Weight Training, Aerobic Physical Activities, and Long-Term Waist Circumference Change in Men

Rania A. Mekary1,2, Anders Grøntved1,2, Jean-Pierre Despres4, Leandro Pereira De Moura5,6, Morteza Asgarzadeh1, Walter C. Willett1,7,8, Eric B. Rimm1,7,8, Edward Giovannucci1,7,8, and Frank B. Hu1,7,8

Objective: Findings on weight training and waist circumference (WC) change are controversial. This study examined prospectively whether weight training, moderate to vigorous aerobic activity (MVAA), and replacement of one activity for another were associated with favorable changes in WC and body weight (BW).

Methods: Physical activity, WC, and BW were reported in 1996 and 2008 in a cohort of 10,500 healthy U.S. men in the Health Professionals Follow-up Study. Multiple linear regression models (partition/substitution) to assess these associations were used.

Results: After adjusting for potential confounders, a significant inverse dose-response relationship between weight training and WC change (P-trend < 0.001) was observed. Less age-associated WC increase was seen with a 20-min/day activity increase; this benefit was significantly stronger for weight training (−0.67 cm, 95% CI 0.93, −0.41) than for MVAA (−0.33 cm, 95% CI 0.40, −0.27), other activities (−0.16 cm, 95% CI −0.28, −0.03), or TV watching (0.08 cm, 95% CI 0.05, 0.12). Substituting 20 min/day of weight training for any other discretionary activity had the strongest inverse association with WC change. MVAA had the strongest inverse association with BW change (−0.23 kg, 95% CI −0.29, −0.17).

Conclusions: Among various activities, weight training had the strongest association with less WC increase. Studies on frequency/volume of weight training and WC change are warranted.

Introduction

Muscle mass loss is common during aging (especially among sedentary individuals after the age of 50) (1) and during intentional weight loss, which may lead to impairments in muscle strength and limitations in physical function (2,3). Therefore, it becomes important to know how different physical activity (PA) types are associated with changes in waist circumference (WC) and body weight (BW), especially when one activity replaces another per given time. Ideally, older adults are recommended to engage in PA that achieves the most favorable changes in body composition, such as loss of fat mass while preserving lean body mass. Randomized controlled trials on the effect of aerobic versus resistance training on WC (4,5) or visceral fat (6,7) have been conflicting; while one trial showed weight training to be not effective on decreasing abdominal fat (WC) in midlife women with a wide BMI range between 20 and 35 kg/m² (4). Other trials showed weight training to be effective in reducing visceral fat in overweight and obese premenopausal women (8) and in sedentary men and women with type 2 diabetes (9). While most of these studies focused on one specific population type (overweight, obese, or with type 2 diabetes) and were of short duration, evaluating this association over longer follow-up periods and on a larger sample becomes crucial. We believe this large cohort study coupled with an understanding of the underlying physiology of the results would help better design future randomized trials.

Disclosure: The authors declared no conflict of interest.

Author contributions: RM, ER, and FH collected data. RM, FH, WW, and EG provided statistical expertise. RM analyzed the data and wrote the first draft. All authors contributed to results’ interpretation, and manuscript’s revision and approval.

Additional Supporting Information may be found in the online version of this article.

Received: 25 July 2014; Accepted: 2 October 2014; Published online 00 Month 2014. doi:10.1002/oby.20949
Therefore, we prospectively examined in a large sample of healthy men from the Health Professionals Follow-Up Study (HPFS) whether moderate to vigorous aerobic activity (MVAA), weight training, and replacement of one activity for another were associated with favorable changes in WC and BW over 12 years.

Methods

Study population

The HPFS is an ongoing prospective study of 51,529 male health professionals, including dentists, veterinarians, pharmacists, optometrists, osteopaths, and podiatrists, aged 40-75 years upon enrollment in 1986. Participants have been followed through mailed biennial questionnaires about their medical history, lifestyle, and health-related behaviors including PA. Dietary intake was assessed every 4 years starting in 1986 using a 131-item food frequency questionnaire (FFQ). Dietary information was updated with subsequent similar FFQs mailed every 4 years thereafter until 2010. This study was approved by the Institutional Review Board of the Harvard School of Public Health, Boston, Massachusetts.

