Review

Why intensity is not a bad word: Optimizing health status at any age

Gary R. Hunter a,b, *, Eric P. Plaisance a,b, Stephen J. Carter b, Gordon Fisher a,b

a Department of Human Studies, University of Alabama at Birmingham, USA
b Department of Nutrition Sciences, University of Alabama at Birmingham, USA

A R T I C L E I N F O

Article history:
Received 25 April 2016
Accepted 2 February 2017

Keywords:
High-intensity exercise
Resistance training
Physical activity
Energy expenditure
Exercise economy
Sarcopenia

S U M M A R Y

Age-related declines in health and function make locomotion increasingly difficult leading to reductions in non-exercise activity thermogenesis (NEAT), skeletal muscle size and strength, and increased adiposity. Exercise is an important strategy to attenuate loss of function through the life cycle. Despite claims to the contrary, high-intensity exercise is important for the prevention of obesity and sarcopenia with advancing age. Therefore, the purpose of this mini-review is to present literature supporting the contention that low volume, high-intensity aerobic and/or resistance training can slow sarcopenia, maintain ease of movement, stimulate NEAT, and attenuate the accretion of fat mass.

© 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

1. Introduction

Obesity continues to plague modern society with increasing incidence during the transition from middle- to early old-age. Sarcopenia (an age-related loss of skeletal muscle) is also a major problem, especially after the age of 50. Complications arising from sarcopenia, notably reduced ease of movement and participation in free-living physical activity, increases the susceptibility for increased weight gain in older adults. It is possible the development sarcopenic obesity (a combination of sarcopenia and obesity) may be a phenotypic expression of declining skeletal muscle function and physical inactivity. Several investigations have shown that sarcopenic obesity is more strongly related to disability than either obesity or sarcopenia [1,2]. In fact, a sarcopenic obesity index of <7.26 (calculated as the ratio of appendicular skeletal muscle mass divided by height^2) is a validated predictor of the onset of disability [3]. Strategies are needed to combat increased adiposity, and loss of skeletal muscle function. The purpose of this paper is to demonstrate that low volume, high-intensity aerobic and/or resistance training can slow sarcopenia, sustain ease of movement, stimulate non-exercise training activity thermogenesis (NEAT) and attenuate the accretion of fat mass (Fig. 1).

2. Sarcopenia and decreased total energy expenditure

Sarcopenia accelerates after the age of 50 [4], with adults losing on average 5–10% of skeletal muscle mass prior to age 50 and an additional 40% by age 80. Functional measures, such as muscle strength/endurance and ease of locomotion, seems to follow a similar time course [5] (Fig. 2). Furthermore, loss of type II or fast-twitch muscle fibers also occurs during aging, making the ability to perform tasks that require speed or power particularly challenging in older adults [6]. Total energy expenditure (TEE), resting energy expenditure (REE), and activity-related energy expenditure (AEE) all decrease with advancing age [5]. The decrease in muscle size, strength, aerobic fitness, and function can all be attenuated with intense exercise training, but as the decrease in performance in aging athletes clearly demonstrates, not stopped [5].

3. Energy expenditure is important in weight maintenance

From ages 30 to 80, REE decreases between 160 kcal (~11%) [7] and 330 kcal/day (~23%) [8], while the decrease in AEE has been estimated to be ~23% or 2.2 kcal/kg/day [9,10]. Low levels of physical activity, especially AEE associates with weight gain [10,11]. For example, after a dietary weight loss of 10 kg, we separated pre-menopausal women into two groups based on changes in body weight over one year (i.e., “gainers” ~9 kg mean weight gain, and “maintainers” ~0.5 kg mean weight loss). Using doubly-labeled water to measure TEE, we found that women who maintained weight had an average NEAT that was over 200 kcal/day higher

Please cite this article as: Hunter GR, et al., Why intensity is not a bad word: Optimizing health status at any age, Clinical Nutrition (2017), http://dx.doi.org/10.1016/j.clnu.2017.02.004

0261-5614 © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
(both after weight loss and one year later) than those who gained weight after one year (Fig. 3) [10]. Interestingly, REE adjusted for fat mass and fat-free mass was not different between the "gainers" and "maintainers"—thus highlighting the importance of NEAT in long-term weight maintenance.

Although, doubly-labeled water studies clearly show the importance of AEE in preventing weight gain [11–13], no consensus can be found concerning the role of REE in weight maintenance among young adults. However, it seems likely that the large decrements in REE that occur with aging [8] make it more difficult for the middle-aged to young-old (fifth through seventh decades) to maintain weight.

