression in tendon

Mechanoresponsiveness is a crucial feature of tendon.
Adequate mechanostimuli play an essential role in
tendon homeostasis, regular function, tenocyte survi-
val and tendon healing (Arnoczky et al., 2007a;
Egerbacher et al., 2008; Eliasson et al., 2009). Over-
mechanostimulation of tendon and tenocytes leads to
cytokine release such as IL-1b and VEGF (Tsuzaki et
al., 2003a; Petersen et al., 2004b; Sun et al., 2008). IL-
6 expression was induced during tendon exercise
(Skutek et al., 2001; Kjaer et al., 2006). Stress depriva-
tion and absence of mechanostimuli induced cytokine
overexpression (particularly that of IL-1b, TNFa and
TGFb) and mechanical deterioration of the tissue
(Uchida et al., 2005). Ruptured tendons revealed less
TNFa expression when naturally loaded during the
healing process compared with unloaded ruptured
tendons in a rat Achilles tendon healing model (Elias-
son et al., 2009). Natural loading improves tendon
healing. However, the mechanotransduction path-
ways in tendon and their obvious interrelation with
pro-inflammatory cytokines are mainly unclear.
Whether the divergent mechanostimulation protocols
used for cultured tenocytes or explants might fully
allow the direct comparison with the in vivo conditions
still remains questionable and further efforts should be
undertaken to establish and characterize these in vitro
tendon models.

Interrelation of complement and cytokines and their
putative aspects in healing

Tissue trauma is well known to induce elevated
complement activity as shown in other tissues.
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Complement activation can lead to cell apoptosis.
Complement activity is induced by apoptotic cells,
ECM fragments and neoepitopes, which arise during
tissue damage (Fishelson et al., 2001; Sjoberg et al.,
2005). Key complement cleavage fragments are C3a
and more downstream C5a, which bind to the so-
called anaphylatoxine receptors C3aR and C5aR
(CD88). Cells possess particular cell surface proteins,
which protect them from tissue-intrinsic complement
activity such as the complement regulatory proteins
(CRPs) CD35 (CR1, complement receptor-1), CD46
(MCP, membrane co-factor protein), CD55 (decay
accelerating factor: DAF) and CD59 (protectin).
CD59 is the most downstream protein as it inhibits
C9 polymerization and thereby the formation of the
MAC and hence preventing complement-mediated
lysis. Complement activity, which is up to now more
thoroughly studied in other tissues, might also play a
role in traumatic musculoskeletal tissue injury (Am-
sterdam et al., 1995; John et al., 2007b) and probably
in tendon rupture. Up-regulation of complement
activity by pro-inflammatory cytokines such as
TNFa in other connective tissue cell types has
already been reported by several authors (Davies
et al., 1994; Onuma et al., 2002; Hyc et al., 2003).
Regulation of CPRs and anaphylatoxine receptors in
tendon tissues was demonstrated recently (unpub-
lished own results) whereby TNFa induced the up-
regulation of C3aR and IL-6 had an inhibitory effect
on the expression of some CRPs. Hence, it can be
hypothesized that distinct cytokines may well also
modulate the sensitivity of tenocytes to complement-
mediated cell lysis. Opsonization of damaged tissue
fragments for phagocytosis by leukocytes by comple-
ment split fragments occurs in response to tendon
rupture. The interrelation of cytokines, other factors
and complement activity has to be studied in tendon
more thoroughly to define its true role in tendon
rupture and healing.

In vitro vs. in vivo studies using animal- and
human-derived tenocytes to assess tendon healing

Tenocytes are essential for the full regeneration of
injured tendons. Hence, cultured tenocytes are often
used as a tool to study in vitro the specific effects of
diverse cytokines, which might play a role during
tendon healing (Tsuzaki et al., 2003b; Courneya et
al., 2010; John et al., 2010). Up to now, many
cytokine-mediated effects that might contribute to
or interfere with tendon healing could only be
demonstrated in vitro. An example is the stimulatory
influence of the pro-inflammatory cytokines IL-1b
and TNFa on tenocytes elastin gene expression,
which has so far only been reported in cultured
human tenocytes (Qi et al., 2006a; John et al.,