Assessment of weight training, MVAAs, and TV viewing

In 1996 and 2008, participants were asked to report the average time spent per week in the previous year in each of walking, jogging (slower than 10 min/mile), running (10 min/mile or faster), bicycling, lap swimming, tennis, squash/racquetball, calisthenics, rowing, stair/ski machine, weightlifting/weight machine, heavy outdoor work (e.g., digging, chopping), and TV watching. For each activity, men chose one of the 13 duration categories that ranged from none to 40+ hours/week. Men also reported their normal walking pace: easy (<2 miles per hour [mph]), normal (2-2.9 mph), brisk (3-3.9 mph), very brisk, and striding (>4 mph). Moreover, men were asked to report the average number of flights of stairs they climbed daily. Stair climbing (min/day) was then estimated. We classified the different activities into four types as previously described (10): (a) MVAA (≥3-metabolic equivalent [MET] tasks) that are performed repetitively producing dynamic contractions of large muscle groups (11); these included brisk and very brisk walking, jogging, running, bicycling, lap swimming, tennis, squash/racquetball, calisthenics, rowing, and stair/ski machine; (b) other activities including unstructured physical activities of at least moderate intensity such as heavy outdoor work and stair climbing; (c) weight training; and (d) slow and average walking paces that we controlled for in our models. The PA questionnaire has been validated in a random representative sample of the HPFS participants (n = 280) in 1991 (12). Correlations between four 1-week diaries and the 1992 questionnaire were 0.65 for total PA and 0.79 for weight training. Reproducibility of weight training from two questionnaires was 0.50. Additionally, to reflect long-term PA, the pulse rate was used before and after a step test among a subset of participants. Spearman correlations between vigorous PA and pulse rate were −0.45 (before stepping) and −0.41 (after stepping). These associations provide further support for our questionnaire validity (12). Because TV watching has been associated with obesity (13), we included change in hours of TV watching in our models.

Assessment of covariates

Because some diet components have been observed to be predictive of weight gain (14,15), they were included in the analysis. Using a validated FFQ, we assessed intakes of sugar-sweetened beverages, energy-adjusted trans-fats, dietary fiber, alcohol, percent energy of protein intake, and glycemic load in 1994 and 2006. Values in both 1994 and 2006 were included in the model to account for changes in these covariates. Smoking status, antidepressant use (both in 1996 and 2008), sleep duration (hours/day) (in 2000 and 2008), and baseline age were also included. In a validation study of the FFQ versus two diet records (14-day average) conducted among 127 participants of the HPFS, the calorie-adjusted Pearson correlation coefficient for protein intake was 0.38 and the de-attenuated coefficient was 0.44 (16).

Exclusion of participants

Because WC (our primary outcome) was first assessed in 1996, we used 1996 as baseline. For this investigation, among those who reported their BW, WC, and walking pace in 1996 or 2008 (n = 39,111), participants could not participate in the study if they died before the 1996 follow-up cycle (n = 4,190), had implausible energy intakes at baseline (>4,200 or <800 kcal/day) (n = 1,203), and were disabled or otherwise unable to walk in 2008 (n = 373). Outliers (defined as values outside the range of the mean value ±3 × SD) for the main exposure (PA) and for both outcomes (WC and BW) were excluded in 1996 and 2008 (n = 712). Further exclusions through 2008 included reporting myocardial infarction (n = 3,711), stroke (n = 1,143), angina (n = 3,112), coronary artery bypass grafting (n = 1,852), diabetes (n = 3,518), or cancer (n = 8,797) because the development of these diseases could lead to changes in WC and PA levels. Hence, 10,500 remained in the analysis.

Outcome definitions

The primary outcome was 12-year WC change (cm) and the secondary outcome was 12-year BW change (kg) from 1996 to 2008. Specific instructions for WC measurements were written on the front page of the questionnaires and a simple tape measure was enclosed. A drawing was also depicted to help standardize the proper location of the WC. The reproducibility and validity of the self-reported measures of WC and BW were evaluated by comparing them with technician-assessed measurements taken 6 months apart in a subset of the cohort participants (n = 123 men). The age-strata of these men were selected to reflect the age distribution of the entire cohort. The self-reported measures were highly correlated with the average of two technician measurements (BW: r = 0.97; WC: r = 0.95) (17). Self-reported height has been previously reported as highly valid (18).