4. Energy expenditure during exercise

Although energy expenditure during relatively high-intensity aerobic exercise in fit individuals can be substantial (~500–900 kcal/h) [14], it is difficult to lose large amounts of weight with aerobic exercise without the addition of dietary caloric restriction. Typical aerobic training performed in the absence of dieting normally results in 1–2 kg losses of body weight (most if not all fat mass). However, it is difficult for most individuals to find

Please cite this article in press as: Hunter GR, et al., Why intensity is not a bad word: Optimizing health status at any age, Clinical Nutrition (2017), http://dx.doi.org/10.1016/j.clnu.2017.02.004
the time or motivation to sustain intensities/volumes of aerobic training needed to elicit significantly larger reductions in body weight. In contrast, the energy expended during typical resistance training is much less, \(\approx 120 \sim 250 \text{ kcal/h for women and } \approx 200 \sim 500 \text{ kcal/h for men} \) [9]. Minimal weight loss occurs as the result of resistance training; however, reductions in adiposity are often similar to that found with aerobic training due to the gain in muscle at the expense of fat tissue [5]. Since weight loss does not normally occur with resistance training, it is generally thought that dietary compensation is more complete as a result of resistance training compared to aerobic training. However, these beliefs are incorrect as dietary compensation with aerobic training is at least as large, if not larger than with resistance training. For instance, our group has demonstrated that net energy expenditure in a group of older men and women was 119 kcal for 45 min of high-intensity resistance training [15]. The men and women trained 3 times/week for a total of 357 kcal/week of exercise energy expenditure or an average of 50 kcal/day. However, TEE increased \(+230 \text{ kcal/day by the end of the 26 weeks due to additional increases in REE and NEAT. Although the TEE increased } +230 \text{ kcal/day at the end of 26 weeks, the increase would be expected to be gradual across the 26 weeks of training. If the assumption is made that little change occurred during the first days of training and increased gradually over the 26 weeks of training, it might be assumed that the average increase in TEE is approximately } 50% \text{ of the value measured after 26 weeks, averaging } = 115 \text{ kcal/day over the baseline value for an increase in cumulative energy expenditure of } 20,930 \text{ kcal (115 kcal/day } \times 182 \text{ days). Although body weight did not change, the participants gained } +2 \text{ kg of fat-free mass and lost } -2.7 \text{ kg of fat mass. Strategies that impact NEAT may be particularly important in the fight against obesity since participation in NEAT is very low in obese individuals [16].}

Using procedures previously described [17], the loss or gain of kcal contained in the body across any time period can be determined by measuring changes in fat mass and fat-free mass [17]. The gain of 2 kg of fat-free mass requires 1.8 kcal for each gram of fat free mass gain (2000 g \(\times 1.8 \text{ kcal/g } = +3600 \text{ kcal}) The loss of 2.7 kg of fat mass releases 9.3 kcal for each gram of fat lost (2700 g \(\times 9.3 \text{ kcal/g } = -25,110 \text{ kcal}) This example (2 kg of fat-free mass gain and 2.7 kg of fat mass loss) would result in an estimate of a total loss of 21,510 kcal/person (kcal of fat lost subtracted from kcal of muscle gained, summarized in Table 1). Since the total increase in energy expenditure was only \(\approx 20,930 \text{ kcal it appears that the participants in this resistance training study did not increase their dietary intake to compensate for the added energy expenditure. It should be noted that even if the TEE increased } +230 \text{ kcal/day the day after the first workout (highly unlikely) the total cumulative increase in energy expenditure across the 182 days of the study would have been 41,860 kcal creating an estimate of about 49% of the energy lost during dieting. So the estimate of compensation for this study would be between 0 and 49% (dependent on the average daily caloric deficit across the 182 days) of the increased energy expenditure. On the other hand, typical fat mass loss is normally approximately 2 kg with aerobic training with little change in fat-free mass (Table 1 illustrates the total loss in kcal within the body can be lower aerobic training than with an equivalent amount of resistance training). This translates into a dietary compensation for aerobic training of approximately 30% of increased energy expenditure [18].

5. Increase in TEE with training

Despite relatively large energy expenditures during aerobic exercise compared to resistance exercise, resistance training may induce a larger increase in TEE than aerobic training. Resistance training typically increases REE \(+7 \sim 8\%\) most likely from gains in muscle hypertrophy [5]. Chronic aerobic training produces only minimal increases in REE, although we have shown that REE can increase \(+5 \sim 8\% \text{ for } 24 \text{ h following a bout of relatively high-intensity aerobic exercise} [19,20]. It is possible that individuals might decrease physical activity and NEAT in response to vigorous aerobic exercise training. Indeed this has been shown to occur in several studies in which untrained individuals performed relatively high-intensity, high-volume exercise training [21–26]. The reasons for this decrease have yet to be fully explained; however, it is possible that increased fatigue due to frequent training results in less NEAT. One of the most cited examples of reduced NEAT (\(-231 \text{ kcal/day}) occurring in response to chronic aerobic training was shown in a cohort of older adults performing high-intensity (70% VO\(_{2}\text{max}\)) and high frequency (5 times/week) exercise for 10 weeks [23]. Given the relatively short training period, it is possible these older adults had not adapted to such an extreme training regimen and thus, felt fatigued which resulted in participation in less free-living physical activity. Entirely different results may have occurred if a lower intensity, less frequent, and/or longer adjustment period had been used.