2010), whereby it is still unclear whether increased
amounts of functional elastin fibers can be formed in
vivo in ruptured tendons in the presence of these
cytokines. Several studies revealed some agreement
between in vivo and in vitro results much regard to
cytokine effects in tendon and cultured tenocytes as
shown for the interrelation between the IL-1b and
the MMP13 expression in the rat model (Sun et al.,
2008). Additionally, VEGF was up-regulated by
hypoxia and growth factors in cultured rat tenocytes
(Pufe et al., 2001; Petersen et al., 2003c) and VEGF
expression could also be observed in ruptured ten-
dons or during tendon healing in animal-derived
(sheep, dog and rat) (Boyer et al., 2001; Petersen et
al., 2003a ,d) and human tendons (Pufe et al., 2001).
Under these conditions, the presence of hypoxia and
growth factors can be assumed.
Moreover, it was recently shown that the expres-

sion profile and proliferation capacity of cultured rat
tenocytes derived from healthy control tissues dif-
fered from that of tenocytes isolated from ruptured
tendons (Fu et al., 2008). Hence, Fu et al., suggested
to prefer tenocytes isolated from healing tendons as a
more realistic in vitro model to study tendon healing
(Fu et al., 2008).
Differentiation-associated ECM components, and

also other factors such as complement components
were expressed to a lesser extend in vitro compared
with native tendon tissue (Stoll et al., 2010). Mostly,
unknown systemic factors regulate tenocyte expres-
sion profile, which are absent in vitro. Furthermore,
it has to be considered that the majority of reported
data are derived from studies with animal derived-
tenocytes e.g. from the horse (Hosaka et al., 2004;
Hosaka et al., 2006), rabbit (Bernard-Beaubois et al.,
1997) or rat (Egerbacher et al., 2008; Eliasson et al.,
2009). Results of the research studies using human
(Tsuzaki et al., 2003b) and animal-derived tenocytes
(Archambault et al., 2002a) seem to be mostly in
agreement as shown for the interplay between IL-1b
and MMPs. However, detailed analyses of species-
dependent differences in the cytokine expression and
regulation profiles as well as of tenocytes suscept-
ibility to cytokines are still lacking.
In conclusion, it is only realistic to study the com-

plex interaction among intrinsic tenocytes, extrinsic
fibroblasts and blood-derived inflammatory cells via
distinct cytokines in tendon healing using in vivo
approaches. Hence, in vitro and in vivo studies should
be intimately combined.

Conclusions

After tendon trauma, exogenous inflammatory
cytokines are released at the tissue level from immi-
grated leukocytes, which induce a pro-inflammatory
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response by activating the tenocytes as miscellaneous
and sensitive players in the metabolically slow active
tissue tendon (Tsuzaki et al., 2003b). At the cell level,
these pro-inflammatory cytokines highly activate
tenocytes to produce further pro-inflammatory med-
iators initiating auto- and paracrinic amplification
loops. Subsequently and time-delayed, immunoregu-
latory mediators, cytokines and inhibitory factors are
released by tenocytes representing an intrinsic coun-
ter-regulatory and compensatory response observa-
ble at the cell level. The release of degradative
enzymes and the suppression of ECM synthesis are
also evident; however, the production of some essen-
tial ECM components such as elastin and the angio-
genic growth factor VEGF is up-regulated in
tenocytes under the influence of pro-inflammatory
cytokines. Additionally, cell stiffness is modulated by
these cytokines. Together with mainly unknown co-
stimuli, cytokines such as TNFa also seem to pro-
mote tenocyte apoptosis. These facts underline the
putative multivalent function of pro-inflammatory
cytokines in injured and healthy tendon. It is prob-
able that pro-inflammatory cytokines are essential
regulators of tendon healing simultaneously in a
positive and negative manner acting as a regulatory
link between several catabolic and anabolic systems.

The application of cytokine inhibitors and anabolic
cytokines e.g. by using gene therapeutic strategies has
been proposed to support tendon healing. In this
context, the dynamic and diverse involvement of
multiple cytokines in overlapping phases of tendon
healing, in mechanotransduction and in adaption of
tendon to altered biomechanical conditions post
trauma or tendon exercise has to be further consid-
ered. The knowledge should be used to further
develop immunoregulatory strategies to improve
tendon healing such as the use of anti-inflammatory
cytokines (Courneya et al., 2010) or anti-angiogen-
esis agents such as bevacizumab (avastin) (Mizote et
al., 2010; O’Neill et al., 2010).

Key words: tendon disorder, tenocyte, angiogenesis,
healing.
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