Statistical analysis

WC change (cm) from 1996 to 2008 was modeled as WC in 2008 as the outcome and baseline WC as a covariate; this is mathematically equivalent to assessing WC change as the outcome (19). To shed light on the association between weight training and WC change, we first modeled weight training in categories based on the distribution of our sample (0, >0-10, >10-25, >25 min/day) in an age-adjusted model. In a multivariate model 1, we additionally controlled for total average alcohol intake, sugar-sweetened beverage intake, percent energy of trans-fat, energy-adjusted fibers, percent energy of protein intake (all in 1994, 2006), smoking, antidepressant intake (1996, 2008), sleep duration (2000, 2008), and all other activities such as TV watching, MVAA, other activities (1996,
TABLE 1 Age-standardized baseline participant characteristics, a by daily levels of weight training among 10,500 U.S. health professionals

<table>
<thead>
<tr>
<th>Weight training (1996), min/day</th>
<th>None</th>
<th>>0–10</th>
<th>>10–25</th>
<th>>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median value, min/day</td>
<td>0</td>
<td>4</td>
<td>13</td>
<td>43</td>
</tr>
<tr>
<td>N</td>
<td>7,518</td>
<td>1,784</td>
<td>1,001</td>
<td>197</td>
</tr>
<tr>
<td>Age, years</td>
<td>58.5 (7.5)</td>
<td>56.6 (6.7)</td>
<td>56.8 (6.7)</td>
<td>56.0 (6.5)</td>
</tr>
<tr>
<td>Waist, cm</td>
<td>96.9 (9.1)</td>
<td>94.7 (8.5)</td>
<td>93.3 (8.2)</td>
<td>92.3 (9.7)</td>
</tr>
<tr>
<td>BMI at 1991, kg/m²</td>
<td>25.7 (3.1)</td>
<td>25.2 (3.0)</td>
<td>25.0 (2.9)</td>
<td>25.1 (3.0)</td>
</tr>
<tr>
<td>TV watching, min/day</td>
<td>83.8 (70.9)</td>
<td>74.8 (64.4)</td>
<td>80.1 (65.0)</td>
<td>76.1 (66.4)</td>
</tr>
<tr>
<td>Slow walking, min/day</td>
<td>11.4 (27.3)</td>
<td>9.8 (26.3)</td>
<td>8.6 (23.6)</td>
<td>7.8 (19.3)</td>
</tr>
<tr>
<td>MVAA b, min/day</td>
<td>26.5 (36.9)</td>
<td>38.0 (35.4)</td>
<td>52.1 (42.6)</td>
<td>58.5 (56.1)</td>
</tr>
<tr>
<td>Weight training, min/day</td>
<td>0.0 (0.0)</td>
<td>5.1 (2.9)</td>
<td>17.0 (4.3)</td>
<td>47.0 (13.0)</td>
</tr>
<tr>
<td>Other activities c, min/day</td>
<td>14.1 (29.8)</td>
<td>9.3 (20.7)</td>
<td>10.6 (19.9)</td>
<td>12.7 (20.9)</td>
</tr>
<tr>
<td>Energy intake, kcal/day</td>
<td>2055 (624)</td>
<td>2048 (591)</td>
<td>2010 (590)</td>
<td>2012 (591)</td>
</tr>
<tr>
<td>Alcohol intake, g/day</td>
<td>11.4 (14.7)</td>
<td>11.7 (13.8)</td>
<td>11.2 (13.0)</td>
<td>10.2 (14.9)</td>
</tr>
<tr>
<td>Sugar-sweetened beverage intake d, servings/day</td>
<td>0.4 (0.7)</td>
<td>0.4 (0.6)</td>
<td>0.3 (0.5)</td>
<td>0.5 (0.9)</td>
</tr>
<tr>
<td>Trans-fat percent energy</td>
<td>1.4 (0.6)</td>
<td>1.2 (0.5)</td>
<td>1.1 (0.6)</td>
<td>1.1 (0.6)</td>
</tr>
<tr>
<td>Fiber, g/day</td>
<td>21.5 (7.0)</td>
<td>23.3 (7.2)</td>
<td>24.6 (7.7)</td>
<td>25.2 (8.4)</td>
</tr>
<tr>
<td>Protein, percent energy</td>
<td>17.3 (3.0)</td>
<td>17.4 (2.8)</td>
<td>17.5 (3.0)</td>
<td>17.6 (3.6)</td>
</tr>
<tr>
<td>Glycemic load</td>
<td>134 (26)</td>
<td>139 (25)</td>
<td>141 (28)</td>
<td>145 (29)</td>
</tr>
<tr>
<td>Alternative healthy eating index 2010 e</td>
<td>52.0 (10.2)</td>
<td>55.4 (10.0)</td>
<td>57.0 (9.9)</td>
<td>56.9 (11.2)</td>
</tr>
<tr>
<td>Current smoking (%)</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Antidepressant use (%)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Sleep (2000), hours/d</td>
<td>7.2 (0.9)</td>
<td>7.1 (0.8)</td>
<td>7.1 (0.8)</td>
<td>7.1 (0.8)</td>
</tr>
</tbody>
</table>