The hypotheses that over-reaching/overtraining (syndrome characterized by excessive training leading to impairment in physical performance) may negatively affect participation in physical activity and NEAT is further supported by a recent study designed to evaluate the effects of different frequencies of combined aerobic and resistance training [9]. A group of older women who performed intense aerobic exercise (80% peak heart rate for 40 min/session) and resistance exercise (2 sets of 10 exercises at 80% 1 RM) 3 times/week decreased NEAT 150 kcal/day after 16 weeks of training. Conversely, a group of older women who followed the same daily training regimen, who instead exercised just 2 times/week increased NEAT +200 kcal/day leading to an overall significant increase in total energy expenditure of \(+300 \text{ kcal/day} \) [9].

Accordingly, resistance exercise may be a better mode of training for influencing NEAT [27], especially very high-intensity interval resistance training [28]. In a recent study Paoli et al. [28] showed that 31 min of high-intensity interval resistance training increased REE over 400 kcal/day 22 h after exercise compared to about \(+100 \text{ kcal/day} \) of 60 min of traditional resistance training. In this study, exceptionally high blood lactate levels (>10 mmol/L) following the high-intensity interval resistance training were used to verify the intensity of this kind of training. While this mode of exercise leads to robust increases in REE, the long term effects of this mode of training on metabolic health and physiological parameters of fitness has yet to be determined.

Ease of movement (as defined by reduced heart rate, ventilation, energy cost of locomotion, and perceived effort during physical activity) compared to walking at a constant pace while stationary on a treadmill was decreased by 17% and 27% in the 2 weeks of running and combined aerobic and resistance training, respectively. These findings are consistent with previous research showing that increases in REE are greater during aerobic exercise compared to resistance exercise [29].

Table 1

Comparison of energy lost during 4 months of aerobic versus 4 months of resistance training using data from King et al. [40] and Hunter et al. [15] and methods by Del Corral et al. [17].

<table>
<thead>
<tr>
<th>Time Period</th>
<th>(\Delta \text{Body Mass})</th>
<th>(\Delta \text{Stored energy FM})</th>
<th>(\Delta \text{Body Mass})</th>
<th>(\Delta \text{Stored energy FM})</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Months aerobic training</td>
<td>-2.0 kg</td>
<td>-18,600 kcal</td>
<td>-2.0 kg</td>
<td>-18,600 kcal</td>
</tr>
<tr>
<td>4 Months resistance training</td>
<td>-2.7 kg</td>
<td>-25,110 kcal</td>
<td>-0.7 kg</td>
<td>-21,510 kcal</td>
</tr>
</tbody>
</table>

Please cite this article in press as: Hunter GR, et al., Why intensity is not a bad word: Optimizing health status at any age, Clinical Nutrition (2017), http://dx.doi.org/10.1016/j.clnu.2017.02.004
standardized tasks) is positively related to NEAT [29,30]. Moreover, resistance training-induced increases in strength are positively related to increased locomotion economy [31] and ease of movement [32] and are even more strongly related than aerobic fitness [5], most likely because tasks performed during day-to-day activities are of relatively short duration or moderate to low-intensity, thus not significantly challenging the aerobic system [5].

It is often thought that exercise economy should be inversely related to NEAT since the energy cost for doing any task would be reduced. However, research by our group has not supported this assertion. Instead, NEAT actually seems to be enhanced in those individuals who have increased locomotion economy [29]. In addition, perceived exertion while walking at 4.84 km/h (3 mph) adjusted for physiological effort after weight loss is related to increased weight gain one year following weight loss, as well as decreased participation in aerobic exercise training [33]. Work from our lab shows that muscle metabolic economy of the triceps surae muscle measured during 45% maximum isometric plantar flexion, whole body maximal oxygen uptake, and quadriceps strength were all independently related to reduced weight gain [34]. As such, these data demonstrate that ease of movement may contribute to the ability to maintain weight [34]. The only logical explanation for increases in exercise economy coinciding with increased NEAT would be that increases in economy are associated with the inclination to be more physically active. Consistent with this hypothesis, we have recently shown that NEAT is significantly related to walking ease [29]. In addition, AEE adjusted for treadmill walking, stair climbing, cycling, carrying groceries energy cost/minute (an index of physical activity that adjusts for body size and exercise economy of different individuals) is increased following weight loss in women who resisted training while this was unchanged in women who were aerobically trained or did not exercise train [29]. Although the cited research support the notion that improved ease of movement (decreased heart rate and perception of effort for any task) translate to increased participation in NEAT, we recognize that the decision to be physically active is a complicated matter, controlled by higher centers of the brain, including the hypothalamus [35]. A number of different neuro-mediators likely influence NEAT including orexin, ghrelin, and agouti gene-related protein [36]. At this time it is unclear whether increased fitness and ease in locomotion influence NEAT through neuro-mediators or independent of neuro-mediators.