aValues are presented as means (SD) (all such values) except otherwise indicated.
bMVAA included brisk/very brisk walking, jogging, running, bicycling, lap swimming, tennis, squash or racquetball, calisthenics, rowing, and stair or ski machine.
cOther activities included heavy outdoor work (e.g., digging, chopping) and stair climbing.
dSugar-sweetened beverages included sugar-sweetened carbonated beverages, punch, fruit drinks, lemonade, or ice tea.
eAdjusted for total energy intake.

2008), and weight training (1996). In a multivariate model 2, we additionally adjusted for BW (kg) (1996, 2008) to assess the relation with the change in central adiposity independent of BW change. Tests for linear trends across categories of weight training were performed by using Wald’s test (1 df) of an ordinal term that represented median values of these categories. The different PA types were then modeled continuously using different multiple linear regression models (partition and substitution) to assess the associations between 12-year changes in the different activities and 12-year WC change. More details on the time substitution models can be found elsewhere (19,20). Briefly, in the partition model, the regression coefficient for each activity type reflects the addition of a certain activity time (here, 20 min/day) on top of other activities in the model. The substitution model includes each of the activities and their sum with one activity being dropped out. The coefficients for a certain activity represents the consequence of substituting that activity for the one that was dropped out, by the same amount of time.

To examine the joint association of weight training and MVAA on WC change, we constructed a joint variable of weight training (3 categories: none, >0–25; >25 min/day) and MVAA (three categories closely representing adherence to current recommendations of 150 min/week: none, >0–25 min/day; >25 min/day).

Similar analytical models were replicated for BW change (kg) from 1996 to 2008 as an outcome. In the first multivariate model, we adjusted for the same covariates as in the WC change model except for WC and in addition to baseline height (m) and weight (kg). In the second multivariate model, we additionally adjusted for WC change to assess the relation with BW change (or muscle mass) independent of WC change.

We conducted a sensitivity analysis where we did not exclude participants who developed cardiovascular diseases (CVD) or diabetes between 1996 and 2008, but we controlled for these two variables of developing CVD (yes/no) or diabetes (yes/no) in our multivariate models (n = 12,965). SAS version 9.3 (SAS, Cary, NC, USA) was used for all analyses, and a P value less than 0.05 was considered statistically significant.

Results

In this cohort of 10,500 men [mean age (SD) = 58 (7) years], as compared with those who did not engage in any weight training activity, men who engaged in ≥25 min/day of weight training had a smaller WC and a lower body mass index (BMI), spent fewer hours watching TV, consumed less trans-fat, more fiber, engaged in more...
MVAA, had a higher glycemic load diet, had a better diet quality as reflected by the higher alternative healthy eating index (21), and smoked more (Table 1). The mean (SD) time spent in total PA at baseline was 48 (49) min/day and the median was 34 min/day. The mean (SD) WC increase over 12 years was 3.11 (6.61) cm. In this baseline was 48 (49) min/day and the median was 34 min/day. The median time (min/day) for PA at baseline (1996).

In Table 2, an inverse dose-response relationship was apparent between weight training and 12-year WC change even after controlling for potential confounders (model 1) and for BW change (model 2) (both P-trend <0.001). The different PA types in addition to TV watching were shown using two statistical models: partition model (Table 3) and isotemporal substitution model (Table 4). In the partition model (model a), total time was partitioned among time spent watching TV and engaging in different PA types. There was less age-associated WC increase with a 20-min/day activity increase; this benefit was significantly stronger for weight training (~0.67 cm, Table 3. Different discretionary activities, per 20-min/day increase, and 12-year relative change in WC (cm) from 1996 to 2008 among 10,500 men in the HPFS

<table>
<thead>
<tr>
<th>Variable</th>
<th>TV watching</th>
<th>MVAA</th>
<th>Weight training</th>
<th>Other activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β0 (95% CI)</td>
<td>β1</td>
<td>β2 (95% CI)</td>
<td>β3 (95% CI)</td>
</tr>
<tr>
<td>Crude model</td>
<td>0.08 (0.05, 0.12)</td>
<td>-0.33 (-0.39, -0.27)</td>
<td>-0.66 (-0.89, -0.42)</td>
<td>-0.14 (-0.26, -0.03)</td>
</tr>
<tr>
<td>Multivariate-adjusted model (a)</td>
<td>0.08 (0.05, 0.12)</td>
<td>-0.33 (-0.40, -0.27)</td>
<td>-0.67 (-0.93, -0.41)</td>
<td>-0.16 (-0.28, -0.03)</td>
</tr>
</tbody>
</table>

| Crime | 0.08 (0.05, 0.12) | -0.33 (-0.39, -0.27) | -0.66 (-0.89, -0.42) | -0.14 (-0.26, -0.03) |
| Multivariate-adjusted model (a) | 0.08 (0.05, 0.12) | -0.33 (-0.40, -0.27) | -0.67 (-0.93, -0.41) | -0.16 (-0.28, -0.03) |

Each regression coefficient (95% CI) represents a comparison of WC change (in cm) for every 20-min/day increase in the predictor variable, not restricting total PA time or controlling the displacement of other activity time.

MVAA included brisk/very brisk walking, jogging, running, bicycling, lap swimming, tennis, squash or racquetball, calisthenics, rowing, and stair or ski machine; other activities included heavy outdoor work (e.g., digging, chopping) and stair climbing.

The crude model was adjusted for baseline (1996) age (years) and WC (continuous, cm) and included four main exposures mutually adjusted for each other: TV watching, MVAA, weight training, and other activities (all continuous, min/day) in addition to TV watching, MVAA, weight training, and other activities (all in 1996) (continuous, min/day).
TABLE 4 Isotemporal substitutiona of activities, per 20-min/day increase, and 12-year relative WC change (cm) from 1996 to 2008 among 10,500 men in the HPFS

<table>
<thead>
<tr>
<th>Analysis methods</th>
<th>TV watching</th>
<th>MVAA</th>
<th>Weight training</th>
<th>Other activities</th>
<th>Total discretionary timeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution of 20 min/day of an activity to replace 30 min/day of TV watchingc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution model (b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dropped</td>
<td>−0.42 (−0.50, −0.34)</td>
<td>−0.76 (−1.02, −0.50)</td>
<td>−0.24 (−0.37, −0.11)</td>
<td>0.08 (0.05, 0.12)</td>
<td></td>
</tr>
<tr>
<td>Substitution of 20 min/day of an activity to replace 30 min/day of MVAA moderate-to-vigorous aerobic exercisec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution model (c)</td>
<td>0.41 (0.33, 0.49)</td>
<td></td>
<td>Dropped</td>
<td></td>
<td>−0.33 (−0.39, −0.26)</td>
</tr>
<tr>
<td>Substitution of 20 min/day of an activity to replace 30 min/day of weight trainingc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution model (d)</td>
<td>0.75 (0.49, 1.01)</td>
<td>0.34 (0.07, 0.62)</td>
<td>Dropped</td>
<td></td>
<td>−0.67 (−0.93, −0.41)</td>
</tr>
<tr>
<td>Substitution of 20 min/day of an activity to replace 30 min/day of other activitiesc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution model (e)</td>
<td>0.24 (0.11, 0.37)</td>
<td>−0.17 (−0.31, −0.03)</td>
<td>−0.52 (−0.80, −0.23)</td>
<td>Dropped</td>
<td>−0.15 (−0.28, −0.03)</td>
</tr>
</tbody>
</table>

Each regression coefficient (95% CI) represents a comparison of WC (in cm) for every 20-min/day increase in the predictor variable replacing 20 min/day of the activity that is dropped out of the model.