Perhaps the best means for increasing TEE is through a combination of aerobic and resistance training. Energy expenditure is increased dramatically during an aerobic exercise bout. Most relatively fit individuals can sustain energy expenditures of 8–14 kcal/min or 480–840 kcal/h, depending on body size and aerobic capacity. The energy expenditure during resistance exercise is much lower, averaging between 2 and 8 kcal/min or 120–480 kcal/h. The estimated increase in TEE with a combined aerobic and resistance training regimen (alternating days) of only 30 min a day is shown in Table 2, demonstrating the total cumulative effect of exercise training of 650 kcal/day. This example underscores the potential benefit of a combined training program of aerobic and resistance exercise as opposed to one or the other, which is feasible for most individuals and not a bad investment in trying to achieve energy balance for only 30 min of work/day.

6. Exercise training and weight gain

Due to methodological challenges, few research studies have examined the effects of exercise training on weight gain over an extended period of time. First, yearly weight gain is relatively small for most adults, highlighting the need for interventions to extend over longer time periods, perhaps 5 or 10 years, and/or larger sample sizes. To compound the problem, home-based interventions that are much easier for subjects to participate in, generally yield rather poor results due to low adherence to sufficiently "high" intensity and volume of training. One way relatively large weight gains can be studied over shorter time periods is to evaluate individuals after they have lost weight. Weight regain of 40–60% of weight lost are normally experienced during the first year following weight losses of 10–15% of body weight. Using this weight loss model, we prescribed weight loss of 15% (12 kg) from initial body weight in a cohort of 97 overweight premenopausal women. For one year following weight loss, all participants were offered monthly classes on weight maintenance. In addition, 32 women were randomly assigned to aerobic training twice/week, 35 women were randomly assigned to resistance training twice/week, and 30 women were randomly assigned to no formalized exercise training. Adherence to the exercise training was quite variable among this cohort. Thus, in order to measure the effects of exercise adherence on weight maintenance, women were categorized according to adherence (defined as having completed at least 60% of scheduled training) or non-adherence groups (defined as having completed less than 60% of scheduled training). We found that the aerobic training adherence group gained 3.1 kg (25% of weight lost) and the resistance trained adherence group gained 3.9 kg (32% of weight lost) while the non-exercisers and non-adherers to the exercise training gained an average of 6.5 kg.

Table 2

Potential increase in daily energy expenditure consequent to participation in either 30 min of low/moderate intensity versus high intensity aerobic and resistance training on alternate days, i.e. 30 min of aerobic and 30 min of resistance on alternate days.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Low-intensity</th>
<th>High-intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechanism</td>
<td>(+) EE above normal (kcal/day)</td>
</tr>
<tr>
<td>Resting EE</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 Minutes exercise EE</td>
<td>ATP synthesis</td>
<td>Aerobic exercise (+) 100 to 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistance exercise (+) 50 to 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0 to 50</td>
</tr>
<tr>
<td>Non-exercise activity thermogenesis</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total EE</td>
<td>+150</td>
<td></td>
</tr>
</tbody>
</table>
7. Conclusion

Though sarcopenia will occur with advancing age, along with concomitant decreases in strength, aerobic fitness, ease of movement, energy expenditure and increased susceptibility of weight gain, high-intensity exercise training can slow the adverse effects. Indeed, it is possible for a highly fit 75 year old to have similar physiologic function of a 35 year old which will undoubtedly make it easier to maintain NEAT and TEE and reduce the propensity for weight gain. However, the key is intensity. Without at least a small amount of high-intensity training, the progressive loss of muscle, function, and weight gain will accelerate the deleterious effects of aging.

Funding

This work was supported by grants from the National Institutes of Health: R01DK049779, P30DK056336, P60DK079626, and UL1RR025777.

Conflict of interest

We declare no conflicts of interest.

References

[37] Hunter GR, Brock DW, Byrne NM, Gower BA, Maes PW, Gower BA, et al. Exercise training prevents regain of visceral fat for 1 year following substitution of sedentary behavior with moderate-to-vigorous physical activity [39].

Please cite this article in press as: Hunter GR, et al., Why intensity is not a bad word: Optimizing health status at any age, Clinical Nutrition (2017), http://dx.doi.org/10.1016/j.clnu.2017.02.004