All models are adjusted for baseline (1996) age (years) and WC (continuous, cm); total average alcohol intake (1994, 2006); sugar-sweetened beverage intake (1994, 2006); percent energy of trans-fat (1994, 2006); energy-adjusted fibers (1994, 2006); energy-adjusted glycemic load (1994, 2006); smoking (1996, 2008); antidepressant intake (1996, 2006); percent energy of protein intake (1994, 2006); sleep duration (2000, 2008); and slow walking (1996, 2008) (all continuous, min/day). The corresponding PA would be dropped in 1996 if it was dropped outside the model in 2008.

95% CI = −0.93, −0.41) than for MVAA (−0.33 cm, 95% CI = −0.40, −0.27), other activities (−0.16 cm, 95% CI = −0.28, −0.03), or TV watching (0.08 cm, 95% CI = 0.05, 0.12) (Table 3). Therefore, for the same increased activity time, different activity types were associated with different degrees of WC change. All of the substitution models (b through e, Table 4) consistently suggested that weight training had the strongest association with less WC increase. Substituting 20 min/day of weight training was associated with less WC increase if it replaced 20 min/day of TV watching (−0.76 cm, 95% CI = −1.02, −0.50) (model b), MVAA (−0.34 cm, 95% CI = −0.62, −0.07) (model c), or other activities (−0.52 cm, 95% CI = −0.80, −0.23) (model e).

We examined the joint association of weight training and MVAA on WC change (P-for-interaction <0.001) (Figure 1). Among men who did no MVAA at all or who did not adhere to the current recommendations for MVAA of greater than 25 min/day, men who engaged in some level of weight training had less increase in WC over 12 years as compared with men who did not do any weight training. Although the combination of MVAA to weight training appeared more beneficial for men who engaged in greater than 0-25 min/day of weight training, no additional benefits on WC change were seen among men who engaged in greater than 25 min/day of weight training upon adding MVAA to their routine. Weight training appeared to be beneficial for WC change regardless of adhering to the MVAA guidelines.

Analyses of the BW change (kg) (1996-2008) as an outcome lead to different findings. There was no dose-response relationship between weight training and BW change (P-trend = 0.17, Table 2) in the first multivariate model. However, after further controlling for WC change, the dose-response relationship became positive (P-trend <0.01) suggesting an increase in BW, which is most likely due to gain in muscle mass associated with increased weight training (Table 2). The partition multivariate model showed that while a 20-min increase in MVAA was significantly associated with less BW gain, a 20-min/day increase in weight training was not significantly associated with less weight gain (Supporting Information Table 1). However, after further controlling for WC change, for the same comparison, these associations became non-significant for MVAA or even associated with more BW gain for weight training. The association between resistance training and changes in WC was attenuated but remained significant in the sensitivity analysis where we included participants who developed CVD or diabetes during follow-up. For the main multivariate partition model and after adjusting for BW change, the regression coefficients were as such: (0.05 cm, 95% CI = −0.03, 0.08) for TV watching; (−0.21 cm, 95% CI = −0.26, −0.16) for MVAA; (−0.63 cm, 95% CI = −0.82, −0.45) for weight training; and (−0.19 cm, 95% CI = −0.28, −0.10) for other activities.

Discussion

In this large cohort of men, we found a significant inverse dose-response relationship between weight training and WC change. For similar increased activity time, while weight training had the strongest inverse association with WC change, MVAA had the strongest inverse association with BW change.

Aging is often associated with sarcopenia, the loss of skeletal muscle mass, especially if not accompanied by weight training; hence,
Obesity

Resistance Training and Waist Circumference Change

Mekary et al.

While weight loss could be the goal for many people to improve overall health and could be achieved by engaging in a cardiovascular activity, not only does it entail fat loss, but also muscle mass loss. This concomitant fat loss and muscle gain has been shown to prevent and treat many chronic diseases including obesity, diabetes, heart disease, and osteoporosis (28,29); hence, in the light of our results of weight training on WC change and of MVAA on BW change, it would be ideal to combine MVAA (e.g., jogging/running) with a weight training activity type to achieve this beneficial body composition change. Notably, one should not neglect the advantages of aerobic PA on preventing different chronic diseases such as obesity (30), type 2 diabetes (31), and stroke (33) among others. Concordant with the present observations, a randomized controlled trial on the effect of strength and/or endurance training for 21 weeks in older men (40-65 years) showed that while both training methods decreased body fat, only the strength training group had increased lean mass (33). The authors concluded that combined training was of greater value than each alone to optimize body composition among older men.

Although the relationship between PA and WC or BW change seems to depend on total energy expenditure where PA intensity could compensate for PA duration as shown in our previous findings (30), the relationship between weight training per se and these outcomes seems to be more complex and to require a longer follow-up to observe favorable changes. According to the coding scheme of physical activities by rate of energy expenditure (34), the corresponding intensities are 8-9 METs for jogging, 10-11 METs for running, 3 METs for light weight lifting, and 6 METs for vigorous weight lifting. Despite the fact that greater energy is spent engaging in 20 min/day of MVAA than weight training, our data suggested that engaging in weight training over the long term (as engaged in among participants in this cohort) would lead to more favorable WC change than engaging in MVAA. In other words, to use time efficiently and obtain a better WC change, weight training appears to be the best choice among other activities, despite the non-significant change in BW; however, it is unknown, if total PA energy expenditure is controlled for in this comparison. Our findings could be explained by the effect of intense weight training exercise on greater Excess Post-exercise Oxygen Consumption (EPOC) as compared with aerobic training (35). This difference would lead to an extended (up to 48 hours) higher energy expenditure at rest time, not only in between exercise sets, but also after exercise (36). Another potential explanation is the shift in substrate utilization from carbohydrates (mostly used during anaerobic training such as weight training) to lipid oxidation (mostly used during aerobic training) due to an induced-training adaptation involving increased mitochondrial content in the muscle (37), so that short-term aerobic responses could result from long-term anaerobic training.

Strengths include the large sample and the long follow-up (12 years). Repeated measurements on a wide variety of potential confounding variables allowed for better control of these variables. Finally, we assessed a change in the exposure in relation to a change in the outcome, which is a useful way for reducing—but not totally eliminating—reverse causation bias.

Our study participants were mostly white, which limits the generalizability to women and men of other ethnic background. However, we believe the benefits of strength training could also apply to elderly women as reported elsewhere (25). In addition, these

Figure 1 Joint association of weight training and MVAA and 12-year relative WC change (cm) from 1996 to 2008 among 10,500 men in the HPFS. Going from left to right, n = 2,701 (reference); 373; 31; 2,009; 1,523; 59; 1,727; 1,909; and 162. Data are estimates of regression coefficients with 95% CIs (vertical line) from multivariate regression models adjusted for baseline (1996) age (years) and WC (continuous, cm); total average alcohol intake (1994, 2006); sugar-sweetened beverage intake (1994, 2006); percent energy of trans-fat (1994, 2006); energy-adjusted glycemic load (1994, 2006); smoking (1996, 2006); anti depressant intake (1996, 2008); percent energy of protein intake (1994, 2006); and sleep duration (2000, 2008), in addition to slow walking, other activities, and TV watching (all in 1996, 2008) (all categorical, min/day). *Adherence to the recommendation of MVAA is at least 25 min/day (closest to the recommendation of 150 min/week). **P-for-interaction between weight training in 2008 and MVAA in 2008 less than 0.001.
findings may not be generalizeable to men with chronic diseases as we only included healthy participants; however, a sensitivity analysis showed similar results when we included participants who developed CVD or diabetes during follow-up. Also, we did not have data on body composition to further elucidate our findings but our variables on WC and BW have been previously validated. Further, we were not able to explore the importance of the volume or frequency of reported weight training as only weekly non-specific weight training was reported. Weight training intensity was not assessed, which might have independent effects on WC.

Our findings suggest that while long-term weight training is associated with less WC increase, MVAA is associated with less BW gain in healthy men. Further studies are needed among women, older men, and other ethnic groups to compare the frequency, volume, and intensity of weight training on WC change.

© 2014 The Obesity Society

References